GH3CMP Compilers: Coursework Part 11
Autumn, Academic Year 2014/15

Henrik Nilsson
School of Computer Science
University of Nottingham

November 3, 2014

1 Introduction

This document details Part II of the assessed coursework for the module
G53CMP Compilers. The weight of Part I is 15 % of the overall mark. (The
weight of Part I was 10 %, for an overall coursework weight of 25%.) As in
Part I, the coursework is centred around the compiler HMTC, implemented in
Haskell, for the small language MiniTriangle. However, this version of Mini-
Triangle has been extended with functions, procedures, arrays, and records,
making it a much more interesting language. The compiler itself has also been
extended to a complete compiler, including type checking and code genera-
tion. Finally, all the front-end extensions from Part I have been implemented,
giving everyone a common starting point and allowing this version of HMTC
to serve as a model solution for Part I, against which you can compare your
own solution in the light of the feedback you received on Part I.

You are referred to the Part I description for pointers to resources for
general background on Haskell, GHC, and the School’s Haskell installation.
You are also referred to the Part I description for details regarding assessment
and feedback: the rules for Part I and Part II are very similar, and both are
explained in detail in the Part I description. The difference is that there is
now also a compulsory oral examination. Recall that the mark for each task
is multiplied by the result of the oral examination for that same task. Thus
you will not get any marks unless you do the oral. You are further reminded
that this coursework is to be carried out individually. This means that while
you are welcome to discuss the coursework with friends, on the forum, or
the module team, in the end, you must solve the problems on your own and

demonstrate that you have done so by being able to explain your solutions
as well as their wider context in your report as well as the oral examination.

In this second part of the coursework, you will continue the work on the
extensions of the MiniTriangle language by extending the type checker and
the code generator to work with the new or extended language constructs
from Part I. As discussed above, the scanner and parser of the new version of
the MiniTriangle compiler already extended to handle the new features from
the first part. The type system for the version of MiniTriangle we are using
is explained and specified (using typing rules) in Appendix C. You will need
to familiarise yourself with this. However, the appendix goes into a lot more
detail that you will actually need, so it is recommended to read it through
quickly at first, and then use it as a reference.

The target language of the compiler is Triangle Abstract Machine (TAM)
code. The TAM is a simple stack machine, a simplified version of the one
introduced in Watt & Brown’s book. The code you have been given also
includes a TAM interpreter, and you can instruct the compiler to run the
generated code directly via command line options: see Section 3 below. See
Appendix D for a specification of the TAM instructions. The lecture slides
do also go into a fair amount of detail. Of course, for the definitive account of
what instructions there are and to understand exactly what each instruction
does, you can always refer to the source code of the interpreter.

2 Submission

For practical information about deadlines, timetables for oral vivas, and so
forth, see the main module web page and the coursework support page (linked
from the main page). There you can also find links to other practical infor-
mation; such as on electronic submission.

For Part II of the coursework, the following has to be submitted by the
deadline:

e A brief written report as specified below.
e The complete source tree for the extended compiler.

Pay close attention to the report requirements. The report should be a self-
contained record of what you have done, and you will lose marks if it does
not contain all relevant information. Submission of source code is mainly to
facilitate testing.

The submission is part physical, part electronic:

e Physical: hard copy of the report to the School office

To

Electronic:

— Electronic copy of the report (PDF). The file should be called
xyz99u-report-partII.pdf, where xyz99u should be replaced
by your School of CS user ID.

— Archive of the source code hierarchy, either gzipped TAR or zip.
The archive should be called
* xyz99u-src-partIIl.tgz or
x Xyz99u-src-partII.zip,
where xyz99u again should be replaced by your School of CS user

ID. The archive should contain a single top-level directory con-
taining all the other files.

The written report should be structured by task. For each task:

Brief comments about the key idea of the solution and any subtle
aspects; a few of sentences normally suffice.

Answers to any theoretical questions, such as any new or changed typ-
ing rules.

All added or modified code, with enough context to make an incomplete
definition easy to understand. (Thus, you should not include all code
in the report itself!)

Anything extra that the task specifically asks for.

exemplify the point about added and modified code, if you:

have added a new function, then include the complete function defini-
tion, including the type signature;

have extended a lengthy function with a few cases, then include the new
cases (along with immediately surrounding cases to the extent needed
to make it clear where the extension was made when necessary to make
the order of pattern matching clear);

have added a constructor to a datatype, include the definition and state
the name of the extended type explicitly.

3 Getting Started

As in Part I, it is assumed in the following that you are going to use the
Haskell system GHC on the School’s Linux/Unix servers. There are alter-
natives; e.g. you could use the Haskell installation on the School’s windows
machines, or you could work on your own machine. See part I for a discussion
on this, including various caveats and, where applicable, workarounds.

First download the archive that contains the HMTC source code for Part
IT along with some MiniTriangle test programs. There are links from the
GH3CMP Compilers module web pages. To unpack the archive:

clyde$ tar zxvf G53CMP-CWPartII.tgz

The directory SrcPartII contains the source code for HMTC relevant to
Part Il and a further subdirectory containing some MiniTriangle test pro-
grams. A makefile (called Makefile) specifies how to build HMTC and its
documentation. To compile HMTC, change directory to the HMTC source
code directory and invoke GNU Make. Building the compiler is the default
goal in the makefile, so no further arguments to GNU Make are needed:

clyde$ gmake

Note that the makefile is written specifically for GNU Make, so other versions
of Make will likely not work. However, on a typical Linux system, make is
just another name for gmake.

The HMTC source code is well-documented, and the source code com-
ments have furthermore been formatted to allow the generation of separate,
typeset, documentation by means of Haddock, the Haskell Documentation
system. To create this documentation, invoke GNU Make with the goal doc:

clyde$ gmake doc

At present, hyper-linked, indexed, HTML documentation is built. All docu-
mentation files are created in the subdirectory Doc. To view the documenta-
tion, point your browser to the file Doc/index.html. Browsing through this
documentation is an excellent way to get familiar with HMTC. Make sure
you understand how the hyper-linking works and to check out the various
indices.

When building the documentation you will likely see warnings from Had-
dock that it cannot find link destinations for standard Haskell types like
GHC.Types.Int. This just means there will be no hyper-links to those types
in the generated documentation. This is not a problem and those warning
can thus be ignored.

Once HMTC has been compiled, it can be invoked to compile a MiniTri-
angle program into TAM code as follows:

4

clyde$./hmtc filename
where filename gives the path of the program to compile. For example
./hmtc MTTests/test2.mt

If there are no errors, code is generated and written into a file named
like the source file but with suffix .tam (replacing any suffix .mt). However,
you can ask the compiler to print the intermediate representation at various
stages to get some more information. For example:

./hmtc --print-after-codegen MTTests/test2.mt
or even to stop after a specified phase:
./hmtc --stop-after-codegen MITests/test2.mt

Alternatively, instead of writing the generated code to a file, it is possible to
send it directly to the integrated TAM interpreter for execution: see below.

To get help with the HMTC command-line syntax, call HMTC with the
—--help option:

./hmtc --help

Important! Note that it is possible to ask HMTC to pretty-print the inter-
mediate representation after one or more different compilation phases, and
to instruct HMTC to stop after a specific phase. For example, if the type
checker has been been extended to account for the new functionality, but
not yet the code generator, it is useful to be able to stop after type checking
but before code generation in order to test the type checker without causing
errors such as “Non-exhaustive patterns”.

At present, the only way to run the generated TAM code is via the TAM
interpreter integrated with the compiler. There are two ways to pass TAM
code to the TAM interpreter. The first is to instruct the compiler to pass
the generated code directly to the interpreter via the command line options
--run and --run-traced. The latter variant turns on tracing, enabling you
to see how the machine works. The other way is to invoke the compiler on a
file with extension .tam. Such a file is assumed to contain a sequence of valid
TAM instructions (either hand-written or emitted by the compiler itself).
Again, tracing may be enabled to see the machine at work.

HMTC can compile a program provided through the standard input. Just
invoke HMTC without any file name argument. This allows you to enter the
program to compile directly, without first having to write it into a named
file. Terminate the input by pressing CTRL-D immediately after a newline.
For example:

clyde$./hmtc
let const x : Integer = 1 in putint(x)
CTRL-D

There is one caveat, though: after a program has been read from the standard
input, the standard input stream is closed. This means that any further
attempt to read from the standard input, i.e. by directly or indirectly invoking
the TAM instructions GETINT and GETCHR (see Appendix D), will fail. The
solution is to write such programs to a source file and invoke HMTC on this
file.

You can also test individual functions from within GHCi. In particular,
there is a test function in the module TypeChecker called testTypeChecker.
The string argument is the MiniTriangle program fragment to test. The list
argument allows extra definitions to be added to the environment in which
the program fragment will be checked. Use the empty list if you just want to
check your fragment in the MiniTriangle standard environment. For example:

clyde$ ghci

Prelude> :load TypeChecker

TypeChecker> :type testTypeChecker

testTypeChecker :: String -> [(Name.Name, Type.Type)]l -> I0 ()
TypeChecker> testTypeChecker "putint(l + true)" []
Diagnostics:

Error at line 1, column 12:

Expected type "Integer", got "Boolean"

MTIR:
CmdCall <line 1, column 1>
ExpExtRef "putint" : (Integer) -> Void
ExpApp <line 1, column 8>
ExpExtRef "add" : (Integer, Integer) -> Integer
ExpLitInt 1 : Integer
ExpLitBool True : Boolean
: Integer

One way of testing TAM code is to put it (in textual format) into a file
with extension .tam and invoke the compiler on that file as described above.
However, the TAM interpreter can also be run directly from within GHCi by
loading the module TAMInterpreter and then calling the function runTAM
on a list of instructions:

runTAM :: Bool -> [TAMInst] -> I0 ()

This is very helpful for getting familiar with how the TAM works and for
developing and debugging TAM code; for example, for Task I1.3 below.

However, in this case, in order to get easy access to the constructors
for the TAM code, make sure you load the module in interpretive mode by
prefixing the module name with a *:

:load *TAMInterpreter

This is because GHCi’s behaviour regarding what definitions are in scope
varies depending on whether the interpreted or compiled version (if the latter
happens to be available) of a module is used. In interpreted mode, everything
that is in scope inside the module comes into scope at the GHCi prompt when
the module is loaded, and that is what you most likely want in this case.

The first argument to runTAM is used to turn traced execution on or off.
True turns tracing on which is very useful for seeing what the TAM does.
For example:

runTAM True [LOADL 1, LOADL 2, ADD, PUTINT]

This results in the following output:

LOADL 1 [1]
LOADL 2 [2, 1]
ADD [3]

3
PUTINT (]

TAM Halted!

For another example, here is a little TAM program that reads a number
from the terminal, doubles it, and prints the result:

runTAM True [GETINT, LOADL 2, MUL, PUTINT]

The trace of the execution is as follows, where 21 is the number entered by
the user:

Enter integer:

21
GETINT [21]
LOADL 2 [2, 21]
MUL [42]

42
PUTINT (]

TAM Halted!

For a final example, consider this buggy TAM program:

runTAM True [LOADL 3, LOADL 4, ADD, MUL, PUTINT]

Trace:
LOADL 3 [3]
LOADL 4 (4, 3]
ADD [7]
Stack underflow!
MUL [7]

For larger pieces of code, you might find it more convenient to implement
your own Haskell module in which to develop you code, rather than doing
everything interactively. For example:

module MyTAMCode where

import TAMCode
import TAMInterpreter

addAndPrint = [LOADL 1, LOADL 2, ADD, PUTINT]
This code can now be tested as follows:

:load MyTAMCode
runTAM True addAndPrint

See Appendix D for a specification of the TAM instructions. The lecture
slides also go into a fair amount of detail, and the file TAMCode.hs gives
a complete albeit brief description of all TAM instructions. Of course, to
understand exactly what each instruction does, you can always refer to the
source code of the interpreter in TAMInterpreter.hs, which should be fairly
easy to follow.

Familiarise yourself with the complete version of HMTC for Part II. For
instance, try out HMTC on various MiniTriangle examples. Go through the
documentation in order to become familiar with the various modules.

4 Tasks

Part II of the coursework is concerned with extending the type checker and
the code generator of HMTC to work with the new or extended MiniTriangle
language constructs introduced in Part I. As discussed in the introduction,

the version of the MiniTriangle compiler for Part II includes a type checker
and a code generator for the unextended MiniTriangle language, as well as
a scanner and parser already extended to handle the new features from the
first part.

Task II.1 (Weight 15%) In Part I of the coursework, you added the fol-
lowing new or extended constructs to the MiniTriangle language:

e repeat-until-loops

e conditional expressions

e extended syntax for the if-command (elsif and optional else branch)
e character literals

However, Part I was only concerned with extending the scanner and the
parser. The next step is to extend the type checker. As a preparatory step
for this, extend the MiniTriangle type system as detailed in Appendix C
by adding new rules or modifying existing ones to cover the above language
extensions. (Note that this includes the rules for “well-initialised” variables as
there now are two new forms of expressions: literal characters and conditional
expressions.)

In order to formulate concise typing rules for language constructs en-
compassing sequences of subterms, it is recommended to use vector notation
where appropriate as discussed in Appendix C and the lectures. For example,
the rule for the version of the if-command without the optional else might
look something like:

. b if e; then ¢; elsif &; then ¢y (T-IF...)
We understand this to match an arbitrary number of elsif-thens, including
none.

However, if you prefer, you can also formulate rules that deal with se-
quences by explicit induction (recursion) over the sequences. In that case,
you will have also have to introduce additional syntactic categories for the
sequences so as to make it clear what is what in the rules through naming
conventions along the lines of the existing rules.

It should be relatively straightforward to formulate most if the rules. How-
ever, there is a caveat concerning the typing of conditional expressions. As
has been discussed in the lectures, the “then branch” and the “else branch”
both have to have some common type 7. However, as discussed in Section

C.6, due to subtyping and implicit dereferencing, an expression can some-
times have more than one type. For example, assume x : Ref Integer and
y : Ref Integer, and consider a conditional expression b ? x : y (where b
is some Boolean expression). Thanks to the typing rule T-SOURCES (see
Section C.7.2), the subexpressions x and y have both type Ref Integer and
Integer. Thus we can pick either as their common type, meaning that the
conditional expression b ? x : y also can have either type Ref Integer or
type Integer. As far as the type system as such goes, this would be fine.

However, the chosen strategy for implementing the type system in the
form of the HMTC type checker is such that it is necessary to pick a specific
type early (see Section C.8). In this case, this means that unless the typing
rule for conditional expressions imposes additional constraints (besides the
type of the two branches being the same) to narrow down the possible types,
it becomes difficult to implement the rule faithfully. The easiest solution in
this case is to insist that the common type must not be a reference type in a
similar manner as in the rule T-ASSIGN for assignment. However, you may
wish to explore more flexible alternatives: it can of course be quite useful to
have the possibility to select between two references.

You don’t have to put a lot of effort into typesetting your typing rules. If
you want, you can use a naming convention such as a suffix “s” to indicate
vectors, rather than the overbar notation, for example. Neatly hand-written
and scanned (photographed) rules are also perfectly fine.

For reference, the relevant productions for the extended abstract syntax
are as follows:

Command —
| repeat Command until Expression — CmdRepeat

| if Ezpression then Command CmdIf
(elsif Expression then Command)*
(else Command |)
Ezxpression — ...
| CharacterLiteral ExpLitChr

| Expression ? Expression : Expression ExpCond

Task I1.2 (Weight 35%) Now extend the actual type checker to handle
the language extensions according to the extended type system you specified
in Task II.1. This also means you will have to add a new type Character,
and that you will need to extend the MiniTriangle standard environment
correspondingly to make this type available to the programmer.

The back-end of the compiler is structured around a new abstract syntax

10

representation called MTIR (MiniTriangle Intermediate Representation) that
carries additional semantic information. In particular, identifiers have been
replaced by symbols that carry semantic information such as type, scope
level, internal vs. external, and even the value of the symbol in the latter
case. The type checker, besides checking the types, translates the initial AST
into the enriched MTIR. While the the new language constructs from Part
I have been added to the initial abstract syntax AST (defined in the file
AST.hs), they have (with the exception of literal characters) not been added
to MTIR. Thus you will also have to extend MTIR (defined in MTIR.hs) to
handle the new constructs.
You will have to modify the following files:

e Type.hs
e MTStdEnv.hs
e MTIR.hs

e PPMTIR.hs

TypeChecker.hs

When you add the new character type to Type.hs, do not forget to also
extend the Eq and Show instances. The changes to MTIR.hs and PPMTIR.hs
are so straightforward and follows AST.hs and PPAST.hs so closely that it
suffices to include only the added or modified code for these files in your
report; that is, no explanations needed beyond making it clear where the
code belongs.

It is strongly suggested that you implement one language construct at
a time (i.e., make all relevant changes in all relevant files for one construct
before you move on to the next) in the following order:

e character literals
e repeat-until-loops
e conditional expressions

e cxtended if-then-else-commands

As mentioned above, MTIR (and the pretty printing function) has already
been extended to account for literal characters. When MTIR is modified to
account for the extended if-then-else syntax, you may find that it is nec-
essary to temporarily comment out the corresponding case in the code gen-
erator (file CodeGenerator.hs) in order to compile the compiler. You will
return to extending the code generator in Task I1.4 below.

11

When implementing the rule for checking conditional expressions, keep
the discussion from Task II.1 about the caveat related to this rule in mind.
If you followed the advice from that discussion, a hint is to use the function
infNonRefTpExp where appropriate.

Note that the type checker is structured using the diagnostics monad to
facilitate collection of error messages and warnings. Behind the scenes, all
messages are still collected into a list in exactly the same way as we have
seen explicitly in many of the lectures. However, the diagnostics monad hides
the “plumbing”, allowing code that needs to emit diagnostics to focus on the
essence of the algorithm in question, here type checking. You don’t need
a detailed understanding of how the diagnostics monad is implemented to
successfully complete this task: just use the provided monadic actions such as
require and emitErrD in combination with the do-notation in pretty much
the same way as if you were writing imperative code. (If you want to explore
alternative approaches to type checking the conditional expression, you may
also want to be aware of the combinator ||| for diagnostic computations.)

Hint: You may find the following function from the Haskell prelude useful
for processing a list of things in a monadic context:

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

The idea is that a monadic action on a single element is “lifted” to work on
lists of elements. Or, if you prefer, it is like a loop over a list in which the
monadic action is carried out on each list element, and each individual result
gathered into a list of results.

Task I1.3 (Weight 15 %) The target of the HMTC compiler is the Triangle
Abstract Machine (TAM) and the target language is thus TAM code. The
aim of this task is to gain familiarity with the TAM and TAM code through
implementing some simple TAM programs. Additionally, the MiniTriangle
standard library is going to be extended with a couple of subroutines to
make it possible to read single characters from and write single characters to
the terminal now that you have enriched the language with a character type
and character literals.

See Appendix D and the lecture slides for explanations of the TAM in-
structions. See Section 3 above for hints on easy ways to write and test TAM
code. When typesetting TAM code in your reports, you can either:

e cut and paste the Haskell representation of your code sequences into
your report, preferably laid out with one instruction per line for ease
of reading; or

12

e use the slightly neater style used in the lectures and in the TAM spec-

ification (which also is what you can put into .tam files for testing).

Furthermore, for (a) and (b) below, in addition to writing up your answer in
the report, you should add a module MyTAMCode.hs to the source tree that
includes the ezecutable TAM code you wrote for these subtasks, or include
a file MyTAMCode . tam contacting your code. Name your definitions in a way
that makes it clear which answer is which.

(a)

(b)

Implement a TAM program that reads a number n from the terminal
and then prints the numbers from 1 to n (in that order). Use a loop.
Make sure no numbers are printed if n < 1.

Implement a recursive TAM function fac to compute n!, the factorial
of n. (That is, you should implement this function in TAM code; you
are not asked to implement a new TAM instruction.) Arguments and
results should be passed and returned on the stack. The function should
return 1 for any argument n < 0. Further, the function should be pure:
no side effects on any global variables.

Then use this function in a TAM program that reads a number n from
the terminal and prints fac(n).

Extend the MiniTriangle standard library, and thus also the MiniTri-
angle standard environment, with a procedure getchr to read a single
character from the terminal, and a procedure putchr to write a sin-
gle character to the terminal. The procedure getchr should write the
read character to a variable (of type Character) passed by reference,
while the procedure putchr should expect a single argument (of type
Character) passed by value. The MiniTriangle type signatures should
thus be as follows:

Name Type
getchr | (Snk Character) — Void
putchr | Character — Void

The TAM instructions for reading and writing characters are GETCHR
and PUTCHR, respectively.

Make sure you test your code! Then incorporate the code into the Mini-
Triangle standard library that can be found in the file LibMT.hs, and
modify the standard environment defined in MTStdEnv.hs accordingly.
You will have to modify the following files:

e LibMT.hs
e MTStdEnv.hs

13

Task I1.4 (Weight 35 %) Extend the code generator so that code is gen-
erated properly for the language extensions. The code generator has already
been extended to handle character literals. Thus it remains to extend the
code generator to generate code for:

e repeat-until-loop (recall the dynamic semantics: repeat body at least
once until condition becomes true)

e conditional expressions
e cxtended if-then-else-command

In addition, the function sizeOf needs to be extended for the new type

Character (just uncomment the relevant case). It is strongly suggested that

you implement one language construct at a time in the order suggested above.
You will have to modify the following file:

o CodeGenerator.hs

Note that the code generator is structured using the code generator
monad (TAMCG = CG TAMInst ()) to facilitate joining generated code frag-
ments into a single sequence and generation of fresh names (i.e., names guar-
anteed to be distinct within the generated program) for use, for example, as
labels. Behind the scenes, the generated instructions are still joined into a
list in exactly the same way as we have seen error messages being explicitly
gathered into lists in many of the lectures, and the name generation is based
on threading through a counter in exactly the same way as we saw in the tree
numbering example in the lecture on monads. However, the code generation
monad hides the “plumbing”, allowing code structured using this monad to
focus on the essence of the code generation algorithm. You don’t need a de-
tailed understanding of how the code generation monad is implemented to
successfully complete this task: just use the provided monadic actions such
as emit and newName in combination with the do-notation in pretty much
the same way as if you were writing imperative code.

Hint: You may find mapM from the Haskell prelude useful again, or, in
case you don’t care about the result from processing the list:

mapM_ :: (Monad m) => (a > m b) > [a] > m O

You can essentially understand mapM_ as “for each element in a list, do the
specified action on that element”.

14

A MiniTriangle Grammars

This appendix contains the grammars that define the concrete and abstract
syntax of the version of MiniTriangle used for Part II of the coursework. The
concrete syntax is divided into two parts: lexical syntax and context-free syn-
tax. The grammars are derived from the book by Watt & Brown. Compared
to Part I, the language has been extended with procedures, functions, arrays,
and records. However, for consistency with the typing rules of the type sys-
tem (see appendix C), the grammars do not include the syntactic extensions
from Part I (repeat-loop, extended if-command, etc.).

A.1 MiniTriangle Lexical Syntax

Non-terminals are typeset in italics, like this. Terminals are typeset in type-
writer font, like this. Terminals whose spelling (the concrete character se-
quence) is different from what is shown in the grammar, such as names of
special characters, are typeset in italics and underlined, like this. For sim-
plicity, we resort to a slightly informal way of stating that the keywords are
not valid identifiers.

Program — (Token | Separator)*

Token — Keyword | Identifier | IntegerLiteral | Operator
FCDTDIITEI s T dsl e fe=]=] et

Keyword — begin | const | do | else | end | fun | if | in

| let | out | proc | then | var | while

Identifier — Letter | Identifier Letter | Identifier Digit
except Keyword

IntegerLiteral — Digit | IntegerLiteral Digit

Operator =~ [x| /]+|-|<|<=|==|1=|>=|>|ag| 1]
Letter — A|B|...|Z|a|b]|...]z

Digit — 0]1]2|3|4|5]|6]7|8]9

Separator — Comment | space | eol

Comment — // (any character except eol)* eol

15

A.2 MiniTriangle Context-Free Syntax

Non-terminals are typeset in italics, like this. Terminals are typeset in type-
writer font, like this. Terminals whose spelling (the concrete character se-
quence) is different from what is shown in the grammar are typeset in italics
and underlined, like Identifier and IntegerLiteral. Their spelling is defined

by the lexical grammar (where they are non-terminals!).

Program

Commands

Command

Ezxpressions

Ezpressions;

Ezpression

PrimaryEzpression

VarEzpression

_)

_)
|

—4 —1 —1

——

Command

Command
Command ; Commands

VarExpression := Expression
VarFExpression (Expressions)
if Fxpression then Command
else Command

while Fxpression do Command
let Declarations in Command
begin Commands end

€
Ezxpressions;

Ezpression
Ezpression , Erpressions;

PrimaryEzpression

Expression BinaryOperator Expression

IntegerLiteral

VarExpression

UnaryOperator PrimaryFExzpression

VarFExpression (Expressions)
[Ezpressions]

{ FieldDefs }

(Expression)

Identifier

VarFExpression [Ezrpression]
VarFExpression . Identifier

16

BinaryOperator
UnaryOperator

FieldDefs

FieldDefs;

FieldDef

Declarations

Declaration

ArgDecls

ArgDecls;

ArgDecl

TypeDenoter

—

-4+ L -4 —

———

—1 -1

———

SR/l <= === = > | ak |]
_|!

€

FieldDefs;

FieldDef
FieldDef , FieldDefs;

Identifier = Fxpression

Declaration
Declaration ; Declarations

const Identifier : TypeDenoter = Expression

var Identifier : TypeDenoter

var Identifier : TypeDenoter := Expression

fun Identifier (ArgDecls) : TypeDenoter = Expression
proc Identifier (ArgDecls) Command

€
ArgDecls;

ArgDecl
ArgDecl , ArgDecls;

Identifier : TypeDenoter

in Identifier : TypeDenoter
out Identifier : TypeDenoter
var Identifier : TypeDenoter

Identifier
TypeDenoter [IntegerLiteral]
{ FieldTypes }

17

FieldTypes — €
| FieldTypes,

FieldTypes; — FieldType
| FieldType , FieldTypes;

FieldTypes — Identifier : TypeDenoter

Note that the productions for Ezpression makes the grammar as stated
above ambiguous. Operator precedence and associativity for the binary op-
erators as defined in the following table is used to disambiguate:

Operator Precedence | Associativity
- 1 right
x / 2 left
- 3 left
< <= == I=>= > 4 non
&& 5 left
|l 6 left

A precedence level of 1 means the highest precedence, 2 means second highest,
and so on.

A.3 MiniTriangle Abstract Syntax

This is the MiniTriangle abstract syntax. It captures the tree structure of
MiniTriangle programs as concisely as possible. For example, note that there
is only one non-terminal for expressions as opposed to three in the grammar
for the concrete syntax. Such “extra” non-terminals are helpful for specifying
the exact details of the concrete syntax, and sometimes to avoid ambiguity.
But once a program has been successfully parsed, its structure has been deter-
mined, and such extra detail no longer serve any purpose. Another difference
is that concrete unary and concrete (infix) binary operator application are
subsumed by function application, as such operators are functions of one and
two arguments, respectively. As a consequence, a single “variable” terminal
Name replaces Identifier and Operator; i.e., Name = Identifier U Operator.

The rightmost column gives the node labels for drawing abstract syn-
tax trees. They are also used as the names of the data constructors of the
datatypes for representing MiniTriangle programs in the compiler. Note that
some elements of concrete syntax, such as keywords, do occur in the pro-
ductions. They are there to make the connection between the concrete and
abstract syntax clear, and to provide an alternative textual representation for

18

the abstract syntax (e.g. for use in typing rules). However, these fragments
of concrete syntax are omitted when drawing abstract syntax trees, as they
are implied by the node labels and thus are superfluous. Also note that some
of the productions make use of the EBNF *-notation for sequences. When
drawing an abstract syntax tree, that means that the corresponding nodes
will have a varying number of children.

Program — Command Program
Command — Fxpression := Fxpression CmdAssign
| Expression (Ezpression™®) CmdCall
| begin Command* end CmdSeq
|

if Fxpression then Command CmdIf
else Command
| while Ezpression do Command CmdWhile
| let Declaration® in Command CmdLet

Expression — IntegerLiteral ExpLitInt
| Name ExpVar
| Expression (Ezpression™®) ExpApp
| [Expression®] ExpAry
| Ezpression [Expression] Explx
| { (Name = Ezpression)* } ExpRed
| Expression . Name ExpPrj
Declaration — const Name : TypeDenoter DeclConst
= FEzpression
| var Name : TypeDenoter DeclVar
(:= Expression | €)
| fun Name (ArgDecl*) DeclFun

: TypeDenoter = Fxpression
| proc Name (ArgDecl*) Command DeclProc

ArgDecl — ArgMode Name : TypeDenoter ArgDecl
ArgMode — € ByValue
| in ByRefIn
| out ByRefOut
| var ByRefVar

19

TypeDenoter — Name TDBaseType
— TypeDenoter [IntegerLiteral 1 TDArray
— { (Name : TypeDenoter)* } TDRecord

B MiniTriangle Standard Environment

The MiniTriangle standard environment provides the following types, con-
stants, and procedures:

Name ‘ Type ‘ Description
Types
Boolean | type Boolean type; elements: false, true
Integer | type Integer type; 32 bits
Constants
false Boolean The truth value false
true Boolean The truth value true
minint | Integer The smallest represesentable integer
maxint | Integer The largest representable integer
Procedures
getint | (Snk Integer) — Void | Read integer from the terminal
putint | Integer — Void Write integer to the terminal
skip () = Void Do nothing

Additionally, the standard environment defines a number of functions and
procedures used internally by the compiler, such as implementations of all
operators and a procedure for reporting array indices out of bounds.

C MiniTriangle Type System

This appendix explains and specifies the type system for the HMTC version of
MiniTriangle (henceforth just MiniTriangle). The notation essentially follows
B.C. Pierce Types and Programming Languages, and the presentation is also
inspired by that book. Naming conventions:

20

Symbol Meaning/syntactic category

r Type environment (or typing context)
S, T Type

c Command

e Ezpression

d Declaration

a ArgDecl

x Variable Name

p, f Procedure/function Name

n IntegerLiteral

In other words, we have ¢ € Command, e € Ezxpression, x,p, f € Name,
and so on. Subscripted and primed variants of these are also used with the
same interpretation. For example, e, ex, € all stand for expressions; i.e.,
e1 € Expression, e, € Expression, €' € Expression.

The syntactic categories referred to above (Command, Ezpression, Name,
etc.) are as specified by the MiniTriangle abstract syntax (appendix A.3),
except for Type that is defined in the following. The syntactic category
TypeDenoter in the abstract syntax corresponds to types that may occur
as parts of declarations: at present the base types Boolean and Integer
along with (nested) arrays of the base types. However, to specify the Mini-
Triangle type system we need a refined notion of type that can express the
exact type of any typed MiniTriangle entity. Type is defined such such that
TypeDenoter C Type. This simplifies the typing rules for declarations, but is
not strictly speaking necessary.

The typing rules make use of vector notation for conciseness. For example,
T is a sequence of zero or more types; i.e. T € Type*. However, we will
also use vector notation as a shorthand to avoid distracting repetition when
the meaning is clear. For example, we take € : T to be a shorthand for
€ =¢€1,6,...6y,; T = T1,1,,...T,; and ey : T1, ey : Ty, ...e, : T, for some
n € N.

C.1 MiniTriangle Types

The syntax of types is defined by the following context-free grammar:

21

Type — Types:

Void The empty type (procedure return type)
| Boolean The Boolean type
| Integer The Integer type
| Src Type Read-only variable reference (source)
| Snk Type Write-only variable reference (sink)
| Ref Type Variable reference
| TypelIntegerLiteral] Array type
| {(Name: Type)*} Record type
| Type™ — Type Type of procedures and functions (arrow)

The intended meaning of these types should be clear, except perhaps for
reference types that will be explained later.

The set of types specified above is more general than what is needed for
the present version of MiniTriangle. For example, the type syntax does not
rule out long chains of reference types (such as Ref (Ref (Ref Integer))) or
higher-order procedures and functions, neither of which is possible since the
MiniTriangle grammar simply does not provide any way to express programs
making use of such types (and nor are they necessarily supported by the later
stages of the compiler or abstract machine). However, the above grammar
is much simpler than a more precise account of the types that actually can
occur, and it facilitates future generalisations.

C.2 Imperative Variables and Dereferencing

One feature common to most imperative languages is that dereferencing is
implicit when variables are read. For example, consider the following C-like
declarations:

int x;
int y;

and the code fragment:
y =x + 1;

The variables x and y are each really a reference to a memory location where
an integer can be stored, and the code above actually says:

Fetch the integer stored at the address x refers to. Add one to
this integer. Store the result at the address y refers to.

22

However, note that whereas the addition (+ 1) and storing the result (=) are
both operations that are explicitly mentioned in the code fragment, fetching
is not: it is tacitly assumed that x stands for the value stored in the memory
location associated with x, not the address of this location. In contrast, y,
on the left-hand side of the assignment, does stand for the address of the
memory location associated with y.

Thus we see that it is the usage context of a variable occurrence that
determines if this occurrence is to be understood as the address of the variable
or the value stored there. Not needing to explicitly indicate when a value has
to be fetched from memory is what is meant by implicit dereferencing.

C.3 MiniTriangle Reference Types

The fact that variables are references to memory locations is made explicit
in the MiniTriangle type system. For example, consider a declaration of a
variable x of type Integer:

let
var x : Integer
in

The type attributed to x in the body of the 1let-construct becomes Ref Integer;
that is, a reference to a memory location that can hold a value of type
Integer, or ‘“reference of type Integer” for short. References are always
typed to make the type of the referenced value clear.

There are actually three kinds of references in MiniTriangle:

e Ref T read/write reference; i.e., values of type T can be written to
and read from the referenced memory location.

e Src T source; i.e., read-only reference.
e Snk T sink; i.e., write-only reference.

These three types are collectively referred to as “reference types” or just
“references”. We formalise this through the following predicate:

reftype(Src T') (1)
reftype(Snk 7') (2)
reftype(Ref 7') (3)

23

Perhaps somewhat confusingly, we will also use “reference of type 7" in the
narrower sense of Ref T'. Usually the context will make it clear what is meant;
otherwise we will write “read/write reference” to distinguish from “source”
and “sink”.

Read/write references are used for variables, as illustrated by the example
above, while sources are used for constants. For example, a definition:

const ¢ : Integer = ...

results in the type Src Integer being attributed to c.

The three reference types are also used for passing arguments to proce-
dures and functions by reference, allowing the specification of input/output,
input, and output arguments. For example, the type of the procedure getint
in the MiniTriangle standard library, which is used to input an integer from
the terminal, is Snk Integer — Void, meaning that it needs to be passed a
reference to a memory location to which the integer read from the terminal
can be written.

However, as in most imperative languages, dereferencing is still implicit
when values of reference type are used. The way this works is that the the
MiniTriangle system is set up so that an entity of reference type also is
considered to have the type of the referenced entity. To illustrate, when the
integer variable x from the example above is used in an expression like x +
1, x has both type Ref Integer and Integer. As the type of the operator
+ is (Integer, Integer) — Integer, we can see that the first argument
has to have type Integer. But as that is one of the possible types for x,
the expression x + 1 is well-typed in this case, with the overall type of the
expression being Integer.

Behind the scenes, the type checker, in addition to checking that a pro-
gram is well-formed in the sense defined by the MiniTriangle type system,
inserts dereferencing operations to ensure that an expression of reference type
actually gets the type it needs to have to fit with the usage context. To con-
tinue the example, the type checker will transform x + 1 into something like
deref (x) + 1 in this casel.

Should there be multiple levels of referencing, the type checker would in-
sert two or more dereferencing operations as needed. For example, assume
the type of x had been Src (Ref Integer) instead. Then x + 1 would be
transformed to deref (deref(x)) + 1. Ultimately, each deref-operation is
translated into an instruction that reads the memory contents at the ref-
erenced location (which, in the case of nested referencing, will be another
reference that may be further dereferenced in turn).

!Note that deref is a “hidden” language construct, only used internally by the compiler
at present, not a function that can be used by the programmer.

24

C.4 Subtyping

One type S is said to be a subtype of another type T, written S <: T,
if a value of type S can be used wherever a value of type T is expected.
Object-oriented languages, like Java and C#, are important examples of
languages with type systems based on subtyping. Recall that an object that
is an instance of a class C' can be used wherever instances of any of C's
superclasses are expected. I.e. C' is a subtype of C’s superclasses.

There are other possibilities as well. For example, in a language that has
a type Nat for natural numbers, Nat might be considered to be a subtype of
an integer type Int, as any natural number is also an integer. In this case, it
is clear that there is a close connection between subsets and subtypes. That
is, at least at a conceptual level: internally, it is not necessarily the case that
elements of a subtype (in this case Nat) have the same representation as the
corresponding elements of the supertype (in this case the elements of Int
that are natural numbers).

However, if it is possible to make representations coincide in an imple-
mentation, this is advantageous as it makes the implementation of subtyping
both easier and more efficient as there is no need to convert between represen-
tations at runtime. Object-oriented languages are thus typically designed to
make this possible. For example, in Java, there is no runtime overhead asso-
ciated with viewing an instance of some class C' as an instance of a superclass

of C?.

C.5 Subtyping in MiniTriangle

In MiniTriangle, the reference types naturally induces a subtyping relation
as a read/write reference can be used in place of either a source (read-only)
or a sink (write-only). The following inference rules define the MiniTriangle
subtyping relation:

2 Downcasting is a different matter. As there is no static guarantee that an entity that
statically is known to have some type T at runtime actually has some more refined type S
as dictated by the cast, with S <: T, a runtime check that ensures that the entity actually
has the more refined type needs to be inserted to guarantee language safety.

25

) S<T
r<T (1) Ref S <:SrcT (5)
S<.T T<.5
Src S <:SrcT (2) Ref S <:Snk T’ (6)
T<:S (3) T<S S<T g
Snk S <:Snk T S S < T T
S<:T T<S8

Ref 0 < RetT W

Rule (1) says that any type is a subtype of itself; i.e., subtyping is reflezive.
In fact, subtyping is also transitive, which is essential, making it a preorder.
However, transitivity is not manifest from these rules but has to be proved
(by induction).

If we have a value of type Src S, then it can be dereferenced to obtain
a value of type S. Clearly, if S <: T, then this value of type S can be used
wherever a value of type T is expected. But then it follows that we can use a
value of type Src S wherever a value of type Src T is expected; i.e., it should
be the case that Src S <: Src T. Rule (2) formalises this. Note that Src is
covariant: it preserves the subtyping ordering.

By a similar line of reasoning, we expect a subtyping relationship to hold
between Snk S and Snk 7' if S and T are related by subtyping. Rule (3)
captures this. Note that this time, the requirement is that 7" <: S; i.e., Snk
is a contravariant type constructor (reverses the subtyping ordering). Why?
Well, if we are using a sink of type S at type Snk 7', then any value of type
T written into this sink could potentially be used at type S through some
different route. But that will only work if we insist that 7" is a subtype of S.

Rule (4) is essentially a combination of rule (2) and (3) as a reference
simultaneously is a source and a sink.

Rules (5) and (6) formalises that a reference is both a source and sink
and thus can be used in place of either. Note that rule (5) is covariant while
rule (6) is contravariant for the same reasons as above.

Rule (7), finally, formalises when a procedure or function type is a subtype
of another. Note the covariant subtyping relationship between the result types
and the contravariant one between the arguments. Intuitively, this is because
returning a value is akin to a source, while passing arguments is akin to
writing them to a sink.

All reference types in MiniTriangle (Src 7', Snk 7', Ref 1) share a common
representation: they are just pointers. The differentiation between sources,
sinks, and read/write references only serve to keep track of read and write

26

“permissions”. No change of representation is needed to use a value of some
type T at one of T’s supertypes, and thus no runtime overhead is incurred.

C.6 Implicit Dereferencing in MiniTriangle

As discussed in Appendix C.3, dereferencing is implicit in MiniTriangle. At
the type level, this is manifested through an implicit coercion from a reference
type to the type of the referenced entity, meaning that the type system
ascribes more than one type to such entities. For example, an expression of
type Ref Integer is implicitly coerced to Integer when necessary, meaning
it can be typed at both types.

However, unlike subtyping, this is not just a matter of viewing an entity
as having a more refined type, but these coercions actually involve a repre-
sentational change: from a reference (pointer) to an entity to the referenced
entity itself by following the reference. The MiniTriangle type checker there-
fore has to insert explicit dereferencing operations wherever the type system
makes use of an implicit coercion from a reference type to the referenced
type.

The predicates sources and sinks defined below account for this. If it is
the case that sources(S, T') holds, this means that a value of type S can
“source” a value of type T through zero or more dereferencing operations.
For example, from a value of type Ref (Src (Snk Boolean)) we can obtain
a value of type Snk Boolean by dereferencing twice. If sinks(S, T) holds, it
means that it is possible to obtain a sink to which a value of type T can be
written from a value of type S through zero or more dereferencing operations.
For example, from a value of type Ref (Snk Integer) it is possible to obtain
an integer sink by dereferening once.

sources(S, T) sinks(Snk S, T)
sources(S, T) @) T <- S @)
sources(Src S, T)) sinks(Ref S, T)
sources(S, T) 3 sinks(S, T) 3
sources(Ref S, 7T) (3) sinks(Src S, T) (3)
sinks(S, T)

sinks(Ref S, T))

Rules (2) and (3) of the definition of the predicate sources and rules (3)
and (4) of the definition of the predicate sinks are justified by dereferencing.
Thus, when the type checker carries out a typing derivation, it will have to

27

insert a dereferencing operation exactly once each time one of these rules are
used®. By contrast, rule (1) of the definition of the predicate sources and rules
(1) and (2) of the definition of the predicate sinks are justified by subtyping
alone and no dereferencing operations are thus inserted in those cases. For
example, if S <: T, then it is clearly possible to obtain a value of type T
from a value of type S as the latter also has type T" by virtue of subtyping.

C.7 MiniTriangle Typing Relations

We are now in a position to specify the MiniTriangle type system as such.
This is done through the following typing relations:

Command c is well-formed in type environment I’
:T Expression e has type T in type environment I'
: I'g F d|I" Declarations d are well-formed in type environments I
and I'g, extending the environment I' to I
ka|llY Argument declarations a are well-formed in type envi-
ronment I', extending the environment to I

Foc
F e

= ==

A type environment associates names with types, allowing the type of a
named entity to be found (if it is in scope). However, it is also necessary to
keep track of the current scope level and the scope level at which a named
entity has been declared. An environment is therefore taken to be a pair of
scope level and a list of pairs of the form

:L‘(n) :T
This can be read “z at scope level n has type T”. Additionally, for an en-

vironment to be well-formed, the scope levels of the names must not exceed
the scope level of the environment. Thus, an environment I' has the form:

I'= (n; (T1ny) 1 11, oy : Toy - Ty = Tk))

where n; <n for 1 <i¢<k.
To keep the typing rules clear and concise, we adopt some notation, con-
ventions, and abbreviations in relation to environments.

e I'(,): A subscript within brackets is used to refer to the scope level of
an environment. If two environments with the same name but different
scope levels occur in a rule, e.g. I'i,) and I'(,11), it is understood that
the environments are the same, except for the scope level.

3This correspondence is particularly clear in the definition of the function sources
in the type checker. The definition is not much more than a transliteration of the rules
defining the predicate sources, with the addition of code for inserting the dereferencing
operations.

28

['(z): The type of z in T'; if there are more than one entity named z
in scope, then the type of one with the highest scope level.

r el Trueif x, : T for some n and T is in I".

Ty €I True if 2, : T for some T'is in I'.

I' x:T: Given
I'= (n; (1) 1 T, Tomy) : Toy - Ty Tk))
I', « : T is shorthand for the extended environment
(0 (T1ny) 2 Ty Tom) = Loy v Ti(ny) * Ty Ty 2 1))
and an additional side condition:
T ¢ T

In other words, the environment I' is extended with the information
that an entity named x at the present scope level n has type T, but
only if there is not already a declaration for = at this scope level.

C.7.1 Commands

The following inference rules define the typing relation specifying well-formed
commands:

I'Foe:S TI'Fe: T —reftype(T) sinks(S, T)

= (T-ASSIGN)
I'=e,: TF_T_VC;E?Q r-ce:T (T-CALL)
'+ gegirlzﬁ end (T-SEQ)

. eF: Eooilfegli:herlz cll_ecllsecl; — (T-IF)
L l_Te r_Bgﬁ%igne doFcl_) (T-WHILE)
Py s " Ed|T7 T F ¢ (T-LET)

F(n) F letdinc

29

Most of the rules above are straightforward and fairly standard. However,
T-ASSIGN and T-LET deserve some comments. The rule T-ASSIGN says
that the expression e, denoting the variable that will be written to must have
a type S such that S can sink (possibly after implicit dereferencing) a value of
type T, where T' is the type of the expression yielding the value to be written.
This should be fairly intuitive. The reason that the rule further insists that
the type T" must not be a reference type is to avoid ambiguity. Because an
expression can have more than one type due to implicit dereferencing (and
subtyping; see Appendix C.6), it could be that it would not be clear just how
many dereferencing steps should be carried out otherwise.

For example, suppose e, : Ref (Snk Integer) and e : Ref Integer. Note
that sinks(Ref (Snk Integer), Ref Integer) holds because Ref (Integer) <:
Snk (Integer) (rule (2) in the definition of sinks). This typing corresponds
to storing a reference (pointer) to an integer into the location referred to by
the value of ey.

However, there is another possibility. Note that e, can source a integer
sink (one dereferening operation). Thus we also have e, : Snk Integer. Sim-
ilarly, e can source an integer (one dereferencing operation). Thus we also
have e : Integer. And clearly, sinks(Snk Integer, Integer) holds. This
typing corresponds to fetching the integer referred to be e and storing in the
location indirectly referred to be ey. This is a very different semantics from
above. By insisting that the assigned values are as “dereferenced as possible”,
we avoid this ambiguity (at the expense of losing flexibility not needed in the
present version of MiniTriangle anyway), opting for the latter interpretation.

Regarding T-LET, note how the scope level is increased by one before
extending the environment according to the declarations. Also note that I",
the extended environment, is not only used for checking that the body of the
let-command is well-formed, but also when checking that the declarations
themselves are well-formed. The latter allows for recursive procedures and
functions. See the rules for declarations below.

C.7.2 Expressions

The typing rules for expressions are as follows:

30

I' - e:S sources(S, T)

(T-SOURCES)

I'e: T
I' F n: Integer (T-LITINT)
INz)=T
T (T-VAR)
PFe:T>T T FHe:T
TF e(e: T (T-APP)
I' - e: T n=length(e)
T F [e] - T (T-ARY)
' Fe:R(T]) T F e: Integer
R € {Src, Snk,Ref}
TF ele] (RT (T-IX)
I' - e:T alldistinct(7)
T-RCD
'+ {z=e} : {z:T} ()
'Fe:R{x:T}) a,:T, €x:T
k,Ref
R € {Src, Snk,Ref} (T-PRJ)

I'+e.x,:RT,

The rules T-LITINT, T-VAR, T-APP are standard. For T-ARY, we take the
common type T of the array elements to be arbitrary if n = 0. T-IX specifies
that the array expression must denote a reference to an array, and that the
result of indexing this array is a reference (of the same kind) to an individual
element of that array. (This ensures arrays are accessed in place, rather than
needlessly being copied to the stack first.) The constraint alldistinct(Z) in the
typing rule T-RCD for record expressions means that each name in the vector
7 of field names must be distinct from the others. The typing rule T-PRJ
for record projection is similar to the rule for array indexing (T-IX) in that
the expression must denote a reference to a record and that the result is a
reference (of the same kind) to the specified field of the record. (The rationale
for the design is the same as that for arrays.) The notation z,,:T;, € {x:T}
means that the field name and type pair x,:7,, must be one of field name
and type pairs of the type of the record. Finally, T-SOURCES is the rule
that allows implicit dereferencing. It says that any expression that has type
S in the environment I' also has type 7" in the same environment if S can
source T'; i.e., if a value of type S can be dereferenced zero or more times

31

to obtain a value of type T'. See the definition of sources in Section C.6, and
note how the sources predicate also takes care of subtyping thanks to rule
(1) of its definition.

C.7.3 Declarations

Finally we turn to the typing rules for declarations. The relation to deter-
mine if a list of declarations is well-typed is defined inductively by simply
recursing down this list, extending the environment in which the declarations
are checked along the way, thus ensuring that each declared entity is brought
into scope in the following declarations. Once the end of the list is reached,
the final environment is returned as the one in which to check the body of
a let-command; see rule T-LET above. However, to allow for (mutually)
recursive functions and procedures, the bodies of these are checked in a sep-
arate “body” environment, I'g. The rule T-LET is set up so that I'g is the
same as the environment in which the body of the let-command is checked,
meaning that all declared entities are in scope in the bodies of all functions
and procedures.

I'Fe:T T,2:8rcT ;g d|l’

' + wellinit(n, e)
— (T-DECLCONST)
Ipy; I's b constz : T=e;d|T

I,2:RefT;I'g - d|I"
I';Ig b varz: T ;d|T’

(T-DECLVAR)

I'e:T T,2:RefT ;Ip F d|I"
' = wellinit(n, e)
Loy ; Ts F constz : T :=¢;d|T’

(T-DECLINITVAR)

PB(n+1) Fa | F% F% F e
I, f:proctype(a); I'g - d| I
['; I'pw + procp(@ c; d|TI”

(T-DECLPROC)

PB(n—l—l) = E|F;3 1—‘;3 Foe:T
I, f:funtype(a, T); 'y F d|T”
I'; I'gwy F fun f(a@) :T=c;d|I"

(T-DECLFUN)

I:Tg F €|l (T-DECLEMPTY)

There are five main cases: constant definition, uninitialised variable dec-
laration, initialised variable declaration, procedure declaration, and function

32

declaration. Note how the declared type of the constant or variable is checked
against the defining or initialisation expression in case there is one. Further,
note how the type of the declared entity is added to the environment as
Src T in the case of a constant and Ref T in the case of a variable. Thus
in all cases, the type of the declared entity is a reference type, making it
clear that a dereferencing operation is needed to get the actual value. This
is because both constants and variables are stored on the stack, with only
their addresses (offsets with respect to the stack base or local base), not their
values, known at compile time. The type of a constant is Src T" as constants
can only be read (after their initial definition), while the type of variables is
Ref T as they can be both read and written. Finally, note how I'g, rather
than T', as discussed above, is extended by the declarations of formal argu-
ments to I3, and then used for checking the well-formedness of the bodies
of declared procedures and functions.

The types of declared procedures and functions are computed by the
following auxiliary functions:

proctype(a) = argtypes(a) — Void
funtype(a, 7)) = argtypes(a) > T

argtypes(xz : T, a) = T, argtypes(a)
argtypes(inz : T, @) = SrcT, argtypes(a)
argtypes(out = : T, @

f

argtypes(var x : T,
argtypes(e

)

)

) = Snk T, argtypes(a)
) = Ref T, argtypes(a)
)

€

The defining expressions for constants and the initialisation expressions
for variables must be “well-initialised”, meaning that they must not use func-
tions defined in the same let-block. This make a straightforward implementa-
tion of constant and variable allocation and initialisation possible. (The type
system as such would work fine without it.) The relation I' + wellinit(n, e)
formalises this requirement:

33

I' F wellinit(_, n) (WI-LITINT)

' b wellinit(_, x) (WI-VAR)

L e R oy (WLAPE)

FF el T (VAR
it g)
. :ve?{frllllltrzg(rl{xi;)e}) (WI-RCD)

' wellinit(n, e) (WI-PRJ)

I' F wellinit(n, e.x,)

Note: if an unknown function is being called (although not currently possi-
ble), then that would conservatively not be considered well-initialised.

Finally, the relation for checking argument declarations and extending the
given environment has a similar structure to that for checking declarations.
Note how all formal arguments are treated as constants (sources).

[,x:8rcT F d|T’
'Fao:T;d|I’

[, 2:8rc (SrcT) F d|T’
I'Fina:T;d|T’
[,2:8rc(SnkT) F d|T”
' Foutx:T;d|I"
[,7r:8rc(RefT) F d|T’
' Fvarx: T ;d|I"

(T-DECLARG)

(T-DECLINARG)

(T-DECLOUTARG)

(T-DECLVARARG)

I'Fell (T-DECLARGEMPTY)

34

C.8 Notes on MiniTriangle Type Checker Implemen-
tation

As far as languages and type systems go, MiniTriangle is a small language
and its type system is fairly simple. Yet, turning the specification of its type
system into a type checker is not entirely straightforward. The main issue is
that the typing rules are not algorithmic; i.e., they can’t directly be read as
specifying a function, where the inputs uniquely determine the output, but
just a relation that can be one to many. As a case in point, consider the rule
T-SOURCES that allows a single expression to have many possible types.
This was deliberate: the typing rules have been written for clarity and ease
of understanding, keeping details about exactly how to go about checking
types from obscuring the specification of the type system.

There are a number of approaches for handling this. A principled one
would be to allow for many possible types, which then gradually would be
narrowed down to, hopefully, only a single type once all constraints have been
taken into account.

The MiniTriangle type system has, however, been designed to permit a
simpler approach. By carefully considering what is known and unknown in
each rule, each rule can be turned into one, or, in case what is knowns and
not differ in different contexts, more functions, with the knowns as inputs
and the unknowns as outputs, uniquely determined by the inputs. As a case
in point, the relation I' F+ e : T is implemented as a number of functions,
including chkTpExp to be used to check that an expression e has a known
type T in a known environment I' (environments are always known), and
infTpExp that infers the “least dereferenced” type for e, if well-typed, in the
known environment I'.

The notion of scope level is refined into major and minor scope levels
in the implementation. The major scope level is incremented for bodies of
procedures and functions. This is because a new activation record is created
when a function or procedure is called. The difference in major scope level
between the context in which a variable reference occurs and the scope level
of the referenced variable determines how many static links that have to be
followed to get to the correct activation record (see the lecture notes). In
contrast, variables declared by a let-command gets allocated in the current
activation record. Therefore only the minor scope levels needs incrementing.

35

Triangle Abstract Machine Instructions

Meta variable Meaning
a Address: one of the forms specified by table
below when part of an instruction, specific
stack address when on the stack
b Boolean value (false = 0 or true = 1)
ca Code address; address to routine in the code
segment
d Displacement; i.e., offset w.r.t. address in
register or on the stack
l Label name
m, n Integer
T,y Any kind of stack data
x" Vector of n items, in this case any kind
Address form Description
[SB + d] Address given by contents of register SB
[SB - d] (Stack Base) +/— displacement d
[LB + d] Address given by contents of register LB
[LB - d] (Local Base) +/— displacement d
[ST + d] Address given by contents of register ST
[ST - d] (Stack Top) +/— displacement d
Instruction ‘ Stack effect ‘ Description
Label
Label [— Pseudo instruction: symbolic lo-
cation
Load and store
LOADL n .= N, Push literal integer n onto stack
LOADCA [= addr(l), ... | Push address of label [(code seg-
ment) onto stack
LOAD a = |a], . Push contents at address a onto
stack
LOADA «a L= a, .. Push address a onto stack
LOADI d a, = la+d, Load indirectly; push contents at
address a + d onto stack
STORE a n, = Pop value n from stack and store
at address a
STOREI d a, n, = Store indirectly; store n at ad-
dress a +d

36

Instruction

Stack effect

Description

Block operations

LOADLB m n = m", ... Push block of n literal integers
m onto stack
LOADIB n ay ... = Load block of size n indirectly
[a+(n—1)],..., [a+0], ...
STOREIB n a,z", ... = Store block of size n indirectly
POP m n ™oy .. = 2™ Pop n values below top m val-
ues
Arithmetic operations
ADD No, Ny, ... = ni1+ng, ... | Add n; and ne, replacing n,
and ne with the sum
SUB N9, Ny, ... = Ny —Ng, ... | Subtract ny from ny, replacing
ny and ne with the difference
MUL Ng, N1, ... = Np-Na, ... Multiply ny by no, replacing nq
and no with the product
DIV Ng, Ny, ... = Ni/na, ... Divide n; by ns, replacing n,
and ny with the (integer) quo-
tient
NEG N, ... = —N,... Negate n, replacing n with the

result

Comparison & logical operations

(false = 0, true = 1)

LSS

EQL

GTR

AND

OR

NOT

No, N1y ... = N1 < MNa, ...

No, N1y ... => N1 =T"No, ...

No, N1, ... => N1 >MNag, ...

by, by, ... = Dby Abo, ...

by, by, ... = by Vb, ...
b,... = —b,...

Check if n; is smaller than no,
replacing n; and ny with the
Boolean result

Check if ny is equal to no, re-
placing n; and n, with the
Boolean result

Check if n; is greater than no,
replacing n; and ny, with the
Boolean result

Logical conjunction of b; and
bs, replacing b, and b, with the
Boolean result

Logical disjunction of b; and
bs, replacing by and by, with the
Boolean result

Logical negation of b, replacing
b with the result

37

Instruction ‘

Stack effect

Description

Control transfer

JUMP [

JUMPIFZ [

JUMPIFNZ [

CALL [

CALLI

RETURN m n

= pc+1,10b,0,...

ca, sl, ... =
pc+ 1, 10b, si, ...

x™, pc, 1b, 0, y™ ...
= " ...

Jump unconditionally to location
identified by label [

Jump to location identified by la-
bel I if n =0 (i.e., n is false)
Jump to location identified by la-
bel [if n # 0 (i.e., n is true)

Call global subroutine at location
identified by location [, setting
up activation record by pushing
static link (0 for global level), dy-
namic link (value of LB), and re-
turn address (PC+1, address of
instruction after the call instruc-
tion) onto the stack

Call subroutine indirectly;
address of routine (ca) and static
link to use (s/) on top of the stack;
activation record as for CALL
Return from subroutine,
replacing activation record by re-
sult and restoring LB

Input/Output

PUTINT

PUTCHR

GETINT

GETCHR

Print n to the terminal as a deci-
mal integer

Print the character with charac-
ter code n to the terminal

Read decimal integer n from the
terminal and push onto the stack
Read character from the termi-
nal and push its character code
n onto the stack

TAM Control

HALT

Stop execution and halt the ma-
chine

38

