10/23/2008

Introduction

Processes

* Concept of a process is fundamental to an operating
system
* Can be viewed as an abstraction of a program
*Although to be strict we can say that a program (i.e. an
algorithm expressed in some suitable notation) has a process
that executes the algorithm and has associated with it input,
output and a state
* Computers nowadays can do many things at the
same time. They can be writing to a printer, reading
from a disc and scanning an image

Operating Systems

G530PS: Operating Systems
23-0ct-08 ©Graham Kendall 2

Introduction

Processes

* Important to realise

*The CPU is switching processes

*One process can have an effect on another process
which is not currently running

Operating Systems

G530PS: Operating Systems
23:0ct.08 ©Graham Kendall 4

Processes
g
2 .
2 G530PS: Operating Systems
95
an
g Graham Kendall
=
2}
o
P
=
o
Introduction
Processes
v | * The computer (more strictly the operating
& | system)is also responsible for running many
&3 processes, usually, on the same CPU
(Z’ * Must give the illusion that the computer is
o | doing many things at the same time
g (pseudoparallelism)
<
=
[P
[oF
o
Introduction
Processes
n
E Running
Q \
<+
w2
% \ Ready
on
g
o
Q Blocked
o
o

Introduction

Processes

* Running. Only one process can be
running at any one time (assuming a
single processor machine). A running
process is the process that is actually
using the CPU at that time

Operating Systems

N\
L

ocs G530PS: Operating Systems
23-0ct.08 ©Graham Kendall &

Introduction

Processes

» Ready. A process that is ready is
runnable but cannot get access to the
CPU due to another process using it

N =]
/

6530PS: Operating Systems
23-0ct-08 ©Graham Kendall 7

Operating Systems

Introduction

Processes

» The scheduler is concerned with
deciding which one of the processes in
a ready state should be allowed to move

to a running state

M\—
N
| Blocked |/

G530PS: Operating Systems
23008 ©Graham Kendall °

Operating Systems

10/23/2008

Introduction

Processes

Operating Systems

* Blocked. A blocked process is unable to
run until some external event has taken
place. For example, it may be waiting for
data to be retrieved from a disc

Blocked /

6530PS: Operating Systems
23-0ct-08 ©Graham Kendall 8

Operating Systems

Introduction

Processes

Each process has a process table

Registers

Program counter

Program status word

Stack pointer

Process State

Time when process started

CPU time used
Time of next alarm

Process id
Note that accounting information is stored as well

Operating Systems

G530PS: Operating Systems "

23-0ct-08 ©Graham Kendall

Introduction

Processes

* When a process moves from a running state to
a ready or blocked state it must store certain
information so that it can restart from the
same point when it moves back to a running
state

* Which instruction it was about to execute

*Which record it was about to read from its input

file
*Values in the registers

G530PS: Operating Systems
23-0ct:08 ©GrahamKendall 10

Operating Systems

Race Conditions

Processes

* Sometimes necessary for two processes to
communicate with one another

* Not a situation where a process can write some data
to a file that is read by another process at a later time

*e.g. One type of process (i.e. there could be more
than one process of this type running) that checks a
counter when it starts running. If the counter is at a
certain value, say x, then the process terminates as
only x copies of the process are allowed to run at any

one time

ot G530PS: Operating Systems
23-0ct.08 ©Graham Kendall 2

10/23/2008

Race Conditions

Processes

Operating Systems

* But consider this scenario

* Process 1, Py, starts

* P, reads the counter, i;, from the shared memory. Assume i, = 3 (that
is three processes of this type are already running)

* P, gets interrupted and is placed in a ready state

* Process 2, P,, starts

* P, reads the counter, i,, from the shared memory; i, = 3

* Assume i, <x 50 i, = i, +1 (i.e. 4)

* i, is written back to shared memory

* P, is moved to a ready state and P, goes into a running state

* Assume i; <x 50 iy = i; +1 (i.e. 4)

* iy is written back to the shared memory

23-0ct-08 ©Graham Kendall

G530PS: Operating Systems "

Race Conditions

Processes

Operating Systems

Avoid race conditions by not allowing two
processes to be in their critical sections at the

same time
We need a mechanism of mutual exclusion

Some way of ensuring that one processes,
whilst using the shared variable, does not
allow another process to access that variable

23-0ct-08 ©Graham Kendall

G530PS: Operating Systems 16

Race Conditions
Processes
wr | * This is how it might work
g *The process starts
27 *The counter, i, is read from the shared memory
v>)’ ¢ If the i = x the process terminates elsei=i+1
o) *x is written back to the shared memory
=
=
<
S
(]
)
2008 i B
Race Conditions
Processes
é’ * Five processes running but the counter is
O only set to four
N
7]
7
20 * This problem is known as a race condition
=
=
<
=
(]
S
23-0ct.08 kel 15
Race Conditions
Processes
w | n fact we need four conditions to hold
E 1. No two processes may be simultaneously inside their critical
1) sections
"(;; 2. No assumptions may be made about the speed or the number
>~‘ of processors
/)] 3. No process running outside its critical section may block other
OD processes
cj 4. No process should have to wait forever to enter its critical
‘5 section
2]
B
Q. | * Itis difficult to devise a method that meets all
o these conditions, but let’s try....
2300108 O e Kol v

Race Conditions

Processes

Operating Systems

* Disabling Interrupts

* Allow a process to disable interrupts before it enters its critical
section and then enable interrupts after it leaves its critical section
CPU will be unable to switch processes
Guarantees that the process can use the shared variable without
another process accessing it
But, disabling interrupts, is a major undertaking
At best, the computer will not be able to service interrupts for,
maybe, a long time
At worst, the process may never enable interrupts, thus (effectively)
crashing the computer
The disadvantages far outweigh the advantages

ot G530PS: Operating Systems
23-0ct.08 ©Graham Kendall ®

Operating Systems

Race Conditions

Processes

* Lock Variables
* Another method is to assign a lock variable
* A process is only able to enter a critical section
when the lock variable is set to zero

* A process sets the variable to (say) 1 when a
process is in its critical section and resets it to
zero when a processes exits its critical section

* Does this work okay?

* But this is flawed as it simply moves the problem
from the shared variable to the lock variable

G530PS: Operating Systems
23-0ct-08 ©Graham Kendall ©

Operating Systems

Race Conditions

Processes

10/23/2008

Race Conditions

Processes

Operating Systems

Strict Alternation

Process 1

While (TRUE) {
while (turn != 1); // wait
critical_section();

Process 0

While (TRUE) {
while (turn != 0); // wait
critical_section();

turn=1; turn =0;
noncritical_section(); noncritical_section();
} }
G530PS: Operating Systems
23-0ct-08 ©Graham Kendall 2

Strict Alternation|Process 0 Process 1
While (TRUE) { While (TRUE) {
while (turn 1= 0); while (turn 1= 1);
critical_section(); critical_section();
turn=1; turn=0;
noncritical_section(); noncritical_section();
} }

turn=0
Process 0 Process 1
while(turn 1=0) — F
critical section()

while(turn1=1) —» T

turn=1
noncritical_section() critical section()
turn=0
G530PS: Operating Systems 21

Race Conditions

Processes

Operating Systems

* Strict Alternation
Process 0

While (TRUE) {
while (turn 1= 0); / wait
critical_section();
tum = 1;
noncritical_section();

} }

Process 1

While (TRUE) {
while (turn 1= 1); // wait
critical_section();
umn=0;
noneritical_section();

. Assume the variable turn is initially set to zero.

. Process 0 runs. And finding turn is zero, it enters its critical region

. If process 1 tries to run, it will find that turn is zero and will have to
wait

. When process 0 exits its critical region turn = 1 and process 1 can
continue

. Process 0 is now blocked

23-0ct-08 ©Graham Kendall

G530PS: Operating Systems
23-0c:08 ©GrahamKendall 2

Operating Systems

Race Conditions

Processes

* Strict Alternation

Process 0 Process 1

While (TRUE) { While (TRUE) {
while (turn 1= 0); // wait while (turn != 1); // wait
critical_section(); critical_section();
turn=1; turn = 0;
nonritical_section(); noncritical_section();

} }

What is the problem with this approach?

e G530PS: Operating Systems
23-0ct.08 ©Graham Kendall =

Operating Systems

Race Conditions

Processes

*Strict Alternation|Process 0 Process 1
While (TRUE) { While (TRUE) {
while (turn !=0); // while (turn !=1); //
critical_section(); critical_section();

tum =1; tum =0;
noncritical_section(); noncritical_section();

) }

Process 0 runs, enters its critical section and exits; setting turn to 1. Process 0
is now in its non-critical section. Assume this non-critical procedure takes a
long time.

Process 1, which is a much faster process, now runs and once it has left its
critical section turn is set to zero.

Process 1 executes its non-critical section very quickly and returns to the top of
the procedure.

The situation is now that process 0 is in its non-critical section and process 1 is
waiting for turn to be set to zero. In fact, there is no reason why process 1
cannot enter its critical region as process 0 is not in its critical region.

ot G530PS: Operating Systems
23-0ct.08 ©Graham Kendall 2

Race Conditions

Processes

*Strict Alternation| Process 0 Process 1
While (TRUE) { While (TRUE) {
while (turn !=0); // while (turn !=1); //
wait
critical_section(); critical_section();
turn = 1; turn = 0;

noncritical_section(); noncritical_section():

* We have a violation of one of the conditions

that we listed above
1. No two processes may be simultaneously inside their critical sections
2. No assumptions may be made about the speed or the number of
processors
3. No process running outside its critical section may block other
processes
4. No process should have to wait forever to enter its critical section

Operating Systems

G530PS: Operating Systems
23-0ct-08 ©Graham Kendall b

10/23/2008

Race Conditions

Processes

v |* Peterson’s Solution

2

@ |* Solution to the mutual exclusion problem
L—Z‘ that does not require strict alternation

on
g : : :

B Still uses the idea of lock (and warning)

5 variables together with the concept of taking
o turns

@)

Race Conditions

Processes

int No_Of Processes;
int turn;
int interested[No_Of_Processes];

void enter_region(int process) {
int other;
other = 1 — process;
interested[process] = TRUE;
turn = process;
while(turn == process &&
interested[other] == TRUE);

void leave_region(int process) {
interested[process] = FALSE;

Operating Systems

Race Conditions

Processes

* Peterson’s Solution
int No_Of_Processes;
int turn;
int interested[No_Of _Processes];

void enter_region(int process) {

Using Peterson’s algorithm
work out what will happen,
given the following sequence.
Assume that we are only
interested in controlling two

G530PS: Operating Systems
23008 ©Graham Kendall 2

int other; processes.
other = 1 — process;
interested[process] = TRUE;
turn = process;

while(turn == process &&
interested[other] == TRUE);

Aprocess, Py, starts and calls
enter_region. Assume no other
processes are running

void Ieizﬁ};?:e%"[(;gt‘:epsrsolcisSF)AL{SE; Once Py is in its critical region
b what happens if another
process, P, starts and calls
enter_region?

Operating Systems

« P, calls leave_region

G530PS: Operating Systems
23:0ct.08 ©GrahamKendall %

Race Conditions

Processes

Process 0
int No_Of_Processes;
int turn;
int interested[No_Of Processes];
void enter_region(int process) {
int other;
other = 1 — process;
interested[process] = TRUE;
turn = process;
while(turn == process && interested[other] == TRUE);

¥

No_Of_Processes 2;
int turn;
int interested[2];

enter_region(0) {
int other;
other = 1;
interested[0] = TRUE;
turn = 0;
while(0 == 0 && FALSE == TRUE);

Operating Systems

¥

e G530PS: Operating Systems
23-0ct.08 ©Graham Kendall b

Processes

Race Conditions

* Peterson’s Solution
« Initially, the array interested has all (both) its elements set to false

« Assume process 0 calls enter_region. The variable other is set to one (the
other process number) and it indicates its interest by setting the relevant
element of interested, and sets the turn variable

Tur Interested Action No_0f_Processes 2;
int turn;
Process (] int interested[2];
F F Continue enter_region(0) {
F T Continue
interested[0] = TRUE;
T F Continue turn = 0;
while(0 == 0 && FALSE == TRUE);
T T Wait 3

Operating Systems

« Inthis instance, the process will be allowed to enter its critical region, as
process 1 is not interested in running

ot G530PS: Operating Systems
23-0ct.08 ©Graham Kendall

Race Conditions

Processes

Process 1
int No_Of Processes;
int turn;
int interested[No_Of_Processes];

void enter_region(int process) {
int other;
other = 1 — process;
interested[process] = TRUE;
turn = process;
whille(turn == process & interested[other] == TRUE):

¥

Operating Systems

No_Of_Processes 2;
int turn;
int interested[2];

enter_region(1) {
int other;
other N
intere:

[1] = TRUE;

turn = 1;
while(1 == 1 && TRUE == TRUE);
i3
G530PS: Operating Systems
23-0ct-08 ©Graham Kendall 3t

10/23/2008

Race Conditions

Processes

* Peterson’s Solution

« Now process 1 could call enter_region. It will be forced to wait as the other
process (0) is still interested. Process 1 will only be allowed to continue
when interested[0] is set to false which can only come about from process
0 calling leave_region

No_Of_Processes 2;

Operating Systems

Turn== Interested Action ;
int turn;
Process [1] int interested[2];
E E Continue enter_region(1) {
int other;
N other = 0;
F T Continue 3 d[1] = TRUE;
. urn = 1;
T F Continue while(1 == 1 && TRUE == TRUE);
b
T T Wait
G530PS: Operating Systems
23-0ct-08 ©Graham Kendall 2

Race Conditions

Processes

Operating Systems

* Peterson’s Solution

* What happens if two processes
call enter_region at exactly the
same time?

G530PS: Operating Systems
23008 ©Graham Kendall 3

Race Conditions

Processes

void enter_regionint process) {
int other;
other = 1 — process;
interested[process] = TRUE;
turn = process;
while(turn == process && interested[other] == TRUE):

Process 0 Time Process 1
No_Of_Processes 2;
int turn;

int interested[2];

No_Of_Processes 2;
int turn;
int interested[2];

enter_region(0) { enter_region(1) {

Operating Systems

int other; int other;
other = 1; other = 0;
interested[0] = TRUE; interested[1] = TRUE;
turn = 0;
while
3
X
Process 0 sets turn, but it is immedietely overwritten by Process 1
G530PS: Operating Systems
23:0ct.08 ©GrahamKendall 3

Operating Systems

Race Conditions

Processes

* Peterson’s Solution

« Assume that process O sets turn to zero and then process 1
immediately sets it to 1. Under these conditions process 0 will be
allowed to enter its critical region and process 1 will be forced to wait

* Turn (=1) == Process (=0) —F * Turn (=1) == Process (=1) — T

« Interested[0] —-T « Interested[1] -T
Turn == Process Interested[0] Action Turn == Process Interested[1] Action

F F Continue F F Continue

F T Continue F T Continue

T F Continue T F Continue

T T Wait T T Wait

Process 0 Process 1
G530PS: Operating Systems 5

23-0ct.08 ©Graham Kendall

Race Conditions

Processes

* Test and Set Lock

* Some instruction sets assist us in
implementing mutual exclusion

* The instruction is commonly called Test and
Set Lock (TSL)

* It reads the contents of a memory location,
stores it in a register and then stores a non-
zero value at the address.

* Guaranteed to be indivisible

Operating Systems

Race Conditions

10/23/2008

Race Conditions

Processes

v |* Test and Set Lock
8 Solution to mutual exclusion using assembly code

w2 enter_region:

>\ tsl register, flag ; copy flag to register and set
/)] flag to 1

cmp register, #0 ;was flag zero?

00 inz enter_region ;if flag was non zero, lock was

ﬁ set, so loop
.y ret sreturn (and enter critical

*a region)

a-‘) leave_region:

mov flag, #0 ;store zero in fla
OQ‘ ret o ;return o
Race Conditions
Processes

w Peterson’s Solution and TSL both solve the

= mutual exclusion problem

Q . L.

27 However, both of these solutions sitin a
(Z’ tight loop waiting for a condition to be met

) (busy waiting).

g Wasteful of CPU resources

< .

5 Any other problems with these approaches?

o

Processes
v |* Test and Set Lock
E ¢ Assume, two processes.
8 « Process O calls enter_region enter_region:
WA | TSLcopies the flag to a register tsl register, flag
> and sets it to a non-zero value cmp rei'Ster' 0
w . The flag is compared to zero and ::i enter-region
N if found to be non-zero the
E‘: routine loops back to the top leave_region:
<= |« Only when process 1 has set the o flag
ret
8 flag to zero (or under initial
Q conditions) will process 0 be
8 allowed to continue
Race Conditions
Processes
i Other disadvantages
E * Suppose we have two processes, one of high priority and one
5} of low priority
*r;; * The scheduling algorithm runs the high priority process
>N whenever it is in ready state
T |+ Ifthe low priority process is in its critical section when the high
B0 priority process becomes ready to run the low priority process
a will be placed in a ready state so that the higher priority
= process can be run
€3 | But, the high priority process will not be able to run and the
= low priority process cannot run again to release the higher
(]
Q, priority process
O ¢ This is sometimes known as the priority inversion problem

Operating Systems

Race Conditions

Processes

Sleep/Wakeup

Sleep(): System call that causes the calling process to block until
woken up

Wakeup(process): Causes a sleeping process to wakeup (i.e.
become available to run)

Operating Systems

Race Conditions

Processes

Classic Synchronisation Problems

Producer/Consumer Problem

* Aproducer process generates information that
is to be processed by the consumer process
The processes can run concurrently through the
use of a buffer

* The consumer must wait on an empty buffer

* The producer must wait on a full buffer

Race Conditions

Processes

Operating Systems

Classic Synchronisation Problems

Producer/Consumer Problem

Also known as the bounded buffer problem

0 1 2 3 4 5 6 7
[alefelofe]r]

— o

Operating Systems

Race Conditions

Processes

Producer/Consumer sdotins b 100 = rasmis o Skots in th buller =
st =

it cours = 0 « Puseiogs of 4 in the b
Problem
woud producentvoed)
it nem
whie (TRUE) | '* POpaat IoHver *
RO = prockace_dem). « et sl dm -
o (COUrt == N} sheep); = il buffer is hull, 9o 10 sleap *
H insert_ e bem). put tem 0 g -
Does thls mOdeI the count = cownt + 1 iIncrement count of Bems in buller
il (COUNt == 1) WRKBURHCONSUME); WS buter T

problem correctly? ,
1
If not, why not?

e EONSUMAN Vel

nt item

= ropaat Ioeres +
= if buffe is eepty, 9of 10 slp =

= sk A out of Butfer =

count = count - 1; = decrement count of Aems in buffer =
H [count == N - 1} wakeupiproducer); /* was buflor Bal? «

CONSUMa_ DMt » Pt

whia (TRLUE} |

Operating Systems

Race Conditions

Processes

Producer/Consumer Problem

The problem

* The problem is that the wakeup request
was lost as the other process was not
sleeping.

* We could solve (for this simple case) with '
a wakeup flag so that if a process
subsequently sleeps, and the wakeup
flag is set, it would wakeup immediately
(or not even sleep)

* But we can devise more complicated
scenarios where this solution becomes
impractical.

10/23/2008

Race Conditions

Processes

Operating Systems

Producer/Consumer sdstine 1 100

= rusmis of Sots in the bulfer =
= Pumas of i in the bufler +

it court = 0,
Problem
woud L
i
sleep() and nt tem:
wakeup() are not p—— S
part of C standard ™ o pyokuce_Remd}: + s et dum -

H (court == N) sk)
Insert_ e gem)

COUNt = count + 1

 [C0URt == 1) WAKBUB{CONSUMET)

= il buffer is full, g0 I sleep *
= put item in bufter =
= increment count of Rems in buser «
' wits Euller ampty? o

library, but let's
assume that they

are available , 1

Insert_item,
remove_item and
consume_item do

as their name
suggests, along

with relevant

housekeeping

] CONSUMBN vERE)

nt item

= ropaat Ioeres +
= if buffe is eepty, 9of 10 slp =
13 = sk A out of Butfer =

1 = decrement count of Aems in buffer =
H [count == N - 1} wakeupiproducer); /* was buflor Bal? «
CONSUMa_ DMt * Pt i -

Race Conditions

Processes

Operating Systems

Producer/Consumer Problem

Imagine this scenario

* The buffer is empty

« Consumer has just read count (=0)

* Consumer gets pre-empted and calls the
producer

* The producer inserts an item into the
buffer, increments counts and notes
count=1 o

* Reasonsing that count was just zero (and that the consumer was sleeping) it sends a
wakeup

« Consumer is not actually asleep, so the wakeup is lost

* When consumer next runs, it will go to sleep
* Eventually producer will also sleep, and both will sleep forever

Operating Systems

Race Conditions

Processes

Semaphores

« Use an integer varaiable to count the number stored wakeups
« semaphore = 0 indcates that no wakeups are stored
« semaphore > 0 indcates that some wakeups are pending

* down/up propsed as generalisations of sleep/wakeup

Race Conditions

Processes

Operating Systems

Semaphores

down

if (semaphore > 0) {
semaphore--;
// and continue

else
sleep();
// when woken
semaphore--;

up
semaphore++;
Choose process (at random?) that is sleeping on
semaphore and allow it to continue

10/23/2008

Race Conditions

Processes

Operating Systems

Semaphores

« down must be a single, indivisible atomic action. Once started, no other process can
access the semaphore until completed or blocked (sleeping)

down
if (semaphore > 0) {

else
sleep();
// when woken
semaphore--;

up
semaphore++;
Choose process (at random?) that is sleeping on semaphore and allow it to

continue

 up must be a single, indivisible atomic action

Operating Systems

Race Conditions

Processes

Producer/Consumer Baetnn M 100
bt e simagtee
Problem

Three semaphores

* mutex, to ensure that the i)
producer/consumer do not access i o o ragiom
vy + ecmmars coues of A ws

the buffer at the same time '

« empty, for counting the number of

slots that are empty L
e (TR |
« full, for counting the number of ——
slots that are full o

ot Dt +

Operating Systems

Race Conditions

Processes

Producer/Consumer
Problem

Mutex
« Initially 1

« Ensures that only one process can = Qera someng 1ogud @ Duter
P . Gecremens empty count
be in its critical region _— = sotes crics eguon ©

= v sl g
= wcremane cous of Al vty

« Abinary semaphore as it can ——>
only take one of two values i

Operating Systems

Race Conditions

Processes

down
Sequence of calls (mutex = 1) if (mutex > 0) (
mutex--;
// and continue
* Producer; (mutex = 0) else
sleep();
// when woken
* Producer, (process sleeps) mutex
)
 Producer; ends (mutex++,
. up
Producer , is woken, mutex--; mutex+s;

Choose process (at random?) that
is sleeping on mutex and allow
it to continue

mutex=0)

If another producer was now

invoked, it would sleep 3 (smutex)
own mutex

Producer, ends (mutex = 1) . .)
- insert_item(item)

up (&mutex)

Operating Systems

Race Conditions

Processes

= v sl g
= wcremane cous of Al vty

LT
‘whdg (TRUE) [= by op

———> anian = ducrprmant bof count +
Soanibruss) = anter crticsl regon =

—————> tem - emce_sema) = sk foem b Exter +
sprhemuten e cricad sogpos

—————> ey = rerement coutt of ety skt
e e ger .o g s e

Processes

Race Conditions

Produce Item (empty = 100, full = 0)

Consume Item (empty = 100, full = 0)

down (&empty) ;

down (&mutex) ;.
insert_item(item) ;
Up (&mutex)

up (&full) ;

down (&full) ;

down (smutex)

item = remove_item();
Up (&mutex)

up (&empty) ;

CTonsume_ttem(iten

Operating Systems

10/23/2008

Race Conditions

Processes

Operating Systems

Produce Item (empty = 100, full = 0) duwr‘meww >0 1
empty--;
+ Will allow 100 items to be produced o |/ ona continue
before sleeping [down(&empty)] sleep();
// when woken
empty--;

« Will increment the full mutex)
[up(&full)] (and let’s assume nothing up
is sleeping at the moment) fulles;
Choose process (at random?) that
is sleeping on full and allow
it to continue

down (&empty) ;
insert_item(item) ;
up (&full) ;

Processes

Race Conditions

Consume Item (empty = 100, full = 0)

+ Will allow items to be consumed while
items are available. If not available,
then sleep [down(&full)]

* Will increment the empty mutex
[up(&empty)]

down
if (full > 0) {
full
// and continue
else
sleep();
// when woken
full-—;
}
up
empty++;
Choose process (at random?) that
is sleeping on empty and allow
it to continue

down (&full) ;

up (&empty) ;

item = remove_item() ;

Operating Systems

Operating Systems

Race Conditions

Processes

protect critical regions

Operating Systems

Notes

We have used semaphores in two ways
* Mutual Exclusion (mutex in the example), to

* Syncronisation (empty/full) to protect the buffer
from under/over-flowing

Race Conditions

Processes

down (empty)
£(empty > 0) {

“Boundary” Condition Lot

« Assume full = 100, empty = 0 (i.e. 100 // and continue
items and been produced, with none % et
consumed) L nen woken

up (full)
£

* Calling producer again will send that rocess (at randon?) that is
consumer to sleep eping on full and allow it to
continue

* If we now call up(empty), via a

consumer, we will wake up the down) o
producer .

T sleep():

— // when woken
full--;
-)
* The same principles for the consumer up (empty)
; empty++;
trying to consume from an empty Choose process (at random?) that is
queue. sleeping on empty and allow it to
continue

Operating Systems

Scheduling

Processes

Scheduling Objectives

« Fairness : Ensure each process gets a fair share of the CPU

« Efficiency : Ensure the CPU is busy 100% of the time. In practise, a measure
of between 40% (for a lightly loaded system) to 90% (for a heavily loaded
system) is acceptable

« Response Times : Ensure interactive users get good response times

« Turnaround : Ensure batch jobs are processed in acceptable time

« Throughput : Ensure a maximum number of jobs are processed

Cannot meet all of these objectives to an optimum
(classic multi-objective problem)

10

10/23/2008

Scheduling

Processes

Operating Systems

Non Pre-emptive Scheduling

* Allowing a process to run until it has completed has
some advantages

* We would no longer have to concern ourselves with race
conditions as we could be sure that one process could not
interrupt another and update a shared variable

* Scheduling the next process to run would simply be a case
of taking the highest priority job (or using some other
algorithm, such as FIFO (First-in, First-out)

Scheduling

Processes

Operating Systems

Non Pre-emptive Scheduling

The disadvantages far outweigh the advantages.

* Arogue process may never relinquish control,
effectively bringing the computer to a standstill

* Processes may hold the CPU too long, not allowing
other applications to run

Operating Systems

Scheduling

Processes

Pre-emptive Scheduling
Tasks of the Scheduler

* To decide which process can use the CPU

* Once it has had a period of time then it is placed into
a ready state and the next process allowed to run

This disadvantage of this method is that we need
to cater for race conditions as well as having the
responsibility of scheduling the processes

Operating Systems

Scheduling

Processes

Typical Process Activity

Typical processes come in two varieties

* 1/O bound processes which require the CPU in short
bursts

* Processes that require the CPU for long bursts

Operating Systems

Scheduling

Processes

Typical Process Activity

CPU Burst Time

* How long the process needs the CPU before it will
either finish or move to a blocked state

We cannot know the burst time of a process
before it runs

Operating Systems

Scheduling

Processes

First Come, First Served (FCFS)

* Execute processes in the order they arrive and execute
them to completion
* This is simply a non-preemptive scheduling algorithm

* Easy to implement \,_

-Rea/.i
* Add Process Control Block \ /},- -

to the ready queue [eoe]

* Problem is that the average waiting time can be long

11

10/23/2008

Scheduling

Processes

Operating Systems

First Come, First Served (FCFS)

The FCFS algorithm can have undesirable effects.

* A CPU bound job may make the I/0 bound (once they
have finished the I/0O) wait for the processor. At this
point the I/O devices are sitting idle

* When the CPU bound job finally does some 1/O, the
mainly I/O bound processes use the CPU quickly and
now the CPU sits idle waiting for the mainly CPU
bound job to complete its I/O

Operating Systems

Scheduling

Processes

Shortest Job First (SJF)

Process Burst Time Wait Time
P, 12 0
P, 19 12
P, 4 31

Py 7 35

FCFS: Average waiting
time is 19.50ms (78/4)

Process Burst Time Wait Time

SJF: Average waiting
time is 9.50ms (38/4)

Scheduling
Processes
w First Come, First Served (FCFS)
g Press Bursime WaitTime Average wai ting time of
*i o 5 - 21ms ((0+27+36) /3)
p) P, 2 36
on
g
B
a Press BursTlme WaltTlme Average Waiting time Of
o B 2 5 6.6ms ((0+9+11)/3)
@ P, 27 1
Scheduling
Processes
w Shortest Job First (SJF)
=
3
g, * Each process is tagged with the length of its
U2 | next CPU burst
on
g
§ * The processes are scheduled by selecting the
& shortest job first.
o
Scheduling
Processes
g Shortest Job First (SJF)
8 | The SJF algorithm is pro.V'ably.optimal with
g{‘ regard to the average waiting time
U2 |« Therefore, we should always use this
%0 scheduling algorithm
*3 * But, do you see any problems?
5,
o
o

Operating Systems

Scheduling

Processes

Shortest Job First (SJF)

* The problem is we do not know the burst
time of a process before it starts

* For some systems (notably batch systems)
we can make fairly accurate estimates but
for interactive processes it is not so easy

12

10/23/2008

Scheduling
Processes

Operating Systems

Shortest Job First (SJF)

where

T, =at +(1-a)T
ntl n () n T,, stores the past history

t,, contains the most recent information

‘ a, 0<=a<=1
-

* This formula allows us to weight both the history of the
burst times and the most recent burst time

* Ifa=0then T ,, =T, and recent history (the most recent
burst time) has no effect. If a = 1 then the history has no
effect and the guess is equal to the most recent burst time

* Avalue of 0.5 for a is often used so that equal weight is

given to recent and past history
See Spreadsheet (Exercises)

Operating Systems

Scheduling
Processes
w Shortest Job First (SJF)
g * One approach is to try and estimate the length of
Y | the next CPU burst, based on the processes
V>J-s previous activity
a0 * To do this we can use the following formula
b= T, =at +(1-aT,
= where
2}
5 a, 0<=a<=1
o T,, stores the past history
O t,, contains the most recent information
Scheduling
Processes
w Priority Scheduling
Q
¥ |* SJF is a special case of priority scheduling
(%. * We can use a number of different measures as
& | priorit
& p y
=
<
o
(]
o
o
Scheduling
Processes
i Priority Scheduling
g We could use this formula to calculate priorities
=
1% 1/(n/p)
>~
/5] where
&0 n, is the last CPU burst for that process
=8 p, is the CPU time allowed for each process
8 before it is preempted (100ms in our
& example)
o

Scheduling

Processes

Priority Scheduling

Example of priorities based on the resources they

have previously

» Assume processes are allowed 100ms before the scheduler
preempts it

* If a process used, say 2ms it is likely to be a job that is I/O
bound

* It is in the schedulers interest to allow this job to run as
soon as possible

* Ifajob uses all its 100ms we might give it a lower priority,
in the belief that we can get smaller jobs completed first

Scheduling

Processes

Priority Scheduling

« Plugging in some real figures we can assign priorities as follows

CPU Burst Last
Time (n)
100

Processing Time

Slice (p)
100

Priority Assigned

50

100

25

100

4

5

100

20

2

100

50

1

100

100

Operating Systems

priority

« The process which had the shortest previous burst time has the higher

1/(n/p)

13

10/23/2008

Operating Systems

Scheduling

Processes

Priority Scheduling

Also set priorities externally

* During the day interactive jobs are given a high
priority

* Batch jobs given high priority overnight

Another alternative is to allow users who pay

more for their computer time to be given

higher priority for their jobs.

Operating Systems

Scheduling

Processes

Round Robin Scheduling

* Processes held in a queue

* Scheduler takes the first job off the front of the queue
and assigns it to the CPU (as FCFS)

* Unit of time called a quantum is defined

* When quantum time is reached the process is
preempted and placed at the back of queue

* Average waiting time can be quite long

Scheduling
Processes
w Priority Scheduling
QO |Problems with priority scheduling
17 . . .
> | * Some processes may never run (indefinite blocking
70! or starvation)
on
g
s |Possible Solution
= .
O |* Introduce aging
joF
o
Scheduling
Processes
n Round Robin Scheduling
g * Consider these processes. Assume all arrive at time
2 zero and quantum = 4
A
Py 24
%0 P, 3
oy
g Py 3
=
& Calculate the average waiting time for RR and SJF
o

Operating Systems

Scheduling

Processes

Round Robin Scheduling

* Consider these processes. Assume all arrive at time
zero and quantum = 4
Time P, P, P3

Py 24 2 3 [4()| 7

P, 3 3 [6|4 |70

Py 3 4 E

5

SJF Average Average Wait time = 17

Wait Time = 3 (6+4+7)/3 =5.66

Operating Systems

Scheduling

Processes

Round Robin Scheduling

Main concern with the RR algorithm is the length of the
quantum
* Too long and we have FCFS

« Switch processes every ms and we make it appear as if every process
has its own processor that runs at 1/n the speed of the actual processor
(ignoring overheads)

Example

* Set the quantum to Sms and assume it takes Sms to execute a process
switch

* We are using half the CPU capability simply switching processes

14

Scheduling

Processes

Operating Systems

Multilevel Queue Scheduling

Two typical processes in a system

* Interactive jobs — tend to be shorter

« Batch jobs — tend to be longer

Set up different queues to cater for different process
types

Each queue may have its own scheduling algorithm
Background queue will typically use the FCFS
algorithm

Interactive queue may use the RR algorithm

Scheduling

Processes

Operating Systems

Multilevel Queue Scheduling

Multilevel Queue Scheduling assigns a process to a queue
and it remains in that queue
May be advantageous to move processes between queues
(multilevel feedback queue scheduling)
Consider processes with different CPU burst
characteristics
* Process which use too much of the CPU will be
moved to a lower priority queue
* Leave I/O bound and (fast) interactive processes in the
higher priority queue(s)

10/23/2008

Operating Systems

Scheduling

Processes

Multilevel Queue Scheduling

* Any jobs that require less than 8ms of the CPU
are serviced very quickly

* Any processes that require between 8ms and
24ms are also serviced fairly quickly

* Any jobs that need more than 24ms are executed
with any spare CPU capacity once Q, and Q,
processes have been serviced

Scheduling
Processes
w Multilevel Queue Scheduling
E * Scheduler has to decide which queue to run
B
> |* Two main methods
(7] * Higher priority queues can be processed until they are
&n empty before the lower priority queues are executed
.g « Each queue can be given a certain amount of the CPU
8
Q' |+ Canbe other queues
o
o ¢ System queue — high priority
Scheduling
Processes
n Multilevel Queue Scheduling
E * Assume three queues (Q,, Q, and Q,)
8 * Scheduler executes Q, and only considers Q, and Q, when
;{‘ Q, is empty
/) * AQ, process is preempted if a Q, process arrives
an * New jobs are placed in Q,
.S * Qg runs with a quantum of 8ms
*5 « Ifaprocess is preempted it is placed at the end of the Q,
a-j queue
Q. ¢ Q, has a time quantum of 16ms associated with it
O * Any processes preempted in Q, are moved to Q,, which is
FCFS
Scheduling
Processes
w Multilevel Queue Scheduling
E * Parameters that define the scheduler
-g * The number of queues
% * The scheduling algorithm for each queue
50 * The algorithm used to demote processes to
E lower priority queues
= * The algorithm used to promote processes to a
B higher priority queue (some form of aging)
8“ * The algorithm used to determine which queue
a process will enter

15

Scheduling
Processes
w Multilevel Queue Scheduling
% * Mimic other scheduling algorithms
> * One queue
95 .
) * Suitable quantum
g * RR algorithm
S * Generalise to the RR algorithm
[
)
Scheduling
Processes
w Multilevel Queue Scheduling
g » Second scheduler is invoked periodically to remove processes
*5 from memory to disc and vice versa
> |+ Parameters to decide which processes to move
70! * How long has it been since a process has been swapped in
1) or out?
S * How much CPU time has the process recently had?
‘5 * How big is the process (on the basis that small ones do
‘&-‘) not get in the way)?
[e'n * What is the priority of the process?
Scheduling
Processes
i Evaluation of Scheduling Algorithms
g Deterministic Modeling
"(7; » Takes a predetermined workload and evaluates each
CZ“ algorithm
ap |* Advantages
8 e Itis exact
+= .
8 » Itis fast to compute
& * Disadvantages
o * Only applicable to the workload that you use to
test

10/23/2008

Scheduling
Processes
w Multilevel Queue Scheduling
g » Assumed that the processes are all available in
27 memory so that the context switching is fast
c%‘ * If the computer is low on memory then some
o | Processesmay be swapped out to disc
. g * Context switching takes longer
8 * Sensible to schedule only those processes in
& memory
@) * Responsibility of a top level scheduler
Scheduling
Processes
n Evaluation of Scheduling Algorithms
O
w2 |* Not covered in (Tanenbaum, 1992) - In (Silberschatz,
=1 in () - In (Sil h
> | 1994)
v . How do we decide which scheduling algorithm to use?
%0 * How do we evaluate?
P « Fairness
e » Efficiency
[P « Response Times
8" ¢ Turnaround
¢ Throughput
Scheduling
Processes
o Evaluation of Scheduling Algorithms
g * Given this workload, and assuming that Froeess :,u::
27 all processes arrive at time zero P,)
P [+ Which of the following algorithms will P, 33
2 perform best? b, 2
%0 + First Come First Served (FCFS) . 5
= * Non Preemptive Shortest Job First Py 14
= (SIF)
s ¢ Round Robin (RR)
8-4 ¢ Assume a quantum of 8 milliseconds

16

10/23/2008

Scheduling
Processes
w Evaluation of Scheduling Algorithms
P B
g * Given this workload, and assuming that e T;‘,:,s:
27 all processes arrive at time zero P, 9
> Which of the following algorithms will P, 33
%2 perform best? 3 2
%0 » First Come First Served (FCFS) P, 5
= * Non Preemptive Shortest Job First P, 14
S (SJF) SIF: 555 = 110
O ¢ Round Robin (RR) RR: 119/5 = 238
8-4 Assume a quantum of 8 milliseconds FCFS: 1445 = 288
Scheduling
Processes
w Evaluation of Scheduling Algorithms
P B
QE) Given this workload, and assuming that e T?::
5 all processes arrive at time zero P, 3
> Which of the following algorithms will P, 33
%2 perform best? P 2
%\0 » First Come First Served (FCFS) P, 5
= * Non Preemptive Shortest Job First P, 14
e (SJF) SIF: 535 = 106
O ¢ Round Robin (RR) RR: 94/5 = 188
8-1 Assume a quantum of 8 milliseconds FCFS: 14075 = 28.0
Scheduling
Processes
i Evaluation of Scheduling Algorithms
QE) Process Burst Process Burst Process Burst
4(;; Time Time Time
S Py 9 Py 8 P, 9
/5] P, 33 P, 33 P, 33
on 7 2 P 2 P, 2
S Py 5 Py 5 P, 5
da' Ps 14 Py 14 Py 14
$= | SIF: 555 = 110 SIF: 53/5 = 10.6 SIF: 55/5 = 11.0
D |RR: 1195 = 238 RR: 94/5 = 1838 RR: 111/5 = 222
O | FCFs: 144/5 = 288 FCFS: 140/5 = 28.0 FCFS: 144/5 = 2838
O Quantum =8 Quantum =8 Quantum = 15

Scheduling
Processes
w Evaluation of Scheduling Algorithms
g * Given this Work}oad, ar}d assuming that Froeess ::,r,s:
b7 all processes arrive at time zero P, 3
c%\ Which of the following algorithms will P, 33
perform best? P 2
?:“0 * First Come First Served (FCFS) pj 5
= * Non Preemptive Shortest Job First Py 14
< (SIF)
5 + Round Robin (RR)
ssume a quantum of 8 milliseconds
8 A f 8 millisecond
Scheduling
Processes
n Evaluation of Scheduling Algorithms
g Given this workload, and assuming that Froeess :I,:,set
*&; all processes arrive at time zero P, 9
(Z\ Which of the following algorithms will P, 33
perform best? P 2
%0 * First Come First Served (FCFS) pj 5
= * Non Preemptive Shortest Job First Ps 14
IS (SIF) SIF: 55/5 = 110
B * Round Robin (RR) RR: 111/5 = 222
8-4 Assume a quantum of 15 milliseconds FCFS: 144/5 = 288
Scheduling
Processes
o Evaluation of Scheduling Algorithms
Q' | Queuing Models
g.‘ » Use queuing theory
v . Using data from real processes we can arrive at a
?:.'0 probability distribution for the length of a burst
g time and the I/O times for a process
s » Can also generate arrival times for processes
Q, | (arrival time distribution)

17

10/23/2008

Scheduling Scheduling
Processes Processes
» Evaluation of Scheduling Algorithms » Evaluation of Scheduling Algorithms
S E Queuing Models
% Queuing Models qg One useful formula is Little’s Formula.
n=»x
CZ’ * Define a queue for the CPU and a queue for each c%“ Where W
1/O device and test the various scheduling .
on leorith on n is the average queue length
S algorithms E‘: A is the average arrival rate for new processes (e.g. five a
& |° Knowing the arrival rates and the service rates we ® second)
5 can calculate other figures such as average queue 5 w is the average waiting time in the queue
Q. | length, average wait time, CPU utilization etc. o
o O Main disadvantage is that it is not always easy to define realistic
distribution times and we have to make assumptions
Scheduling Scheduling
Processes Processes
w Evaluation of Scheduling Algorithms n Evaluation of Scheduling Algorithms
g Simulations g Simulations
g{. * A Variable (clock) is incremented ;J\ * Use trace data
U2 |* Ateach increment the state of the simulation is /5] * Collected from real processes on real machines
%D updated %0 » Disadvantages
‘o |+ Statistics are gathered at each clock tick so that the = + Simulations can take a long time to run
e system performance can be analysed 8 + Can take a long time to implement
8_‘ * Data can be generated in the same way as the & * Trace data may be difficult to collect and
@) queuing model but leads to similar problems @) require large amounts of storage
Scheduling
Processes
i Evaluation of Scheduling Algorithms
g Implementation
"(;; * Best comparison is to implement the algorithms on real
> machines
U2 |+ Bestresults, but number of disadvantages
on * Itis expensive as the algorithm has to be written and then
] implemented on real hardware
= * Iftypical workloads are to be monitored, the scheduling
8 algorithm must be used in a live situation. Users may not
[5) be happy with an environment that is constantly changing
o * Ifwe find a scheduling algorithm that performs well there
o is no guarantee that this state will continue if the workload
or environment changes

