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Abstract:        Aircraft fleet can have a major effect on the efficiency and smooth running of 
an airline. Constructing good quality schedules is essential for an airline to 
operate in an effective and efficient way in order to accomplish high levels of 
consumer satisfaction and to maximise profits. The robustness of an airline 
schedule is an indicative measure of how good the schedule is because a 
robust plan allows the airline to cope with the unexpected disturbances which 
normally occur on a daily basis. This paper describes a method to measure the 
robustness of schedules for aircraft fleet scheduling within KLM airlines. The 
method is based on the ‘Aircraft on Ground (ACOG)’ measure, it employs 
statistical methods (although alternative methods were also considered) and it 
is shown to provide a good estimation of the robustness of a given schedule. 
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1. INTRODUCTION 

The problem of generating fleet schedules is crucially important to the 
efficiency of an airline (Barnhart et al., 1997; Barnhart and Talluri, 1997). 
An effective schedule can lead to significant savings.  It can also, and 
perhaps more importantly, contribute to higher levels of customer 
satisfaction.  Customers who experience regular delays with a particular 
airline are likely to take their custom elsewhere.  Of course, delays are 
inevitable for a wide range of reasons (e.g. technical breakdowns, security 
alerts, adverse weather etc.).  However, an indicative measure of the quality 



  
 
of an airline schedule is its level of robustness: How well can a schedule 
cope with a delay(s) to a particular aircraft(s)?  Is there enough slack in the 
schedule to minimise the knock on effect of a delay to a particular aircraft?  
If there is no slack in the schedule then a delay to one aircraft could affect a 
significant proportion of the fleet.  This could have major resource 
implications.  If passengers miss connecting flights then the airline has to 
cover the incurred costs.  However, building slack into the schedule is 
expensive.  It essentially involves aircraft standing idle.  One of the goals in 
trying to generate a high quality fleet schedule is to build in enough slack to 
ensure that the schedule has an acceptable level of robustness while, at the 
same time, attempting to keep costs at an effective level.  It would be very 
easy indeed to build a very robust schedule.  However, it would be too 
expensive to implement.  It would also be possible to build a schedule which 
minimises cost by decreasing aircraft idle time.  However, this could easily 
lead to an increase in the overall incurred costs if one minor delay to one 
aircraft leads to a chain of delays.  In summary, the goal is to provide an 
effective balance between robustness and aircraft idle time. 

The integration of schedule optimisation algorithms and other systems in 
an airline is crucial to achieve an effective scheduling environment that 
considers all functions of the airline (Mathaisel, 1997). Reviews of research 
on airline scheduling are presented in (Etschmaier and Mathaisel, 1985; 
Richter, 1989). A more recent survey on models and solution methods for a 
range of problems in aircraft scheduling was carried out by (Gopalan and 
Talluri, 1998). 

Aircraft scheduling is often addressed simultaneously with other 
associated problems. An example is provided by fleet assignment with time 
windows where the assignment of aircraft is carried out simultaneously to 
scheduling flight departures in order to improve flight connection 
opportunities and minimise costs (Rexing et al., 2000). The scheduling of 
maintenance operations and of aircraft are considered simultaneously using 
network models and a two phase heuristic by (Feo and Bard, 1989) while 
crew availability and maintenance operations are taken into account while 
tackling the fleet assignment problem in (Clarke and Hane, 2001). The 
additional constraint of equal aircraft utilisation when tackling fleet 
assignment and aircraft routing problems is considered by (Barnhart et al., 
1998). A network model for large-scale fleet assignment problems that 
permits the expression of constraints within a unified framework was 
presented by (Rushmeier and Kontogiorgis, 1997). 

Integer linear programming techniques have been applied by several 
researchers to tackle fleet assignment, aircraft routing and related problems 
(Richardson, 1975; Abara, 1989; Subramanian, 1994, Hane et al., 1995). 
Dynamic programming and heuristics have also been investigated for the 



 
 
problem of fleet assignment (El Moudani and Mora-Camino, 2000). 
Recently, modern metaheuristics have been used to tackle airline scheduling 
problems. For example, simulated annealing was applied to the optimisation 
of airline schedules by (Mashford and Marksjo, 2001). Sosnowska and 
Rolim showed that by applying simulated annealing to the fleet assignment 
and aircraft routing, improvements of about 10 to 20 percent over the 
method used by the company could be achieved (Sosnowska and Rolim, 
2001). A genetic algorithm was applied to generate alternative routes for air 
traffic by (Oussedik et al., 2000). Also recently, genetic search methods have 
been applied to solve the problem of sequencing the arrival of aircraft in 
airports (Hansen, 2003; Ciesielski and Scerri, 1997; Ciesielski and Scerri, 
1998). 

Re-scheduling is a crucial activity for airlines and it has to be carried out 
on a daily basis due to a number of uncertainties and unforeseen events. 
Disruptions of planned schedules can result in a chain of events that can 
cause major disruptions throughout the system. A survey of techniques 
employed to recover from these disruptions is presented by (Filar et al., 
2001). A stochastic model is employed by (Rosenberger et al., 2003) to show 
that the actual performance of an airline differs greatly from the planned 
performance while (Argüello and Bard, 1997) propose a GRASP method to 
reconstruct schedules while minimising costs and satisfying constraints. 
Network models and Lagrangian relaxation were used by (Yan and Lin, 
1997) for aircraft re-scheduling given a specific disruption that affects the 
airline operations greatly and causes substantial decrements in profits and 
levels of service: the temporary closure of airports (see also Thengvall et al., 
2001). The problem of changing the assigned aircraft to specific flights 
while satisfying existing constraints is addressed by (Jarrah, 2000; Talluri, 
1996; Klincewicz and Rosenwein, 1995). A steepest ascent local search 
heuristic was applied by (Love et al., 2002) to re-schedule aircraft and it was 
capable of finding good quality schedules in a short amount of time. 

The allocation of arrival slots in airports affects the efficient 
implementation of airline schedules and this activity can be disrupted by 
many factors such as bad weather, cancelled flight and other unforeseen 
events (Vazquez-Marquez, 1991). Simulation models for these types of 
operations in airports are described in (Andresussi et al., 1981; Milan, 1997) 
while (Dear and Sherif, 1991) proposed one of the earliest algorithms for the 
automation of these operations. Instead of the traditional FCFS (first-come-
first-served) system, delay exchanges in arrival sequencing and scheduling 
permit airlines to express relative arrival priorities so that these can be taken 
into account for the arrival slot allocation (Carr et al., 1998; Carr et al., 1999; 
Carr et al., 2000). The problem of scheduling aircraft when multiple runways 
are available has been addressed using queuing theory by (Bolender and 



  
 
Slater, 2000). A population heuristic was applied by (Beasley et al., 2001) 
for the optimisation of the arrival sequence of aircraft to a UK airport in 
order to improve runway utilisation. Linear programming and an alternative 
heuristic were applied to the arrival sequencing problem with single and 
multiple runways by (Beasley et.a1., 2000). A detailed description of the 
dynamic planner used to carry out the scheduling, sequencing, runway 
allocation and other operations related to the scheduling of aircraft arrivals is 
given by (Wong, 2000). 

 
Other related airline scheduling issues that have been investigated are for 

example: 

• The airline scheduling problem in charter companies which is different 
mainly because the market is well-known and the schedule can be 
changed completely from period to period (Erdmann et al., 2001). 

• The assignment and routing of a fleet of aeromedical airlifts in military 
sectors (Ruland, 1999). 

• The impact that the rotation of aircraft has on the construction of 
schedules (Wu and Caves, 2002). 

• The construction of weekend fleet assignments (Kontogiorgis and 
Acharya, 1999). 

The problem that is addressed in this paper is discussed in the next 
section.  It represents a real world problem that faces KLM Airlines on a 
daily basis. 

2. PROBLEM DESCRIPTION 

Within KLM, two departments are responsible for the fleet schedule. The 
network planning department produce schedules which are then passed to 
the operations department who have the responsibility for implementing 
them and running them on a day-to-day basis. These two departments have 
conflicting objectives. The network department aims to produce a schedule 
which is as cost effective as possible. This essentially means maximising 
aircraft usage by minimising their idle time. The operations department have 
the reverse objective. The overall schedule has to achieve the kind of balance 
between these two objectives that is briefly described above. 

The aim for KLM is to introduce a method that checks the robustness of a 
schedule, from the network department, before it is passed to the operations 
department for implementation. One way to achieve this is to run a 



 
 
simulation. However, this is seen as too time consuming and other methods 
are sought to test for the robustness of the schedule. 

KLM flies to over 150 destinations using 97 aircraft. Four times a year, a 
new flight schedule is developed. Though the operational feasibility is taken 
into account to a certain degree during the development process, the aim at 
that stage is largely to maximise the number of seats that can be sold. During 
schedule development, KLM considers various commercial aspects such as 
the expected demand per destination and the number of possible transfer 
connections at Schiphol Airport. 

The realisation of a flight schedule involves a number of parties. As 
described above, the initial plan is developed by KLM’s Network 
department. The initial plan is based on commercial and strategic insights 
and long term plans for the fleet composition, cabin crew and baggage 
handling. 

Two months before the beginning of a schedule plan the plan is handed 
over to the operational department, the Operation Control Center. From that 
moment on they are the owners of the plan and small adaptations have to be 
evaluated and approved by them. This department will try to prevent and 
solve problems such as emergencies and bottlenecks and, in case of unsolved 
problems, try to minimize the effects on succeeding flights. A final plan is 
created two weeks before the beginning of the plan where passenger 
bookings are matched with aircraft capacities 

In order to monitor the performance of a flight schedule, some critical 
performance indicators are defined. These are: 

• The departure and arrival punctuality, that is the percentage of flights 
that departed or arrived on time. 

• The completion factor, that is the percentage of accomplished flights. 
These are all flights that were not cancelled. 

• The No Connection Passenger factor, that is the percentage of transfer 
passengers that missed their connections due to operational problems. 

• The Irregularity-rate, that is the number of bags that were not delivered 
on time. 

For the punctuality performance indicator the contribution of each of the 
involved parties is also monitored. This introduces the concept of building 
blocks. The whole operational process is divided into sub processes, (the so 
called building blocks). Each building block is owned by a capacity and 
service provider, these being Ground Services, Front Office, Air Traffic 
Management, Engineering and Maintenance, Cabin and Cockpit Crew, 
Cargo and Operations Control. Seven Building Blocks have been 
established, these are called: 



  
 
• BB1: Flight 
• BB2: Arriving aircraft 
• BB3: Layover aircraft 
• BB4: Departing aircraft 
• BB5: BB5.1 Transferring passengers 

BB5.2 Transferring baggage 
• BB6: BB6.1 Arriving passengers 

BB6.2 Arriving baggage 
• BB7: BB7.1 Departing passengers 

BB7.2 Departing baggage 

A diagrammatical representation of the temporal sequence of the building 
blocks and their relationships to each other is shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Building Blocks Sequence and Relationships. 

These have been delimited in order to provide clear process distinction as 
well as accountability. 

The doors being opened and closed are the points at which responsibility 
passes from one capacity and service provider to another. The distinction of 
the 1st door being opened is made because a door can either be the passenger 
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door(s) or a baggage door(s). For example, once a plane has physically 
landed it is not actually considered to have landed (i.e. with responsibility 
passed to the ground staff) until one (passenger OR baggage) door has been 
opened. In contrast, responsibility changes back again when all doors have 
been closed, not just one door. 

All these agreements and the flight schedule itself comes together into an 
operational plan. This functions as a contract between Network, Operations 
Control and the Building Blocks (Capacity & Service Providers). The plan 
covers an operational plan period of between 2 to 4 months spread over the 
year. It consists of agreements concerning a schedule plan and a capacity 
plan position for each specific period. It contains a demand driven schedule 
that has been fully checked with the Building Block representatives 
(Capacity & Service Providers) and Operations Control by means of an 
operational check. Eventually the agreements enable each provider to deliver 
an operational performance forecast. This could deviate from the targets as 
laid down in the corresponding Business Plan. Each operational plan will be 
finalized two months (at the latest) prior to each operational plan period. 

The schedule is usually published as an Aircraft Rotation Schedule, 
which is different each week. This is due to the fact that each day many 
adaptations are made so as to minimise delays. For instance, if KLM know 
that an aircraft will arrive at Schiphol Airport with a delay, they could assign 
its next flight to another aircraft so that that flight can still leave on time. 
Usually, KLM will also need other adaptations to have all flights fit into the 
Rotation Schedule again. When a schedule is first published, KLM do not 
know the exact layout of the Rotation Schedule, so they publish a 
hypothetical “average” one instead. 

Before a schedule is published, an estimation of the expected punctuality 
(that is the percentage of "on time" flights) is performed using a simple 
deterministic model. As this model lacks accuracy, a simulation model is 
currently being developed in order to enable a better forecast. This model 
simulates aircraft movements according to a given schedule. The model 
subjects the schedule to a “stress test” by generating various disruptions such 
as air traffic congestion, delays during the boarding process or unexpected 
problems during maintenance. Throughout the simulation, a Problem Solver 
algorithm attempts to resolve delays by swapping flights in the Rotation 
Schedule, or in extreme cases, by canceling flights. More successful runs of 
the simulation are considered as better schedules for implementation. 

A simulation, though, has several disadvantages. Processing times are 
usually too long, which limits the number of schedules that can be assessed 
Also, KLM need to collect a huge amount of data about the processes that 
are being simulated. For the simulation model currently under development 
they need statistics about the variation in the actual flight duration, the 



  
 
variation in the time it takes to handle an aircraft on the ground (boarding, 
fuelling, catering, etc.), breakdown times of each aircraft type etc. Each of 
these statistics must constantly be updated to reflect the change in flight 
routes, working methods, fleet, etc. 

KLM are currently seeking a more simple model that would enable them 
to make a comparative statement, such as: 

"Of a number of  alternative schedules, schedule X will provide the best 
performance." 

3. MODELS FOR THE PROBLEM 

It was anticipated that there should be some features of any schedule that 
would be correlated with its performance. The first question is then what 
features should be investigated? A brainstorming session with 
representatives of KLM led to some suggestions. It was expected that the 
number of potential swaps available to a delayed flight would be an 
important factor, but measuring this value was not easy. In practice, it might 
also be necessary to undertake a cascade of swaps, so another possible 
measure of performance would be the length of time and/or the number of 
swaps needed to restore the schedule to its normal condition. However, this 
is also complicated to determine, although the Problem Solver module of the 
simulation could be invoked if necessary.  

After further discussion, it was agreed to look at a simpler measure, 
which could easily be found, and is arguably a surrogate for some of the 
more complex measures suggested. This is the 'Aircraft on Ground' (ACOG) 
measure discussed in the next section. Having obtained some features related 
to this measure, the next step is the identification of a suitable model for 
purposes of prediction. Candidates here include multiple linear regression 
methods, regression trees, neural nets and other pattern recognition 
techniques. However, the fact that the amount of data available was small 
meant that data-hungry methods should be avoided if at all possible. Thus it 
was resolved to begin the investigation with traditional statistical methods.   

4. EXPERIMENTAL RESULTS 

Eleven schedules were available (Summer/Winter 2000-2002, apart from 
the last 13 weeks of 2002). KLM's operation at Schiphol is such that the 
activity occurs in 4 major waves - a deliberate strategy to maximise 
passengers' opportunities for making onward connections. Graphing the 
number of aircraft available on the ground reveals this pattern clearly. These 



 
 
can be counted in 2 ways: the more accurate picture is obtained by 
subtracting the lengths of BB2 and BB4, leaving just those aircraft that are 
actually idle at a given moment.  

However, it is a simpler calculation to count the whole of the time on the 
ground from 'First Door Open' to 'Last Door Closed', which comprises the 
whole of BBs 2,3 and 4.  

In the case of European operations, each day is more or less identical, so 
peaks can be defined quite easily. For each peak, the first 4 moments of the 
'Aircraft on Ground' (ACOG) values were calculated for each day, using 
both definitions – BB3 and BB234. As days are so alike (apart from the very 
first day of a new schedule), one day can be selected at random as a 
representative of a schedule. As there are 4 peaks daily, we have 16 features 
as inputs, which we need to associate with the performance indicators (PIs) 
already calculate by KLM. The ones used for the models developed here 
were simply the departure and arrival punctualities: the fraction of planes (of 
those scheduled) that departed or arrived on time.  

As a first step, correlations were calculated between the PIs and the 16 
input variables. The 6 or 7 most highly correlated input variables were than 
used in a stepwise regression procedure (using S-plus) to determine the best 
balance between parsimony and explanatory power. (S-plus uses the Akaike 
information Criterion for this purpose.) The table below summarises the 
models determined by this approach. 

 
PI – Departure Punctuality   
 Using BB3 only Using BB234 
Predictor sets p4m, p1sd, p1sk, p1k p2m, p4m, p2sd, p4sd, 

p3sk 
R-squared 95.6% 91.6% 
P value(F-test) .00032 .01028 
PI – Arrival Punctuality   
Predictor sets p4m, p1sk, p3sk, p3k p1m, p4m  
R-squared 95.2% 84.1% 
P value(F-test) .00042 .00064 

 
In this table, ‘p1’ means the 1st peak, ‘m’ is the 1st moment (mean), ‘sd’ 

the 2nd (standard deviation), ‘sk’ the 3rd (skewness) and ‘k’ the 4th 
(kurtosis).  Of interest is the fact that ‘p4m’ – the mean number of ACOG – 
is important for all 4 models, but the other predictors seem to be far less 
important. From KLM’s point of view, this does not matter if the predictions 
are good enough, but from a modeller’s perspective we would like to see 
more consistency. However, all models are based on just 11 data points, so 
perhaps the lack of consistency is not surprising. Prediction intervals can 
easily be obtained on the assumption of Normally distributed errors: these 



  
 
vary from +/- 2% for punctualities in the middle of the range to +/- 3% at the 
edges.  

Figure 2. Residuals against fitted values for Departure Punctuality using 
BB3 only. 

It was quite surprising that the R-squared values were as high as they 
were – we were anticipating that a linear model would be too simple, yet it 
seems quite powerful. Of course regression analysis makes certain 
assumptions about the errors, and it is necessary to check the residuals to see 
if these assumptions are plausible. The plot of residuals against fitted values 
was obtained for each model; in no case does a systematic pattern seem 
plausible, and a random scatter is obtained, as in figure 2. 

The 3 most extreme outliers (points 5, 7 and 10) are labelled; point 5 
might well have been affected by September 11, but possible reasons for the 
others are not known. A smooth has been applied, but its slopes are not very 
steep, so the assumption that the errors are independent random variables 
seems plausible. Similar graphs were obtained for the other 3 models.  

QQ plots of the residuals against Normal quantiles were also obtained. 
Figure 3 below shows the same case as in figure 2.  



 
 

Figure 3. Normal QQ plot for residuals for Departure Punctuality using BB3 
only. 

The tails of the distribution in particular are not well fitted, so the 
assumption that the errors are Normally distributed is perhaps questionable. 
Thus any confidence intervals should be treated cautiously.  

4.1 Logistic Regression 

In any case, the response variable in all 4 models is actually a ratio that is 
confined to remain between 0 and 1. This means that a better theoretical 
model would be based on a logistic transformation, since it is theoretically 
possible that a simple linear model could generate predictions outside the 
possible range of values. For example, we can hardly have a punctuality of 
greater than 100%! Such a model would also be based on a more plausible 
probability model than the Normal distribution. 

However, attempts to fit such a model did not produce an improvement. 
A possible explanation is that the data available are all in the region of 
approximate linearity of the logistic curve. Consequently, any attempt to 
identify the turning points of the curve is likely to be rather speculative. In 
any case, on inspecting the coefficients of the models, it seems unlikely that 



  
 
we would predict bizarre fractions in practice. For example, using the most 
extreme values observed in the 1st model above would predict only 80% 
departure punctuality, and in the opinion of KLM’s experts it is hard to 
imagine physical circumstances in which these values could be exceeded 
simultaneously. (There is just not enough space to put many more planes, for 
example.)   

Thus, despite the attractions of a more plausible theoretical model, the 
airline is comfortable with the predictive ability of a simpler linear model.  

5. CONCLUSIONS 

An analysis of the expected number of aircraft on the ground has been 
shown to provide a good prediction for the robustness of a given schedule. 
Further refinements are possible – and desirable – but even this work has 
given the operations department a better insight into what makes a schedule 
easier or harder to implement effectively. Some of the work that still needs 
to be done includes an analysis of the effect of day-to-day variations in the 
schedule – these variations are small, but preliminary work has suggested 
that the definition of activity peaks needs to be tighter, and the possibility of 
a day-of-the-week effect should also be explored. Furthermore, the schedules 
examined so far have concentrated only on the European operations, where 
fleet homogeneity is substantial and diurnal variation is small. Incorporating 
the effects of the inter-continental timetable may lead to some changes in 
these conclusions. 
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