
Towards a Cloud-Based Analytics Framework for

Assembly Systems

German Terrazas, Lavindra de Silva, and Svetan Ratchev

Faculty of Engineering, University of Nottingham, Nottingham, UK

german.terrazas@nottingham.ac.uk

Abstract. Advanced digitalization together with the rise of cloud technologies is

a key enabler for a fundamental paradigm shift known as Industry 4.0 which pro-

poses the integration of the new generation of ICT solutions for the monitoring,

adaptation, simulation and optimization of factories. With the democratization of

sensors, assembly systems can now be sensorized and the data generated by these

devices can be exploited, for instance, to monitor their utilization, operations and

maintenance. However, analyzing the vast amount of generated data is resource

demanding both in terms of computing power and network bandwidth, especially

when dealing with real-time changes to product, process and resource domains.

This paper presents a novel cloud-based analytics framework for the management

and analysis of assembly systems. It brings together standard open source tech-

nologies and the exploitation of cloud computing which as a whole can be

adapted to and deployed on different cloud providers, thereby reducing infra-

structure costs, minimizing deployment difficulty and providing on-demand ac-

cess to virtually infinite computing power, storage and network resources.

Keywords: Precision assembly systems, Cloud computing, Data analytics.

1 Introduction

The integration of the new generation of ICT solutions for the monitoring, adaptation,

simulation and optimization of factories have enabled cyber-physical production sys-

tems (CPPS) to break from the traditional assembly systems automation pyramid com-

prising the field level, control level, process control level, plant management level and

enterprise resource planning level. This traditional structure now comprises just the

control and field levels (i.e., PLCs are kept close to technical processes to deliver the

highest performance), with a complete decentralization of the higher levels. With this

new organization, some of the features fully automated CPPS are expected to have are

autonomy, self-organization, remote diagnosis, predictability, interoperability, real-

time control, global tracking and tracing, and efficiency to name a few [1]. This has not

affected the way production takes place in an assembly system, which is based on a

series of tasks systematically developed and executed throughout the so-called product

domain, process domain and resource domain. Although current sophisticated ap-

proaches can reflect product changes in the assembly sequence and, in turn, push this

2

assembling change through the realization process [2], little has been said on how au-

tomated assembly systems could learn from the increasing amount of manufacturing

data to predict, adapt and control changes at any domain level in real time and effi-

ciently, especially when analyzing the vast amount of generated data is resource de-

manding both in terms of computing power and network bandwidth. While there is

related work in computer-aided process planning, most of them generate outdated and

unfeasible process plans due to the lack of integration with the shop floor to capture

resource availability or other dynamic changes [3, 4]. Other approaches propose be-

spoke cloud-based solutions in terms of resource monitoring and optimized adaptive

process planning but operate across the process domain and resource domain only and

fail to address big data scalability issues [5, 6]. In what follows: Section 2 presents an

implemented cloud-based data analytics framework built in terms of open source tech-

nologies for the collection and management of shop floor data; Section 3 presents two

automated assembly test beds; and Section 4 discusses how they could be integrated

within a complete CPPS, and the challenges and opportunities in real-time assembly

monitoring at all levels.

2 A Data Analytics Framework for the Cloud

The architecture for our cloud-based data analytics framework can be conceptually seen

as a set of layers that, as a whole, depict different types of domain entities arranged

across different levels of abstraction together with their relationships and associated

behaviors (see Fig. 1). A layer is a logical division that groups software components by

functionality without taking into account their physical location. We define four differ-

ent levels of abstraction comprising the Knowledge layer, the Analytics layer, the Ap-

plication layer and the Presentation layer. These layers can be seen as sequentially ar-

ranged, one upon another, where components in a given layer can only communicate

with those in the layer above or the layer below. The fundamental concept behind this

idea [7] is the isolation of layers, i.e., software components within a layer are independ-

ent from those located in other layers and have no knowledge of their internal structure.

While the most challenging part of designing an architecture of this kind is to define

the layers and their functionalities, using a layered scheme brings domain independ-

ence, loose-coupling and reusability benefits. Additionally, the logical separation of-

fered by the four levels of abstraction contributes to the flexibility and scalability of the

proposed framework.

3

Fig. 1. The conceptual architecture of our analytics framework comprising domain entities across

different levels of abstraction. The Knowledge layer captures relevant data sources of manufac-

turing data. This is accessed by descriptive and prescriptive business logic which is searched,

matched, combined, configured and effectively provided to consumers for decision making.

The Knowledge layer. This comprises the storage and retrieval of persistent assembly

data which forms the basis for data analytics. Technically speaking, this layer comprises

document databases, which are one of the main categories of NoSQL databases. Doc-

ument databases store all the information relating to a given object in a single instance

in the database, which makes a document database attractive for cloud-based applica-

tions [8, 9], where speed of deployment is important. While implementations differ,

this technology assumes that documents encapsulate data in some standard format, such

as Java-Script Object Notation (JSON). Document databases allow different types of

document structures in a single store and allow the fields within them to be optional,

hence providing flexibility when organizing and storing the application data used in the

analytics framework as well as a reduction in the storage space and associated costs. In

addition, the simplicity of JSON makes it easy to transpose object structures from al-

most any programming language, making it possible to flexibly manage data both

online and offline, similarly to the platform described in [10].

The Analytics layer. This layer provides a dedicated environment where business logic

related to data analysis and data mining takes place. The main goal is to deploy software

components that are suitable for remote invocation, and in such a way that they encap-

sulate layer-specific logic, by controlling transactions and coordinating responses in the

implementation of the layer’s operations. In order to implement analytic components,

4

we have chosen the R programming language, and Rserve [11] as the technology to

support a neat linkage with the Application layer, so that the latter may use the services

offered by the former. The R technology is chosen because of its well-known support

for complex descriptive analytics, through the provision of mechanisms for multicore

task distribution, readily usable tests, and many libraries, including specific technolo-

gies such as Spark1, TensorFlow [12], and ProActive [13]. R has also become an im-

portant development tool for numerical analysis and machine learning.

The Application layer. This layer provides a dedicated environment implementing

logic related to service orchestration. The software components residing in this layer

implement the Command pattern [14] which will allow the Presentation layer, and in

fact any other client, to make requests to unspecified business components. Thus, the

key participants in this pattern include an abstract Command class which declares an

interface for executing behavior and Command subclasses each of which uses a well-

defined REST API2 for external communication, and implements the specific behavior

needed for invoking the actual request on an Online Service at the Analytics layer. We

have chosen Java in order to implement these components, and Jersey as the technology

to support a neat link with the Presentation layer.

The Presentation layer. This layer displays actionable information to end users. It

comprises components needed to display visual content as well as to capture and man-

age external interactions. Data exchange with the Application layer occurs through its

well-defined REST API using the JSON data format. Depending on specific use cases

associated to data visualization, components in this layer will need to implement suita-

ble methods for processing and presenting results to end users.

3 Deployment on the Cloud

Elastic computing is considered one of the central elements of the cloud paradigm. The

term elastic has its origins in physics, where the elasticity of a material is the ability to

return to its original state after deformation. In cloud computing, elastic computing is

the ability to adapt to workload changes by scaling up and scaling down computing

resources automatically, in such a way that at a given point in time the available com-

puting resources match current demand [15, 16, 17]. Thus, elastic computing yields

significant cost savings compared to the traditional cloud infrastructure since organiza-

tions simply rent computing power on demand as the workload changes. The Amazon

Elastic Compute Cloud (Amazon EC2) provides scalable computing power in the Am-

azon Web Services (AWS) cloud platform. One of the advantages to using the former

is the elimination of the need to invest in hardware and systems administration up front,

allowing applications to be developed, tested and deployed faster. Amazon EC2 can be

used to launch as many or as few virtual servers as needed, configure security and net-

1 https://spark.apache.org/docs/latest/sparkr.html
2 https://restfulapi.net/

https://spark.apache.org/docs/latest/sparkr.html

5

working, and manage storage. In particular, AWS enables users to create tailored Am-

azon Machine Images (AMIs) to quickly and easily start instances customized with

everything that is needed to run applications. An instance is associated to a type of

instance that, essentially, defines the hardware configuration of the host computer. In

this way, Amazon EC2 provides each instance with a consistent and predictable amount

of CPU and memory capacity. Thus, in order to deploy the analytics framework in the

cloud, a specific AMI equipped with Apache Tomcat3, R components and Rserve has

been created as depicted in Fig. 2.

Fig. 2. The instantiation of an AMI which, after being equipped with Apache Tomcat, R compo-

nents and the Rserve library (steps 1 and 2), becomes a user defined image launched and embod-

ied in a t2.medium instance type (steps 3 and 4).

4 Deployment on Assembly Lines

We envision the instantiation of our analytics framework on at least two assembly lines

located at the University of Nottingham. The first of these is the Precision Assembly

Demonstrator (PAD) [18], which assembles detent hinges for the interiors of certain

vehicle models. The PAD comprises six modular stations: two KUKA six-axis robotic

arms with corresponding workspaces, a shared tool changing rack, a testing station, and

a shuttle transport system, which links the stations to each other and a loading/unload-

ing station (see Fig. 3). The parts to be assembled into a product are mounted on a pallet

and placed on the conveyer, which moves the pallet to each of the stations. When the

pallet reaches a robotic arm, it removes the individual parts and performs various as-

sembly operations on them before returning the resulting partial-product back to the

pallet. Data that could be collected from these stations includes the specification (e.g.

as a sequence of parameterized assembly operations) of the product being assembled,

the current layout of the assembly line, the specific operations performed (e.g. picking

and gripping), the tools used to perform them (e.g. a gripper and suction tool), the parts

on which the operations were performed (e.g. a spring and a ball-bearing), and the pa-

rameters used (e.g. pressure and depth of cut). The testing station can additionally store

2D images of the product being assembled, which are taken to check whether the prod-

uct is being correctly assembled. This station can also store the force applied when

3 http://tomcat.apache.org

6

testing hinges, and which ones pass/fail the tests. All data collected can be associated

with specific hinges, as they have serial numbers.

Fig. 3. The PAD assembly system [18] comprising two KUKA six-axis robotic arms with corre-

sponding workspaces, a shared tool changing rack, a testing station, and a shuttle transport sys-

tem, which links the stations to each other and a loading/unloading station.

The second assembly line is the SMC Pneumatics HAS-200 platform, which has been

used to mimic the production of customized pharmaceuticals [19]. The SMC has 8

modular stations connected in a ring-shaped topology by default, which is manually

adapted as necessary (see Fig. 4, bottom left). Stations operate as follows. The first

loads empty containers (‘pills’) onto the conveyor belt as customized requests for pills

are received by the assembly line. The next three stations are blue, red and yellow par-

ticulate (‘ingredient’) dispensers, respectively, which pick a container, add the required

quantity of particulate by weight, and return the container to the belt. The next two

stations are testing stations, which measure the absolute quantity of particulate in the

container. These stations connect to one that puts a lid on a container, prints a custom

label, and sticks it on the lid. Finally, a palletization station removes completed con-

tainers for packaging. Data that could be collected from these stations include the layout

and operations as before, the weight of each type of particulate added to each container,

and the total volume of particulate in each container. All data can be uniquely associ-

ated with containers as each of them has a barcode.

5 Real-Time Monitoring of Assembly Lines

Both the PAD and the SMC assembly lines are used in an environment where their

layouts or topologies, products, and processes can ‘evolve’[19]. This can be reflected

by the variety, velocity and volume of collected data which could potentially vary over

the course of assembly. For instance, if a new ‘pill’ is requested that uses a previously

unused ‘ingredient’; a station module is removed for maintenance, resulting in con-

tainer-weight data being no longer collected; a new process is added that takes thermal

images during a force test; a process is upgraded to now take 3D (instead of 2D) images;

7

or the assembly line’s throughput is ramped up. We recognize that these scenarios may

represent a real challenge, and envision the big data characterization and subsequent

capture, collection, processing, organization and storage for both online and offline data

management in the Knowledge layer being addressed by the cloud-based platform sche-

matically presented in Fig. 4.

Fig. 4. Assembly lines connected to a data space ecosystem that comprises the data management

and analytics framework. Shop floor generated data is collected, processed, stored and made

available for monitoring, diagnosis and other types of analytics.

At the resource level, one interesting question to explore would be how transfor-

mations in the SMC’s topology relate to factors such as the month of the year, the kind

of product being assembled, and the availability of assembly stations. For instance, we

could verify whether, during peak season, the stations connected in a ‘Y’ shaped topol-

ogy tend to be more effective than when they are connected in a ring-shaped topology

(which may cause longer queues of containers on the single conveyor belt). At the prod-

uct level, we could analyze which raw material vendors (if any) tend to be associated

with a significantly higher percentage of force-test failures on the PAD, which might

be suggestive of lower quality raw materials. At the process level, we could enhance

product quality with offline image processing of the stored hinge images in order to

recognize and classify hinge defects such as surface cracks, dents and spots. The end

user could be presented with analytical insights as depicted in Fig. 4, regarding whether

and how such defects correlate to variations in assembly processes and parameters, e.g.

in gripper-tool models or the pressure applied during assembly operations.

8

6 Conclusions

In this work, we have described an implemented architecture for a cloud-based analyt-

ics framework comprising different levels of abstraction and based on open source tech-

nologies. We have also introduced two different assembly lines, i.e., their layouts, prod-

ucts, and processes, each of which is able to evolve. In this context, we have shed light

on challenges and opportunities associated with the product, process, and resource do-

mains, particularly when analyzing large amounts of data is resource demanding in

terms of storage and processing power. The authors would like to thank the support of

the EPSRC Cloud Manufacturing – Towards Resilient and Scalable High Value Man-

ufacturing project under grant agreement EP/K014161/1.

References

1. Monostori, L.: Cyber-physical Production Systems: Roots, Expectations and R&D Chal-

lenges. In Procedia CIRP, 17: 9–13 (2014).

2. Ahmad, M., Ahmad, B., Harrison, R., Alkan, B., Vera, D., Meredith, J., Bindel, A.: A Frame-

work for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing

Environment. In Procedia CIRP, 50: 129–134 (2016).

3. Mourtzis, D., Doukas, M., Vlachou, A., Xanthopoulos, N.: Machine Availability Monitoring

for Adaptive Holistic Scheduling: A Conceptual Framework for Mass Customization. In

Procedia CIRP, 25: 406-413 (2014).

4. Tapoglou, N., Mehnen, J., Vlachou, K., Doukas, M., Milas, N., Mourtzis, D.: Cloud-Based

Platform for Optimal Machining Parameter Selection Based on Function Blocks and Real-

Time Monitoring. Journal of Manufacturing Science and Engineering, 137(4): 040909-

040909-11 (2015).

5. Zhong, R., Xu, C., Chen, C., Huang, G.: Big Data Analytics for Physical Internet-based

intelligent manufacturing shop floors. International Journal of Production Research,

55(9):2610–2621 (2017).

6. Mourtzis, D., Vlachou E., Xanthopoulos, N., Givehchi, M., Wang, L.: Cloud-based adaptive

process planning considering availability and capabilities of machine tools. Journal of Man-

ufacturing Systems, 39: 1–8 (2016).

7. Richards, M.: Software Architecture Patterns. O'Reilly Media, Inc. (2015).

8. Hashem, I., Yaqoob, I., Anuar, N., Mokhtar, S., Gani, A. and Ullah Khan, S.: The rise of

“big data” on cloud computing: Review and open research issues. Information Systems, 47,

98–115 (2017).

9. Pokorny, J.: NoSQL databases: a step to database scalability in web environment. Journal

of Web Information Systems 9:1, 69–82 (2017).

10. Ferry, N., Terrazas, G., Kalweit, P., Solberg, A., Ratchev, S., Weinelt, D.: Towards a Big

Data Platform for Managing Machine Generated Data in the Cloud. IEEE Industrial Infor-

matics, pp. 263–270 (2017).

11. Urbanek, S.: Rserve – A Fast Way to Provide R Functionality to Applications. In: Hornik,

K, Leisch F., Zeileis A. (eds.). The 3rd International Workshop on Distributed Statistical

Computing (2003).

12. TensorFlow: A System for Large-Scale Machine Learning. In: Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation, pp. 265–283,

USENIX Association (2016).

9

13. ProActive Homepage, https://doc.activeeon.com/latest/admin/ProActiveAdminGuide.html,

last accessed 2017/10/01.

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA (1995).

15. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in Cloud Computing: What It Is, and What

It Is Not. In: Proceedings of the 10th International Conference on Autonomic Computing,

pp. 23–27. USENIX (2013).

16. Galante, G., de Bona, L.C.E.: A Survey on Cloud Computing Elasticity. In Proceedings of

the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing, pp.

263–270. IEEE Computer Society (2012).

17. Coutinho, E. F.; de Carvalho Sousa, F.R., Rego, P.A.L., Gomes, D.G., de Souza, J.N: Elas-

ticity in cloud computing: a survey. Annals of Telecommunications, 70(7–8): 289–309

(2015).

18. Antzoulatos, N., Castro, E., de Silva, L., Rocha, A. D., Ratchev, S., Barata, J.: A multi-agent

framework for capability-based reconfiguration of industrial assembly systems. Interna-

tional Journal of Production Research, 55(10): 2950–2960 (2017).

19. Chaplin, J. C., Bakker, O. J., de Silva, L., Sanderson, D., Kelly, E., Logan, B., Ratchev S.

M.: Evolvable assembly systems: a distributed architecture for intelligent manufacturing.

IFAC-PapersOnLine, 48(3): 2065–2070 (2015).

https://doc.activeeon.com/latest/admin/ProActiveAdminGuide.html

