11/27/2008

File Systems

Operating Systems

G530PS: Operating Systems

Graham Kendall

G530PS: Operating Systems
27-Nov-08 ©Graham Kendall B

Introduction

File Systems

Why Use Files?

« It allows data to be stored between processes
« It allows us to store large volumes of data

« Allows more than one process to access the data at
the same time

Operating Systems

GS30PS: Operating Systems
27-Nov-08 ©Graham Kendall 2

Operating Systems

Two Views

File Systems

Two Views of File System

* User View

 Implementators View

G530PS: Operating Systems 3

27-Nov-08 ©Graham Kendall

User View

File Systems

File Naming

« Different operating systems have different file
naming conventions

« MS-DOS only allows an eight character filename
(and a three character extension)

« This limitation also applies to Windows 3.1

» Windows 95 and Windows NT allow filenames up
to 255 characters (although the full path name is
only allowed to be a maximum of 260 characters)

Operating Systems

G530PS: Operating Systems 4

27-Nov-08 ©Graham Kendall

Operating Systems

User View

File Systems

File Naming

« Restrictions as to the characters that can be used in
filenames

« Some operating systems distinguish between upper
and lower case characters

* To MS-DOS, the filename ABC, abc, and AbC all
represent the same file. UNIX sees these as different
files

G530PS: Operating Systems s

27-Nov-08 ©Graham Kendall

User View

File Systems

File Extensions

 Filename are made up of two parts (typically PC
based OS’s) separated by a full stop

 The part of the filename up to the full stop is the
actual filename

« The part following the full stop is often called a
file extension

¢ In MS-DOS the extension is limited to three
characters

¢ UNIX and Windows 95/NT allow longer
extensions

Operating Systems

G530PS: Operating Systems 6

27-Nov-08 ©Graham Kendall

11/27/2008

User View

File Systems

Operating Systems

Common File Extensions

Extension File Contents

BIN Binary File

C C Program File

CPP C++ Program File
DLL Dynamic Link Library
DOC Microsoft Word file
EXE Executable File

HLP Help File

TXT Text File

XLS Microsoft Excel File

27-Nov-08 ©Graham Kendall

G530PS: Operating Systems s

User View

File Systems

Operating Systems

« Store the file as a sequence of bytes. It is up to the

File Structure

program that accesses the file to interpret the byte
sequence

* Fixed length records

* Variable length records

* Indexed Files

G530PS: Operating Systems
27:Nov-08 ©Graham Kendall 10

User View
File Systems
w File Extensions
&m) « Used to tell the operating system what type of data the
>+ | file contains
« It associates the file with a certain application
.|t tes the file with t licat
%0 * Using tools provided with the operating system the
- | userisable to change the file associations
S « UNIX allows a file to have more than one extension
& associated with it
27:Nov s i 7
User View
File Systems
n] File Attributes o
E « Each file has a set of attributes associated with it
@ |* Typical attributes:
5 Attribute Description
>~. Archive Flag Bit Field : has the file been archived?
m Creation Date/Time Date and Time file was created
Creator User ID of the person creating the file
b[) Hidden Flag Bit Field : Is the file a hidden file?
ﬁ Last Accessed Date/Time Date and Time file was last accessed
'J: Owner The ID of the current owner
m Password Password required to access the file
L Protection Access rights to the file
0 Read-Onl Bit Field : Ids the file read only?
Q. ize in Byte How large is the file
O System Flag Bit Field : Is the file a system file?
Temporary Flag Bit Field : Should the file be deleted at end of the
process?
27:Novos i o
User View
File Systems
g File Access
Q
= .
g{‘ « Sequential Access
7p)] .
ap |* Batch Updating Model
i
‘= |* Random Access
f
(]
S
27-Now-i8 e Kol u

Operating Systems

User View

File Systems

Directories

« Allow like files to be grouped together

« Allow operations to be performed on a group of
files which have something in common. For
example, copy the files or set one of their attributes

« Allow files to have the same filename (as long as
they are in different directories). This allows more
flexibility in naming files

 Typical directory entry contains a number of
entries; one per file

Noud G530PS: Operating Systems
27:Nov-08 ©Graham Kendall 2

11/27/2008

User View

File Systems

Directories

« All the data (filename, attributes and disc addresses)
can be stored within the directory

« Alternatively, just the filename can be stored in the
directory together with a pointer to a data structure
which contains the other details

« Hierarchical Directory Structure

« Simulating a hierarchical directory structure?

Operating Systems

G530PS: Operating Systems
27-Nov-08 ©Graham Kendall B

User View

File Systems

Path Names
Absolute path names
e C:\\COURSES\OPS\FILE SYSTEMS
. OR
* \COURSES\OPS\FILE SYSTEMS

Relative path names

« Related to Current Working Directory (CWD)

« If CWD is C:\COURSES then the relative path
name for the above file would be

e OPS\FILE SYSTEMS

Operating Systems

GS30PS: Operating Systems
27-Nov-08 ©Graham Kendall “

User View

File Systems

Working Directory

Finding out the CWD

e Under UNIX - PWD

e Under MS-DOS it is usual to change the command
prompt so that the current working directory is
displayed:

« PROMPT pg

« $p displays the current drive and working directory

* $g tells MS-DOS to display a ‘>’

e “”and ‘..” — what do they represent?

Operating Systems

G530PS: Operating Systems 15

27-Nov-08 ©Graham Kendall

Implementators View

File Systems

Possible File System Layout

Entire disk

| Partl‘lo}&;ﬂe ,‘.’I’H‘/ Disk Trllllen[\\l‘ |

Operating Systems

Smerbloch]Freesnaoe mgml| I-nodes] Roaot dir |F|Iesaﬂaareclones

|900II’06G

G530PS: Operating Systems v

27-Nov-08 ©Graham Kendall

| User View
File Systems

w Operations

g « Copy

§ * Move
o |* Rename

ap |* etc..

=]
=

<

=

(]

o
o

L Implementators View
File Systems

o Implementation (Contigous)

5

=

g{. Contiguous Allocation

w2 |+ Allocate n contiguous blocks to a file. If a file was
8p | 100K in size and the block was 1K then 100

g contiguous blocks would be required

=

Q

o

@)

G530PS: Operating Systems 18

27-Nov-08 ©Graham Kendall

11/27/2008

Implementators View

File Systems

Operating Systems

Implementation (Contigous)

Fie A File C Fikw E File G
(4 blocks) {8 blocks) (12 blocks) {3 blocks)

File 8 File D Fie F
{3 blocks) {5 blocks) {6 blocks)

(Fila A) {File C) {File E} (File G)

Fila B 5 Fron blnn\ /F:s« blocks
(b)

Removing Two Files

G530PS: Operating Systems
27-Nov-08 ©Graham Kendall ©

Implementators View

File Systems

Implementation (Contiguous)

Advantages

« Itis simple to implement as keeping track of the
blocks allocated to a file is reduced to storing the first
block that the file occupies and its length

« The performance of such an implementation is good
as the file can be read as a contiguous file. The read
write heads have to move very little, if at all. You will
never find a filing system that performs as well

Operating Systems

GS30PS: Operating Systems
27-Nov-08 ©Graham Kendall 2

Operating Systems

Implementators View

File Systems

Implementation (Contiguous)

Disadvantages

« Leads to fragmentation

« We need to keep a list of unused blocks (doable, but
expensive)

* The operating system does not know, in advance, how
much space a file can occupy

« Need to run defragmentation process periodically, but
it is expensive

G530PS: Operating Systems 7

27-Nov-08 ©Graham Kendall

Implementators View

File Systems

Implementation (Contiguous)

Question
« Can you think of a scenario where a contiguous file
allocation scheme could be used?

Operating Systems

G530PS: Operating Systems
27:Nov-08 ©Graham Kendall 2

Operating Systems

Implementators View

File Systems

Implementation (Contiguous)

Question
« Can you think of a scenario where a contiguous file
allocation scheme could be used?

» Write once media (CDs, DVDs etc.)

G530PS: Operating Systems 23

27-Nov-08 ©Graham Kendall

Implementators View

File Systems

Implementation (Linked List)

« Blocks of a file represented using linked lists

« All that needs to be held is the address of the first
block that the file occupies

« Each block contains data and a pointer to the next
block

Operating Systems

G530PS: Operating Systems 2

27-Nov-08 ©Graham Kendall

11/27/2008

Implementators View

File Systems

Implementation (Linked List)

Advantages

« Every block can be used, unlike a scheme that insists that every file is
contiguous

No space is lost due to external fragmentation (although there is internal
fragmentation within the file)

The directory entry only has to store the first block number. The rest of the
file can be found from there

The size of the file does not have to be known beforehand (unlike a
contiguous file allocation scheme)

When more space is required for a file any block can be allocated (e.g. the
first block on the free block list)

Reading a file sequentially is straightforward, although may require more
disc accesses than a contiguous allocation

. .

Operating Systems

GS30PS: Operating Systems
27-Nov-08 ©Graham Kendall ®

Implementators View

File Systems

Implementators View
File Systems

w Implementation (Linked List)

S « Blocks of a file represented using linked lists

o | All that needs to be held is the address of the first block that the file occupies

da « Each block contains data and a pointer to the next block
58
4
e
B0 Block 0 Block 2
&
!
-

2}

=

[}

)
g S =
Implementators View
File Systems
. Implementation (Linked List)

8 Disadvantages
@ |« Random access is very slow. It needs many disc reads to access a random
P point in the file (n-1 accesses are required to get to block n)

. Space is lost within each block due to the pointer. This does not allow the
1) number of bytes to be a power of two. This is not fatal, but does have an
] impact on performance

"53|« Reliability could be a problem. It only needs one corrupt block pointer and
e the whole system might become corrupted (e.g. writing over a block that
1) belongs to another file)

o
R o
Implementators View
File Systems
w | Implementation (Linked List: Using an Index)
E Prysical
block.
0 []
N 1
w2 2 L]
> 3 T
4 7 - Fila A starts heve
n : _
an 5 E P B st hero Disadvantages?
T 2
g
9
“ 10 12
h 1" 14
[} 2 =
o 1
o
15 = Unused block
R »

n Implementation
= (Linked List: Using a Table in Memory)
&
» |« Store the pointers in an index (often called a File
W2 | Allocation Table (FAT))
%0 « Does not waste space in the block
‘5 |+ Random access is possible as index is in memory
g « Therefore, eliminates the two main disadvantages
8" of using linked lists
et 2
Implementators View
File Systems
g Implementation (Linked List: Using an Index)
[5) "% » Main disadvantage is
27 : 5 that the entire table
> - R must be in memory all
n . : o the time
o0 : : = P Bt bere « For a (small) disc of
= . 20GB, with a 1K block
?6) " B size, that requires 20
5 " = million entries. At 3
o = - bytes per entry that is
(@) " Ex— 60MB in main memory
it ®

11/27/2008

Implementators View

File Systems

Implementation (I-Nodes)

« All the attributes for the file is stored in an i-node
entry, which is loaded into memory when the file is
opened

 The i-node also contains a number of direct pointers
to disc blocks. Typically there are twelve direct
pointers

 Only keep the i-node in memory if the file is open.

« If each i-node has n bytes and a maximum of k files
can be open then the i-nodes take a maximum of nk
bytes, regardless of disc size

Operating Systems

G530PS: Operating Systems
27-Nov-08 ©Graham Kendall 3t

Implementators View

Implementators View

File Systems

Implementation (UNIX i-Nodes)

« UNIX V7 File System (PDP-11)

* AUNIX directory contains one entry for each file in
that directory

 Each entry is very simple (name (14 bytes)/i-node
number (2 bytes))

Operating Systems

G530PS: Operating Systems

27-Nov-08 ©Graham Kendall

Implementators View

File Systems

Implementation (UNIX i-Nodes)

Attributes

* File size

« Three times (creation, last accessed, last modified)

e Owner

* Group

« Protection information

« Number of directory entries pointing to that i-node (to
cater for links)

Operating Systems

G530PS: Operating Systems

27-Nov-08 ©Graham Kendall

File Systems

w Implementation (i-Nodes)

O Fia Atrbunes.

+ :

73 [T T
>‘ Address of disk biok | [——

% e
bo M‘bnt:l sk ::: ::

Q Address of disk bock 5 —

= e B
8 Address of dsk bock T —

D Addresa of blodk of poirien N
£ =

O sk AdHRTLEE

| Implementators View
File Systems
a Implementation (UNIX i-Nodes)
Q .

¥ |* UNIX V7 File System (PDP-11)

(z\ « In addition there are three additional indirect pointers.
50 These pointers point to further data structures which
o | eventually lead to a disc block address

"3 |« The first of these pointers is a single level of
s indirection, the next pointer is a double indirect
@, | pointer and the third pointer is a triple indirect pointer
o

L Implementators View
File Systems
o Implementation (i-Nodes)
g . Aftributes I?;?:..

b7 i = —
> 3 :

Vx| g
o0 .
£
=
QO
o
@)

G530PS: Operating Systems 6

27-Nov-08 ©Graham Kendall

11/27/2008

Implementators View
File Systems
w Implementation (i-Nodes)
S Block 132 I-node 26 Block 406
[} I-node & is fusr is for is fuss/ast
N Root directory is for fusr direciory usriast directory
w2
> K Mada hll e Meda il
4 | bin 19 | dick 64 | grants
%0 7 | dev 132 30 | erik 408 92 | books
oy 14 | b 51 | jm 60 | mbox
da 9| etc 26 | ast 81 | minix
a 6 | usr a5 | bal 17 [sre
Q, 8 | tme Inode & Inode 26
Looking up says that fusriast says that fusriast'mbax
o usr yields fust is in iz i-node fussiastis in is i-node
i-node 6 block 132 26 block 406 80
. O e ko 3
Implementators View
File Systems
g Case Study
3 » Chapter 10 of the course textbook (ed. 2) is a case study of
|72] Unix and Linux
>
95
o0
(=)
=
<
i
[
)
27:Nov-0 S 3
Implementators View
File Systems
w Directories
g . ~—Root directory
*(;; User
% t:llrectr.)r)-u_L
2
=
[
=
5]
o
o (©) (©) (©) = userfie
27:Nov-08 et “

Implementators View
File Systems
w Implementation (MS-DOS vs i-node)
8 * Under MS-DOS a directory entry is 32 bytes long. It is split as
» follows
%‘ 8 (bytes) 3 (bytes) 1 (byte) 10 (bytes) 2 (bytes) | 2 (bytes) 2 (bytes) 4 (bytes)
b‘.) Filename | Extension | Attributes | Reserved | Time | Date | First Block | Size
=
oy
H . .
8 ¢ Under UNIX we only need to store the file name and i-node
) number (as all the attributes are stored in the i-node)
o
O 2 (bytes) 14 (bytes)
i-node # | Filename
27-Now08 O el 38
Implementators View
File Systems
w Directories
S « Single Level Directory Structure vs Two Level Directory
3 Structure
;i. ~—Root directory
7o) . -—Root directory u Us?r
. _—directory
%o B
3=8010I0)0,
e « Simple ;I/;s
& ¢ Problems with multiple * More comp]ex
O fil_ename_s « More flexible
* Still has its uses « Assumes a user structure
27-Now08 O et “©
Implementators View
File Systems
g Directories
| |=—Root directory
B User
W directory.___|
>
951
2
=
g (C) = User file
@, | * Should we allow users to access other user’s files?
O « Probably yes, but now we have to include security
« Also enables to have common resources (e.g. executables)
27Nov08 O aramenat @

Implementators View

File Systems

Disk Space Management

« Whatever block size we choose then every file must occupy
this amount of space as a minimum

« If we choose a large allocation unit, such as a cylinder then
even a 1K file will occupy a cylinder

« Choosing a small allocation size (of say 1K) means that
files will occupy many blocks which results in more time
accessing the file as more blocks have to be located and
accessed

e There is a compromise between a block size, fast access
and wasted space. The usual compromise is to use a block
size of 512 bytes, 1K bytes or 2K bytes

G530PS: Operating Systems
27-Nov-08 ©Graham Kendall s

Operating Systems

Implementators View

File Systems

Disk Space Management

* We can calculate the maximum number of blocks we need
to hold a complete free list (i.e. an empty disc) using the
following reasoning:

Assume that we need a 16-bit number to store a block number (that
is block numbers can be in the range 0 to 65535)

Assume that we are using a 1K block size

A block can hold 512 block addresses. That is, 1024*8 [number of
bits in a block] / 16 [bits needed for a block address]

Assume that one of the addresses is used as a pointer to the next
block that contains list of free blocks

For a 20Mb disc we need, at most, 41 blocks to hold all the free
block numbers. That is, 20*1024 [maximum number of blocks] /
511 [number of disc addresses in a block]

Operating Systems

G530PS: Operating Systems
27-Nov-08 ©Graham Kendall a

Implementators View

File Systems

Disk Space Management

 Consider a 20Mb disc with 1K blocks, then we can
calculate the number of blocks needed to hold the disc map.
A 20Mb disc has 20,480 (20 * 1024) blocks

We need 20,480 bits for the map, or 2,560 (20,480 / 8)
bytes

« Ablock can store 1024 bytes so we need 2.5 blocks (2560 /
1024) blocks to hold a complete bit map of the disc. This
would obviously be rounded up to 3

Operating Systems

G530PS: Operating Systems .

11/27/2008

Implementators View

File Systems

27-Nov-08 ©Graham Kendall

w Disk Space Management
[
N
|72}
P |« Some of the free blocks (which are no longer be free!) hold
2 disc block numbers that are free
on
E‘: « The blocks that contain the free block numbers are linked
§ together so we end up with a linked list of free blocks
[
S}
2708 O el 4
! Implementators View
File Systems
- Disk Space Management
g « Abit map is used to keep track of the free blocks
YA |« Thatis, there is a bit for each block on the disc
PN | o Ifthe bit is 1 then the block is free. If the bit is zero, the
2! block is in use
80 | - To put it another way, a disc with n blocks requires a bit
S map with n entries
E; « The directory entry may also contain the attributes of the
s file (i-node) or may contain a pointer to a data structure
[
27-Nov08 O kol @
Implementators View
File Systems
o Disk Space Management
[
47
>~ | * Generally, bit maps requires a lesser number of blocks than
5] a linked list
o) | * Only when the disc is nearly full does the linked list
g implementation need fewer blocks
N
o
Q
S}
27Now08 O el 8

Operating Systems

Implementators View

File Systems

Disk Space Management

Advantage of Linked List Over Bit Map

* When only a small amount of memory can be given over to
keeping track of free blocks

Assume, the operating system can only allow one block to
be held in memory and that the disc is nearly full

Using a bit map scheme, there is a good chance that the free
block list will indicate that every block is being used

This means a disc access must be done in order to get the
next part of the bit map

With a linked list scheme, once a block containing pointers
of free blocks has been brought into memory then we will
be able to allocate 511 blocks before doing another disc
access

G530PS: Operating Systems
27-Nov-08 ©Graham Kendall a

11/27/2008

