
11/27/2008

1

File Systems

G53OPS: Operating Systems

Graham Kendall

27‐Nov‐08 1
G53OPS: Operating Systems

©Graham Kendall

File Systems
Introduction

• It allows data to be stored between processes

Why Use Files?

27‐Nov‐08 2
G53OPS: Operating Systems

©Graham Kendall

• It allows us to store large volumes of data

• Allows more than one process to access the data at
the same time

File Systems
Two Views

Two Views of File System

• User View

I l Vi

27‐Nov‐08 3
G53OPS: Operating Systems

©Graham Kendall

• Implementators View

File Systems
User View

File Naming

• Different operating systems have different file
naming conventions
MS DOS l ll i h h fil

27‐Nov‐08 4
G53OPS: Operating Systems

©Graham Kendall

• MS-DOS only allows an eight character filename
(and a three character extension)

• This limitation also applies to Windows 3.1
• Windows 95 and Windows NT allow filenames up

to 255 characters (although the full path name is
only allowed to be a maximum of 260 characters)

File Systems
User View

File Naming
• Restrictions as to the characters that can be used in

filenames

27‐Nov‐08 5
G53OPS: Operating Systems

©Graham Kendall

• Some operating systems distinguish between upper
and lower case characters

• To MS-DOS, the filename ABC, abc, and AbC all
represent the same file. UNIX sees these as different
files

File Systems
User View

File Extensions
• Filename are made up of two parts (typically PC

based OS’s) separated by a full stop
• The part of the filename up to the full stop is the

actual filename

27‐Nov‐08 6
G53OPS: Operating Systems

©Graham Kendall

actual filename
• The part following the full stop is often called a

file extension
• In MS-DOS the extension is limited to three

characters
• UNIX and Windows 95/NT allow longer

extensions

11/27/2008

2

File Systems
User View

File Extensions

• Used to tell the operating system what type of data the
file contains

• It i t th fil ith t i li ti

27‐Nov‐08 7
G53OPS: Operating Systems

©Graham Kendall

• It associates the file with a certain application
• Using tools provided with the operating system the

user is able to change the file associations
• UNIX allows a file to have more than one extension

associated with it

File Systems
User View

Common File Extensions
Extension File Contents
BIN Binary File
C C Program File
CPP C++ Program File

27‐Nov‐08 8
G53OPS: Operating Systems

©Graham Kendall

CPP C++ Program File
DLL Dynamic Link Library
DOC Microsoft Word file
EXE Executable File
HLP Help File
TXT Text File
XLS Microsoft Excel File

File Systems
User View

File Attributes
• Each file has a set of attributes associated with it
• Typical attributes:

Attribute Description
Archive Flag Bit Field : has the file been archived?
Creation Date/Time Date and Time file was created

27‐Nov‐08 9
G53OPS: Operating Systems

©Graham Kendall

Creator User ID of the person creating the file
Hidden Flag Bit Field : Is the file a hidden file?
Last Accessed Date/Time Date and Time file was last accessed
Owner The ID of the current owner
Password Password required to access the file
Protection Access rights to the file
Read-Only Bit Field : Ids the file read only?
Size in Bytes How large is the file
System Flag Bit Field : Is the file a system file?
Temporary Flag Bit Field : Should the file be deleted at end of the

process?

File Systems
User View

File Structure

• Store the file as a sequence of bytes. It is up to the
program that accesses the file to interpret the byte

27‐Nov‐08 10
G53OPS: Operating Systems

©Graham Kendall

sequence
• Fixed length records
• Variable length records
• Indexed Files

File Systems
User View

File Access

• Sequential Access

27‐Nov‐08 11
G53OPS: Operating Systems

©Graham Kendall

• Batch Updating Model

• Random Access

File Systems
User View

Directories

• Allow like files to be grouped together
• Allow operations to be performed on a group of

files which have something in common For

27‐Nov‐08 12
G53OPS: Operating Systems

©Graham Kendall

files which have something in common. For
example, copy the files or set one of their attributes

• Allow files to have the same filename (as long as
they are in different directories). This allows more
flexibility in naming files

• Typical directory entry contains a number of
entries; one per file

11/27/2008

3

File Systems
User View

Directories

• All the data (filename, attributes and disc addresses)
can be stored within the directory
Alt ti l j t th fil b t d i th

27‐Nov‐08 13
G53OPS: Operating Systems

©Graham Kendall

• Alternatively, just the filename can be stored in the
directory together with a pointer to a data structure
which contains the other details

• Hierarchical Directory Structure
• Simulating a hierarchical directory structure?

File Systems
User View

Path Names
Absolute path names
• C:\COURSES\OPS\FILE SYSTEMS
• OR
• \COURSES\OPS\FILE SYSTEMS

27‐Nov‐08 14
G53OPS: Operating Systems

©Graham Kendall

\COURSES\OPS\FILE SYSTEMS

Relative path names
• Related to Current Working Directory (CWD)
• If CWD is C:\COURSES then the relative path

name for the above file would be
• OPS\FILE SYSTEMS

File Systems
User View

Working Directory

Finding out the CWD
• Under UNIX – PWD
• Under MS-DOS it is usual to change the command

27‐Nov‐08 15
G53OPS: Operating Systems

©Graham Kendall

g
prompt so that the current working directory is
displayed:

• PROMPT pg
• $p displays the current drive and working directory
• $g tells MS-DOS to display a ‘>’
• ‘.’ and ‘..’ – what do they represent?

File Systems
User View

Operations

• Copy
• Move
• Rename

27‐Nov‐08 16
G53OPS: Operating Systems

©Graham Kendall

• etc..

File Systems
Implementators View

Possible File System Layout

27‐Nov‐08 17
G53OPS: Operating Systems

©Graham Kendall

File Systems
Implementators View

Implementation (Contigous)

Contiguous Allocation
• Allocate n contiguous blocks to a file If a file was

27‐Nov‐08 18
G53OPS: Operating Systems

©Graham Kendall

Allocate n contiguous blocks to a file. If a file was
100K in size and the block was 1K then 100
contiguous blocks would be required

11/27/2008

4

File Systems
Implementators View

Implementation (Contigous)

27‐Nov‐08 19
G53OPS: Operating Systems

©Graham Kendall

Removing Two Files

File Systems
Implementators View

Implementation (Contiguous)

Advantages
• It is simple to implement as keeping track of the

blocks allocated to a file is reduced to storing the first

27‐Nov‐08 20
G53OPS: Operating Systems

©Graham Kendall

blocks allocated to a file is reduced to storing the first
block that the file occupies and its length

• The performance of such an implementation is good
as the file can be read as a contiguous file. The read
write heads have to move very little, if at all. You will
never find a filing system that performs as well

File Systems
Implementators View

Implementation (Contiguous)

Disadvantages
• Leads to fragmentation
• We need to keep a list of unused blocks (doable, but

27‐Nov‐08 21
G53OPS: Operating Systems

©Graham Kendall

p (
expensive)

• The operating system does not know, in advance, how
much space a file can occupy

• Need to run defragmentation process periodically, but
it is expensive

File Systems
Implementators View

Implementation (Contiguous)

Question
• Can you think of a scenario where a contiguous file

27‐Nov‐08 22
G53OPS: Operating Systems

©Graham Kendall

allocation scheme could be used?

File Systems
Implementators View

Implementation (Contiguous)

Question
• Can you think of a scenario where a contiguous file

27‐Nov‐08 23
G53OPS: Operating Systems

©Graham Kendall

allocation scheme could be used?

• Write once media (CDs, DVDs etc.)

File Systems
Implementators View

Implementation (Linked List)

• Blocks of a file represented using linked lists
• All that needs to be held is the address of the first

27‐Nov‐08 24
G53OPS: Operating Systems

©Graham Kendall

• All that needs to be held is the address of the first
block that the file occupies

• Each block contains data and a pointer to the next
block

11/27/2008

5

File Systems
Implementators View

Implementation (Linked List)
• Blocks of a file represented using linked lists
• All that needs to be held is the address of the first block that the file occupies
• Each block contains data and a pointer to the next block

File A

27‐Nov‐08 25
G53OPS: Operating Systems

©Graham Kendall

File
Block 0

Physical
Block 6

File
Block 1

Physical
Block 9

File
Block 2

Physical
Block 4

File
Block 3

Physical
Block 12

File
Block 4

Physical
Block 1

File
Block 0

Physical
Block 11

File
Block 1

Physical
Block 2

File
Block 2

Physical
Block 14

File
Block 3

Physical
Block 8

File B

File Systems
Implementators View

Implementation (Linked List)
Advantages
• Every block can be used, unlike a scheme that insists that every file is

contiguous
• No space is lost due to external fragmentation (although there is internal

f i i hi h fil)

27‐Nov‐08 26
G53OPS: Operating Systems

©Graham Kendall

fragmentation within the file)
• The directory entry only has to store the first block number. The rest of the

file can be found from there
• The size of the file does not have to be known beforehand (unlike a

contiguous file allocation scheme)
• When more space is required for a file any block can be allocated (e.g. the

first block on the free block list)
• Reading a file sequentially is straightforward, although may require more

disc accesses than a contiguous allocation

File Systems
Implementators View

Implementation (Linked List)

Disadvantages
• Random access is very slow. It needs many disc reads to access a random

point in the file (n-1 accesses are required to get to block n)
S i l i hi h bl k d h i Thi d ll h

27‐Nov‐08 27
G53OPS: Operating Systems

©Graham Kendall

• Space is lost within each block due to the pointer. This does not allow the
number of bytes to be a power of two. This is not fatal, but does have an
impact on performance

• Reliability could be a problem. It only needs one corrupt block pointer and
the whole system might become corrupted (e.g. writing over a block that
belongs to another file)

File Systems
Implementators View

Implementation
(Linked List: Using a Table in Memory)

• Store the pointers in an index (often called a File
All i bl (A))

27‐Nov‐08 28
G53OPS: Operating Systems

©Graham Kendall

Allocation Table (FAT))
• Does not waste space in the block
• Random access is possible as index is in memory
• Therefore, eliminates the two main disadvantages

of using linked lists

File Systems
Implementators View

Implementation (Linked List: Using an Index)

27‐Nov‐08 29
G53OPS: Operating Systems

©Graham Kendall

Disadvantages?

File Systems
Implementators View

Implementation (Linked List: Using an Index)

• Main disadvantage is
that the entire table
must be in memory all
h i

27‐Nov‐08 30
G53OPS: Operating Systems

©Graham Kendall

the time
• For a (small) disc of

20GB, with a 1K block
size, that requires 20
million entries. At 3
bytes per entry that is
60MB in main memory

11/27/2008

6

File Systems
Implementators View

Implementation (I-Nodes)
• All the attributes for the file is stored in an i-node

entry, which is loaded into memory when the file is
opened
Th i d l t i b f di t i t

27‐Nov‐08 31
G53OPS: Operating Systems

©Graham Kendall

• The i-node also contains a number of direct pointers
to disc blocks. Typically there are twelve direct
pointers

• Only keep the i-node in memory if the file is open.
• If each i-node has n bytes and a maximum of k files

can be open then the i-nodes take a maximum of nk
bytes, regardless of disc size

File Systems
Implementators View

Implementation (i-Nodes)

27‐Nov‐08 32
G53OPS: Operating Systems

©Graham Kendall

File Systems
Implementators View

Implementation (UNIX i-Nodes)

• UNIX V7 File System (PDP-11)
• A UNIX directory contains one entry for each file in

27‐Nov‐08 33
G53OPS: Operating Systems

©Graham Kendall

that directory
• Each entry is very simple (name (14 bytes)/i-node

number (2 bytes))

File Systems
Implementators View

Implementation (UNIX i-Nodes)

• UNIX V7 File System (PDP-11)
• In addition there are three additional indirect pointers.

27‐Nov‐08 34
G53OPS: Operating Systems

©Graham Kendall

These pointers point to further data structures which
eventually lead to a disc block address

• The first of these pointers is a single level of
indirection, the next pointer is a double indirect
pointer and the third pointer is a triple indirect pointer

File Systems
Implementators View

Implementation (UNIX i-Nodes)

Attributes
• File size

27‐Nov‐08 35
G53OPS: Operating Systems

©Graham Kendall

• Three times (creation, last accessed, last modified)
• Owner
• Group
• Protection information
• Number of directory entries pointing to that i-node (to

cater for links)

File Systems
Implementators View

Implementation (i-Nodes)

27‐Nov‐08 36
G53OPS: Operating Systems

©Graham Kendall

11/27/2008

7

File Systems
Implementators View

Implementation (i-Nodes)

27‐Nov‐08 37
G53OPS: Operating Systems

©Graham Kendall

File Systems
Implementators View

Implementation (MS-DOS vs i-node)

• Under MS-DOS a directory entry is 32 bytes long. It is split as
follows
8 (bytes) 3 (bytes) 1 (byte) 10 (bytes) 2 (bytes) 2 (bytes) 2 (bytes) 4 (bytes)

27‐Nov‐08 38
G53OPS: Operating Systems

©Graham Kendall

Filename Extension Attributes Reserved Time Date First Block Size

2 (bytes) 14 (bytes)

i‐node # Filename

• Under UNIX we only need to store the file name and i-node
number (as all the attributes are stored in the i-node)

File Systems
Implementators View

Case Study

• Chapter 10 of the course textbook (ed. 2) is a case study of
Unix and Linux

27‐Nov‐08 39
G53OPS: Operating Systems

©Graham Kendall

File Systems
Implementators View

Directories
• Single Level Directory Structure vs Two Level Directory

Structure

27‐Nov‐08 40
G53OPS: Operating Systems

©Graham Kendall

• Simple
• Problems with multiple

filenames
• Still has its uses

• More complex
• More flexible
• Assumes a user structure

File Systems
Implementators View

Directories

27‐Nov‐08 41
G53OPS: Operating Systems

©Graham Kendall

File Systems
Implementators View

Directories

27‐Nov‐08 42
G53OPS: Operating Systems

©Graham Kendall

• Should we allow users to access other user’s files?
• Probably yes, but now we have to include security
• Also enables to have common resources (e.g. executables)

11/27/2008

8

File Systems
Implementators View

Disk Space Management
• Whatever block size we choose then every file must occupy

this amount of space as a minimum
• If we choose a large allocation unit, such as a cylinder then

even a 1K file will occupy a cylinder

27‐Nov‐08 43
G53OPS: Operating Systems

©Graham Kendall

even a 1K file will occupy a cylinder
• Choosing a small allocation size (of say 1K) means that

files will occupy many blocks which results in more time
accessing the file as more blocks have to be located and
accessed

• There is a compromise between a block size, fast access
and wasted space. The usual compromise is to use a block
size of 512 bytes, 1K bytes or 2K bytes

File Systems
Implementators View

Disk Space Management

• Some of the free blocks (which are no longer be free!) hold

27‐Nov‐08 44
G53OPS: Operating Systems

©Graham Kendall

disc block numbers that are free

• The blocks that contain the free block numbers are linked
together so we end up with a linked list of free blocks

File Systems
Implementators View

Disk Space Management
• We can calculate the maximum number of blocks we need

to hold a complete free list (i.e. an empty disc) using the
following reasoning:

• Assume that we need a 16-bit number to store a block number (that

27‐Nov‐08 45
G53OPS: Operating Systems

©Graham Kendall

is block numbers can be in the range 0 to 65535)
• Assume that we are using a 1K block size
• A block can hold 512 block addresses. That is, 1024*8 [number of

bits in a block] / 16 [bits needed for a block address]
• Assume that one of the addresses is used as a pointer to the next

block that contains list of free blocks
• For a 20Mb disc we need, at most, 41 blocks to hold all the free

block numbers. That is, 20*1024 [maximum number of blocks] /
511 [number of disc addresses in a block]

File Systems
Implementators View

Disk Space Management

• A bit map is used to keep track of the free blocks
• That is, there is a bit for each block on the disc
• If the bit is 1 then the block is free. If the bit is zero, the

bl k i i

27‐Nov‐08 46
G53OPS: Operating Systems

©Graham Kendall

block is in use
• To put it another way, a disc with n blocks requires a bit

map with n entries
• The directory entry may also contain the attributes of the

file (i-node) or may contain a pointer to a data structure

File Systems
Implementators View

Disk Space Management

• Consider a 20Mb disc with 1K blocks, then we can
calculate the number of blocks needed to hold the disc map.

• A 20Mb disc has 20 480 (20 * 1024) blocks

27‐Nov‐08 47
G53OPS: Operating Systems

©Graham Kendall

• A 20Mb disc has 20,480 (20 * 1024) blocks
• We need 20,480 bits for the map, or 2,560 (20,480 / 8)

bytes
• A block can store 1024 bytes so we need 2.5 blocks (2560 /

1024) blocks to hold a complete bit map of the disc. This
would obviously be rounded up to 3

File Systems
Implementators View

Disk Space Management

• Generally, bit maps requires a lesser number of blocks than
a linked list

27‐Nov‐08 48
G53OPS: Operating Systems

©Graham Kendall

a linked list
• Only when the disc is nearly full does the linked list

implementation need fewer blocks

11/27/2008

9

File Systems
Implementators View

Disk Space Management
Advantage of Linked List Over Bit Map
• When only a small amount of memory can be given over to

keeping track of free blocks
• Assume, the operating system can only allow one block to

b h ld i d th t th di i l f ll

27‐Nov‐08 49
G53OPS: Operating Systems

©Graham Kendall

be held in memory and that the disc is nearly full
• Using a bit map scheme, there is a good chance that the free

block list will indicate that every block is being used
• This means a disc access must be done in order to get the

next part of the bit map
• With a linked list scheme, once a block containing pointers

of free blocks has been brought into memory then we will
be able to allocate 511 blocks before doing another disc
access

