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Abstract 

This paper presents an in-process tool wear prediction system, which uses a force sensor to monitor the progression of the tool flank wear and 

machine learning (ML), more specifically, a Convolutional Neural Network (CNN) as a method to predict tool wear. The proposed methodology 

is experimentally illustrated using milling as a test process. The experiments are conducted using dry machining with a non-coated ball endmill 

and a stainless steel workpiece. The measurement of the flank wear is carried on in-situ utilising a digital microscope. The ML model predictions 

are based on an experience database which contains all the data of the precedent experiments. The proposed in-process tool wear prediction 

system will be reinforced later by an adaptive control (AC) system that will communicate continuously with the ML model to seek the best 

adjustment of feed rate and spindle speed that allows the optimization of the flank wear and extend the tool life. The AC model decisions are 

based on the prediction delivered by the ML model and on the information feedback provided from the force sensor, which captures the change 

in the cutting forces as a function of the progression of the flank wear. In this work, only the ML model component for the estimation of tool 

wear based on CNNs is demonstrated. The proposed methodology has shown an estimated accuracy of 90%. Additional experiments will be 

performed to confirm the repetitiveness of the results and also extend the measurement range to improve accuracy of the measurement system. 
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1. Introduction 

Machining is an industrial process in which metal is sculpted 

by removal of material. This manufacturing technique is a 

fundamental method that is expected to still be used in the next 

decades. However, the technique faces critical problems related 

to the cutting process such as tool wear and tool failure. As a 

result, Tool Condition Monitoring (TCM) is gaining more 

consideration in automated manufacturing processes in recent 

time [1-2]. Tool wear is well known as it degrades machined 

surface texture and causes unpredictable inaccuracy in work 

geometry. It also affects significantly tool life and production 

cost [2]. From a technical and economical viewpoint, it is 

therefore essential to design a smart system able to monitor the 

progression of the tool wear during the machining process. This 

will allow the identification of a worn tool in order to be 

replaced. This will allow to increase the accuracy of the cutting 

process and, therefore, ensure the achievement of the technical 

specification requested to reach the suitable geometry of the 

machined components [3]. 

Tool wear mainly includes the wear on the clearance face 

(flank wear) and that on the rake face (crater wear). Of these 

two, flank wear (VB) is frequently used as the main indicator to 

define the end of adequate tool life. Previous studies [4] have 

confirmed that as flank wear land width (VBb) grows to a certain 

threshold, it influences the surface finish and dimensional 

http://www.sciencedirect.com/science/journal/22128271


2 G. Martínez-Arellano/ Procedia CIRP 00 (2018) 000–000 

accuracy of the workpiece as well as the stability of the 

machining process [5]. Therefore, tool failure due to flank wear 

can be evaluated by the maximum value of VBb and predicted 

by a function of time. Based on this statement, this paper 

focuses only on the progression of the flank wear. 

There is a large body of research on tool wear monitoring. 

Key reasons for building effective TCM systems for high 

performance machining are to: increase sustainability and 

promote automation in the cutting process; ensure the required 

surface roughness and dimensional accuracy; minimize the 

number of tool changes that, ultimately, impact on valuable 

production time. Most approaches proposed are based on 

various types of independent sensors [6-8] such as acoustic 

emission (AE), forces, accelerations, and measurement of 

contact resistance between the tool and the workpiece [9]. 

However, most reported work using an ML model are offline 

techniques. The novelty of the approach presented here is the 

combination of the self-learning and self-adaptive components 

operating simultaneously online as one body to produce an in-

process smart tool wear detection and prediction system. The 

self-learning component allows the system to learn, identify 

and predict the tool flank wear using the CNN. The self-

adaptive component takes into account this prediction and the 

information delivered by the force sensor to determine the best 

adjustment to the machining process and extend tool life. Figure 

1 illustrates the architecture of the whole system. The proposed 

method explores the development of algorithms that can learn 

from and make predictions on data. Such algorithms, instead of 

following strictly static program instructions, make data-driven 

predictions, by building a model from sensors inputs. The 

methodology also provides the basis for an automatic control 

system that preserves its operational capability without the 

intervention of the operator and therefore creates a level of self-

awareness.  

2. Methodology  

2.1. Mechanism of in-process wear prediction system 

The in-process wear detection system uses the experience 

database to train the CNN to recognize the behavior of tool and 

workpiece through force measurement. After training, the CNN 

is able to predict the wear. The adaptive control will then take 

the feedback from the CNN and apply the necessary 

adjustments between feed rate and spindle speed to reach the 

desired force. The goal of the combination is to create:  

1) Self-learning: learn from the machining experience will 

deliver an accurate prediction.  

2) Self-adaptive: maintain the needed force predicted by the 

CNN, in order to optimize tool life and improve surface finish.  

By satisfying these two conditions, the system will provide 

the basis for an automatic control system that preserves its 

operational capability under conditions of unexpected change. 

2.2. Measurement method of forces and flank wear 

Cutting force is an important feature in milling application, 

closely related to tool design geometry. Monitoring the cutting 

force could deliver a fundamental reference for wear 

identification as well as information that helps to set the 

required cutting parameters or cutting tool selection. Therefore, 

the tool wear monitoring method used in this study is based on 

forces analysis, using a Kistler piezoelectric dynamometer 

60kN, Type 9255C, where Fx, Fy and Fz represent the three 

orthogonal components of forces exerted during the dry milling 

process. These were sampled at 50 kHz/channel. 

The force signals transmitted during the cutting process are 

filtered and amplified. The amplifier has been calibrated to the 

sensitivity of the piezoelectric sensors, which takes into 

consideration the value of the applied mass or force. These 

signals are sent to the data acquisition system cDAQ 9191 via 

the implemented module NI 9215 and then monitored using NI 

Signal Express. The data is stored in the experience database 

that will be used to train the CNN model. Each test was carried 

out as follows: one horizontal cut along the y-axis direction was 

done using a down milling operation. After one line was 

completed, the cutter was retracted to another start point to 

perform another horizontal cut. This was repeated until the 

whole surface was completed. The cutting parameters of the 

machining operation were as follows: Spindle 

speed=10,400RPM, Feed rate = 1555mm/min, Depth of cut in 

Y direction DOCy= 0.125mm, and in Z direction DOCz= 2 

mm. Using a 6 mm Uncoated ball endmill with substrate of 

tungsten carbide.  After each cutting phase, the cutter’s flank 

wear was measured using a digital microscope.  

2.3. Tool wear prediction method using CNNs 

Most data-driven methods that have been used for tool wear 

prediction are based on machine learning, particularly 

Artificial Neural Networks (ANN) [10, 11] and Support Vector 

Machines (SVM) [12, 13]. These techniques, however, are 

limited in their ability to process natural data in their raw form. 

Their success relies on the features that are extracted during 

data pre-processing. The proposed learning module is based on 

deep learning, which will allow to discover intricate structures 

in high dimensional data without the need of any hand-crafted 

features. Deep learning has made major advances in fields such 

as image and speech recognition [14, 15], natural language 

processing [16] among others [17]. One successful deep 

learning architecture for the classification of images has been 

the Convolutional Neural Network (CNN) [18], which has been 

further developed to handle time series data classification [19]. 

The CNN presented here extends those attempts by encoding 

multivariate time series data collected from the sensor as 3-

Figure 1. Overview of methodology for in-process tool 
wear prediction system  
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channel images and using those images as inputs to train the 

CNN. The imaging process serves as an encoding procedure, 

meaning the original time series can be re-created from the 

image, without losing information. Reformatting features of 

time series as images allows machines to “visually” recognise, 

classify and learn structures and patterns, capturing the 

temporal dependencies on data [19]. The training process will 

be able to find the intrinsic structures on the time series data 

that link the sensor data to the wear condition of the tool.  

 

2.3.1 Architecture of the CNN 

 

A typical simple architecture of a CNN starts with a 

convolution layer, which applies a number of filters to the raw 

input (image). A ReLU layer follows, which introduces non-

linearity and allows to speed up the training. This layer is then 

followed by a pooling layer which downscales the output of the 

convolution. Finally, a multilayer perceptron is connected to 

the last convolution/pooling to perform the classification. This 

3-layer structure can be repeated (stacked) several times. How 

many should be used depends on the complexity of the data. 

The architecture implemented here is based on the Tensorflow 

model for classifying the CIFAR-10 dataset, as it has been 

proven to work successfully for multi-channel (RGB) image 

classification [20]. This CNN model has two convolution 

layers stacked with their corresponding ReLU and pooling 

layers. Each convolution applies 64 filters.  

3. Result & Discussion 

As this module was developed in parallel with the 

machining experimental setup described in the previous 

section, the CNN was initially trained and tested with a data set 

obtained from the 2010 PHM Data Challenge [21, 22]. This 

data set was chosen as it was close to what could be acquired 

with the machining setup described here. This data set consists 

on seven signal channels, including cutting force, vibration, 

both on x, y and z dimensions, and acoustic emission data, from 

six 6mm ball nose tungsten carbide cutters. This data was 

acquired on real time while performing 315 cutting tests on a 

3-axis high-speed CNC machine for each of the six cutters. As 

the machining setup is currently designed to take cutting force 

measurements (Fx, Fy and Fz) only, these three variables were 

selected from the PHM data set to train the CNN. The aim at 

this stage was to do a proof of concept of the learning module, 

whereby given the current measured forces on three 

dimensions, the state of the cutting tool could be determined. 

From the PHM data set, the measurements that corresponded 

to one of the cutters only were taken (cutter 6 as labelled in the 

challenge) and, using the measured wear in mm at each 

removed layer, the data was labelled into three classes, namely 

rapid initial wear, uniform wear and failure. Typically the wear 

regions for a specific cutter would be defined based on a wear 

progression curve as the one shown in Figure 2. However, 

different cutters will exhibit different wear progressions for the 

same cutter parameters. Therefore, to support the generality of 

this proof of concept, the wear regions were arbitrarily defined. 

The current class definition shown in Figure 2 represents a 

worst case scenario for the learning model.  

As the time series that corresponds to one layer can be up to 

219,000 measurements, a representative portion of the series 

was taken by selecting a subsequence of 2,000 measurements 

from the middle of the layer. To prepare the time series data of 

the cutter for training and testing of the CNN, each time series 

Fx, Fy and Fz corresponding to a removed layer were encoded 

as three separate images. To do this, the Gramian Angular 

Summation Fields (GASF) method proposed by Wang et al. 

was implemented [19]. The method, as shown in Figure 3, 

performs two main steps. First, the time series is normalised 

and transformed into a polar coordinate system. Then, the 

angular perspective is exploited by considering the 

trigonometric difference between each point to identify the 

temporal correlation within different time intervals. Given a 

time series or vector of size n, the resulting image will be a 

matrix of n×n. For large time series, a Piecewise Aggregation 

Approximation (PAA) reduction [23] can be applied to reduce 

the size and smooth the time series while preserving the trends. 

Once separate images for forces Fx, Fy and Fz that corresponded 

to a layer were generated, these were reduced from a size of 

2k×2k pixels into images of 512×512 pixels using PAA. They 

were then combined into a 3-channel image. The associated 

wear class to this image would be determined by the wear value 

that was measured when the layer was removed.  

The imaging process produced 315 3-channel images.  

These capture the transition of the tool through the different 

wear stages, showing more circular shapes as the tool wears 

out. This set of images was divided 70% for training and 30% 

for testing. The CNN was trained for 1,000 steps using the 

softmax regression method, learning rates of 0.1 and 0.01 and 

a decay factor of 0.1. Once the model was trained, it was 

Figure 2. Flank wear progression according to the number of 
cut, and the wear classes. 

Figure 3. Imaging of. time series using GASF 
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evaluated on the test set. Table 1 presents a confusion matrix 

with the results obtained. 

Table 1. Confusion matrix showing the classification results on the test set. 

N=95 

Actual 

Rapid 

initial wear 

Actual 

Uniform 

wear 

Actual 

Failure 

wear 

 

Predicted Rapid initial 

wear 
14 2 0 16 

Predicted Uniform 

wear 
3 62 3 68 

Predicted Failure wear 0 2 9 11 

 17 66 12  

 

Based on the test set, the estimated accuracy of the model is 

90%. As illustrated in Table 1, “Uniform wear” cases were 

correctly classified for most instances (68 predicted against 66 

actual). Moreover, the number of incorrect predictions suggests 

the number of cases for “Rapid initial wear” and “Failure wear” 

might need to be increased. This was expected, as currently 

only one cutter (315 images) was used to train and test the 

model and these particular regions are smaller in the wear 

curve, so less samples are available. To develop a successful 

online TCM system, the detection of the second transition is 

fundamental since it leads to optimal utilization of the tool life. 

An increase on the number of cases within these classes will be 

crucial to achieve a more homogeneous accuracy across all 

classes and that predictions are reliable enough to feed into the 

Adaptive Model. The overall results, nevertheless, are 

promising, taking into account no feature selection occurred. 

This provides a proof of concept, showing that the CNN was 

capable of capturing the intrinsic structures of the sensor data.  

4. Conclusions  

This paper presents an in-process tool wear prediction 

method based on deep learning. The experimental results 

indicate that the CNN is capable of identifying the existing 

correlation between the forces produced during the cutting 

process and the tool flank wear. This is achieved without the 

need of feature selection or filtering the signals acquired.  This 

method is applicable for any type of workpiece material or 

cutting tool provided that appropriate data is available during 

the training process. In other words, to apply this method the 

learning component needs to be trained on the behaviors of the 

combination of the selected tool and workpiece.  

From an economic point of view, the cost of the presented 

solution is high due to the type of sensors used in this 

experiment, but it reveals the ability of the CNN to identify the 

variations on the forces as the tool wears out, which provides 

various advantages. First of all, the simplicity of the 

implementation. Secondly, the accuracy of the prediction.  

Future work will consider a more extensive experimentation 

using different cutting tools as well as other sensors such as 

vibrations and acoustic emission therefore increasing the size 

of the training and test sets. Further changes to the CNN will be 

done as well, to compare different architectures. Finally, 

integration of the self-adaptive component will be undertaken. 
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