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Evolutionary Multi-objective Optimization Algorithms wit h
Probabilistic Representation Based on Pheromone Trails

Hui Li, Dario Landa-silva, and Xavier Gandibleux

Abstract— Recently, the research on quantum-inspired evo- Currently, the mainstream state-of-the-art EMO algorithms
lutionary algorithms (QEA) has attracted some attention in  gre based on Pareto dominance (e.g. NSGA-Il [6] and
the area of evolutionary computation. QEA use a probabilistic SPEA-II [7]) or on aggregating functions (e.g. MOGLS

representation, called Q-bit, to encode individuals in population. .
Unlike standard evolutionary algorithms, each Q-bit individual [8] and MOEA/D [9]). The research literature shows that

is a probability model, which can represent multiple solutions. Pareto-based EMO algorithms are very effective to tackle
Since probability models store global statistical information continuous multi-objective optimization problems. In con-
of good solutions found previously in the search, QEA have trast, for tackling multi-objective combinatorial optimization
good potential to deal with hard optimization problems with problems, EMO algorithms based on aggregating functions

many local optimal solutions. So far, not much work has to b itable. Th . for this is that
been done on evolutionary multi-objective (EMO) algorithms seem (o be more suitable. € main reason for this Is tha

with probabilistic representation. In this paper, we investigate the later approaches directly use local search to intensify
the performance of two state-of-the-art EMO algorithms - the exploration of promising regions in the search space.
MOEA/D and NSGA-II, with probabilistic representation based  Moreover, these algorithms also have advantages in dealing
on pheromone trails, on the multi-objective travelling salesman with many-objective optimization problems.

problem. Our experimental results show that MOEA/D and . . - .
NSGA-II with probabilistic presentation are very promising in In [10], a quantum-inspired evolutionary algorithm (QEA)

sampling high-quality offspring solutions and in diversifying Was developed to solve combinatorial optimization problems.

the search along the Pareto fronts. Unlike other evolutionary algorithms, a QEA uses Q-bit rep-
resentation to encode individuals. Since each Q-bit individual
I. INTRODUCTION encodes multiple solutions, a QEA has the ability to provide

Evoluti lqorith | f | good diversity in the population. Essentially, each Q-bit
-volutionary algorthms are a class ot Very popular opy,yiiqyal can be regarded as a simple probabilistic model.

. IC]‘herefore, a QEA is also a kind of multi-model estimation of

problems from real-world applications. To design an eﬁecnvﬁistribution algorithm (EDA) [11], which samples offspring

evolutl_onary algorithm, the choice of proper solution rePreSolutions from probabilistic models. Therefore, there are no
sentation and the development of appropriate search op

¢ th idered. This is b i &lgssover and mutation operators used in QEA. In [12], a
ators must be considered. 1his IS because representatio A has been extended to solve the multi-objective knapsack

solutions could affect some properties of the search landsc |
such as redundancy, neighborhood structure, and ruggedn St order to find a set of diverse non-dominated solutions,

.[1]' Some_well-known examples of solution rep_resentatlonr%any EMO algorithms incorporate mechanisms to encourage

mc_lude. binary, real-value vector, messy encodings, permHiversity of the population in the objective space. However,

tation, and tree structures. ) . . .. maintaining diversity in the decision space is also crucial
In the past two decades, evolutionary multi-ObjeCtivg, e performance of EMO algorithms. Based on this, we

(EMO) algorithms hgve attracFed a lot of ir_ltere‘_s,t fron_Hevelop variants of NSGA-Il and MOEA/D with probabilistic
researchers [2][3]. Fitness assignment and diversity Maldg|ution representation. Each probabilistic individual corre-

tenance are two major research issues in evolutionary mu'Qbonds to one pheromone matrix, which is a probability

objective optimization. However, little work has been dong, | commonly used in ant colony optimization (ACO)

on designing multl-objgctlve oriented .representatlor) of Soélgorithm [13]. We also compare the performance of NSGA-
Iutlcl)ps.blln [4], a hybrid reprhesentztlon was SSUdAeg' fof| "and MOEA/D with probabilistic representation to their

multi-objective optimization. That scheme uses both binaryiqina) versions on the multi-objective travelling salesman
and real-valued representations to encode individuals in t Soblem

population._ln [5], the influence of binary and ord_er-base The rest of this paper is organized as follows. Sec-
representations on the performance of EMO algorithms wag, || introduces some basic definitions in multi-objective

investigated for multi-objective knapsack problems. optimization. Section Il briefly overviews ant colony opti-
- . i i __mization. Section IV presents the new versions of NSGA-
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[I. MULTI-OBJECTIVEOPTIMIZATION In ACO, artificial ants build solutions by incrementally
Mathematically, a multi-objective optimization problemadding solution components to a partial solution, which is

(MOP) can be stated as: initially empty. This procedure is stopped until a complete
solution is generated. The decision rule for accepting one
minimize F(z) = {fi(z),..., fm(2z)} (1) component as new member of the partial solution is deter-

x €] mined by both heuristic information and pheromone trail.

The ACO process for constructing solutions can also be

wherez is the vector of decision variableg, is the feasible understood as moving on a gragh — (C, £), where the

area in tr_‘e deC|S|_on search space dfi) € " is a vector vertices are the components ¢hand £ = {l;;} is the
of objective functions.

L . - . . connection between components. Connectignare associ-
When objective functions are conflicting, solutions in the P fon

L . ated with both pheromone trails;, storing global search
objective space are not completely ordered. For this reasaon . . K -

- - . Information obtained from previous search, and heuristic
the optimal solutions of a MOP are trade-offs among objec-

tives, known as Pareto-optimal solutions. For two objezctlvvaluesn”’ representmg problem S pecmc.greedmess. Assume
. ) . . . thatz, =< x,_1,¢; > is the partial solution constructed so
vectorsu,v € R™, u is said to dominate if and only if . .
] . far andc; is the current node, the next nodgis chosen from
u; <w; forall i € {1,...,m}, and there exists at least onethe feasible neighborhoad. of nodec. by applving some
Jj €{1,...,m} satisfyingu; < v;. A solutionz* € Q is said g ! i DY appying

to be Pareto-optimal if its objective vector is not domirkte groba}gl!settlctoci<e<;|5|qn>ruTI(:‘se. (E::?;brtlhﬁ“zeig d%?;trlﬁ:ir?gjmg
by the objective vector of any other solution $h The set /! mJ = y

oo . . . pheromone trails and heuristic values.
of objective vectors of all Pareto-optimal solutions isledl - .
) In the past twenty years, many variants of ACO algorithms
Pareto-optimal front.

have been proposed. The main differences among them lie in

Traditional methods in mathematical programming oftertwhe design of pheromone representation (i.e. how to define

convert a MOP into one single objective optimization prOb'solution components) and probabilistic decision rules: Fo
lem [14]. Among these traditional methods, weighted sum b P '

. - S example, in the first implementation of ACO algorithm for
approach is one of the most commonly used. It minimiz

e :
the following weighted scalarizing function: the travelhn'g. salesman 'problem, called ant system (AS)) [15
the probability of moving from node; to nodec; was

LI defined as:
gz, ) =Y Nifi(x), () . s
i=1 pis(t) = [73; ()] - [4] 3)
whereX = (\q,..., \,,) is the weight vector with\; > 0 for ’ Dlen; [T (8)]” [mz}ﬁ

allie{1,...,m}and> ;" A\, = 1. The optimal solution
) @ . g .. .Where
of ¢ is called supported. Under some mild conditions, it is ) o o )
also Pareto-optimal to the MOP in (1). 13 = 1/d;; is the priori heuristic value and;; is the
distance between citiesand j;

[II. ANT COLONY OPTIMIZATION « o and 3 are two parameters representing the relative

Ant colony optimization (ACO) [13] is a constructive importance of heuristic information and pheromone
meta-heuristic that mimics the behavior of ants when sgekin  information.
a path between the ant colony and a source of food. In ACO, « ; is the feasible neighborhood of citynot visited yet.
the priori information (i.e. problem-specific heuristia) the Whena = 0, the closest city is more likely to be selected
structure of good solutions and the posteriori informaticn  as the new component of the current partial solution.
artificial pheromone trail) on the probabilistic distrikmrt Once a complete tour is generated, the pheromone trails
of previously obtained good solutions are used to sampieeed to be updated in two steps. First, the pheromone trail
offspring solutions in promising areas of the search spactr each edge is modified by
Over the years, ACO algorithms have been applied to solve
many combinatorial optimization problems [15] [16], such 7i3(t) = (1 = p)7i;(t)
as travelling salesman problem and quadratic assignmepfere < (0,1] is the evaporation rate.
problem. Second, for each edgg, j) belonging to the tour, the

Consider a combinatorial optimization probleffi, f,Q)  gjated pheromone trail is updated as follows:
with the following characteristics:

e C={c1,...,cy,} is afinite set of solution components; 75t +1) = 75(t) + ATi;(2) (4)
« each stater of the problem can be represented by "%vhereAn»(t) — 1/L(t)(L(t) is the length ofz).
sequence of solution componen{s;,c;,...,ck,...). !

8 . In [17], one of the successors of AS, called Ant Colony
The set of all states is denoted Bythe set of candidate System (ACS), used a different probability decision rule.

S°|Uti°'_15' i .. . At each step, the nodg¢ with the maximal greediness was
« 2 C S is the feasible set of the search space satlsfylnéhosen with probabilityo € [0, 1]. That is
certain constraints anfl(s) is the cost function for each ’ '

candidate solutios € S. j = argmaxe ., [ ()" [nu)”.
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The ACS approach uses the same rules as the original |AS Step 1: Initialization

with probability set tol — . Step 1.1 Initialize NP weight vectors\(®), s = 1,...,NP
Like evolutionary algorithms, the application of ACQ I"’t‘gc:] ;Etrfb;hgbd';cz;)eﬁaicvﬁ:?c% dV:SCtt?:Xe - dgilecsut‘;‘{t,e

algorithms for multi-objective optimization has also atted closesgt] weight vectors ta®):

interest for the research community. In [18], an empirical

! reoealL . Step 1.2 Initialize pheromone trailsff)(t) and subprobr
analysis of multi-objective ACO algorithms was conducted lem heuristics)®), s = 1,...,NP;

i

on bi-objective TSP problems. Step 1.3 Initialize NP solutions in current population
z®(t),s = 1,...,NP by sampling from probabilistic
IV. MOEA/D AND NSGA-II WiTH PROBABILISTIC individuals. Set EP as an empty set.
REPRESENTATION Step 2: Reproduction and Update

for each subproblems € {1,...,NP}
Step 2.1 Sample an offspringy from the probability
model based on;” (t) andn?;

In this section, we first describe a quantum-inspired de-
netic algorithm (QEA), in which the probabilistic repreten

tion was first used. Then, the modified versions of MOEA/D Step 2.2 Improvey by applying local search;

and NSGA-II with probabilistic representation are presdnt Step 2.3 Update EP withy;
Step 2.4 Competey with all neighbors.

A. QEA For eachk € B(s), setz® (¢) = y if z®(¢) is worse
thany regardingg(z, A(*)).

QEA is an evolutionary algorithm paradigm based on the q
concepts of qubits and superposition of states in quantum grt]ep %r Pheromone Update
mechanics. In this algorithm, solutions are encoded using & for each subproblems € {1,...,NP}
Q-bit representation system. Each Q-bit corresponds to two

o < Step 3.1 Evaporate pheromone trai’rg‘?(t);
states ‘0’ or ‘1. The probabilities of finding these two &=t

Step 3.2 Update pheromone traits’ (t) with =(*)(t),

are denoted byn? and 5% respectively. Normalization of k € B(s);
states needs to guaranted + 32 = 1. An individual in end for
an Q-bit system can be defined as: Step 4: Termination
If the stopping conditions are satisfied, then output EP and stop;
Qi | Qg Qp 5 otherwise set := ¢ + 1 and go to Step 2.
Loz n Procedure 1: MOEA/D

wheren is the number of Q-bits, anth;,5;),i =1,...,n

is a pair of complex numbers specifying the probability

amplitudes of states ‘0’ and ‘1’ of theth Q-bit, respectively. is very flexible to integrate some single-objective meta-
Essentially, each Q-bit individual is a simple probabitist heuristic search methods, such as differential evolutizi)(
model, which can represent multiple states of Q-bits. In QEA19], simulated annealing (SA) [20] and greedy randomized
a population of probabilistic Q-bit individuals is maimad. adaptive search procedure (GRASP) [21].

It can also be viewed as a multi-modal estimation of distribu In the previous implementation of MOEA/D, each sub-
tion algorithm (EDA). Like classical EDA algorithms, QEA problem is only associated with one individual, which is its
produces offspring solutions by sampling from a probatiilis current best solution. As discussed in [19], the competitio
model, i.e., observing Q-bit probabilistic individualsin€ between neighboring solutions might cause loss of diversit
each Q-bit individual stores global statistical inforroati To avoid this weakness, more complex memory should
of good solutions obtained previously in the search, evoldse used to store the information about the history of the
tionary algorithms with Q-bit representation have advgaeta search for each subproblem. This memory could be a small
in exploring promising areas of the search space. In [12population or a probability model.

a multi-objective version of quantum-inspired evolutiona  So far, no work has yet been done on MOEA/D with
algorithm, called QMEA, was also proposed. That algorithnprobabilistic representation. In this paper, we inveséga
uses NSGA-Il as its baseline algorithm and samples nemew version of MOEA/D, in which each subproblem is

solutions by observing Q-bit individuals. associated with one probabilistic individual represenigd
pheromone trails. At each generatignMOEA/D maintains
B. MOEAD the following data structures:
In [9], Zhang and Li proposed a decomposition-based , A set of NP weight vectors A1), ..., \(NP):
evolutionary multi-objective optimization algorithm, lizad « Current population -{m<1>(t),...yx(NH(t)}, where
MOEA/D. It decomposes a multi-objective optimization 24)(t),s = 1,...,NP is the current best solution to

problem into NP single objective subproblems with objeztiv gla, AO));

functions g(z, A®),i € {1,...,NP}. The main goal of o W (NP)

MOEA/D is to find the optimal solutions of NP subproblems * P(r:;eron?one populatiorr;; @’ Ty (£)}, where
simultaneously. The information from the optimization of ~ Ti; (¢) iS the pheromone trail for the subproblem asso-
one subproblem is used to assist the optimization of similar ~ Ciated withg(z, A(+)).

subproblems. MOEA/D provides a general framework, which « Subproblem heuristics{ng), . ngNP)}, where 771(;)
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is the heuristic for the subproblem associated witlalgorithm in [6], called NSGA-II. In this algorithm, the
g(x, A). population is divided into a number of nhon-dominated fronts
« External population EP which is used to store all nonin terms of Pareto dominance. Within each front, all sohsio

dominated solutions found during the search. are mutually non-dominated. The solutions in the front
The algorithmic framework of MOEA/D with probabilistic closer to the true Pareto front are preferred in selectiah an
representation is described frocedure 1 competition. To control the distribution of non-dominated

Step 1.1 is the same as in the original MOEA/D. In Stegolutions within each front, the density values of indiati

1.2, NP probabilistic individuals are initialized. Thisept are estimated based on crowding distance. The solutions in
needs problem-specific information. Step 1.3 samples thge less crowed part are preferred in selection.
initial population with probabilistic individuals. Singitly, Compared to MOEA/D, NSGA-II has no bias in searching
Step 2.1 generates an offspring solution for the curre@ny particular part of the Pareto front. All non-dominated
subproblem. Then, it is improved by local search in Stepolutions in the current population have equal chance to be
2.2. The acceptance function in local search is the objectiselected for reproduction. However, this might not be effi-
function of the current subproblem. In Step 2.3, the impdovecient when sampling offspring solutions due to the follogvin
solution is used to update the external population ER.if two reasons. First, the non-dominated solutions might have
not dominated by any member of EP, then add it into EP. Mery different structures in the decision space. Therefie
any member of EP is dominated hy then it is removed possibility of generating high-quality offspring soluti® by
from EP. In Step 2.4y competes with all its neighbors. recombining these solutions is low. Second, the design-of re
After sampling and updating the current population, theombination operators is often problem-dependent. Efficie
probabilistic individuals are updated in Step 3. For eacrecombination operators for some combinatorial optinizat
subproblem, the related pheromone trails are evaporatedfdroblems are not always readily available.
Step 3.1, and then updated by the current solutions of all Here, we also investigate the version of NSGA-II with
neighboring subproblems in Step 3.2. probabilistic representation, in which multiple probihil
models (pheromone trails) are maintained. Each probgbilit
model stores long-term search information. All offspring
solutions are sampled from these probability models. aimil

C. NSGA-II

Step 1: Initialization . to MOEA/D in Procedure 1, NSGA-II also needs to main-
tSFe_pO,l'l Initialize NP weight vectors randomly and set5in 4 set of weight vectors, current population, pheromone

o - (1) (NP | population, subproblem heuristics and external popuiatio
Step 1.2 Imt('ihze {Tig'Ng))""_’T_"'j (_t)}_ (p.heromone The details of NSGA-II with pheromone representation are

Mij > 77(11) }(pnon(ng)unsncs), described inProcedure 2
Step 1.3 Initialize {z" °(¢), ...,a"""’(¢)} randomly o Steps 1.1 and 1.2 initialize pheromone population, current
by sampling from probabilistic individuals. Set EP as|an . - L

population, and subproblem heuristics. These are sinolar t

empty set. . .
Step 2: Sampling the related steps in MOEA/D. Step 2.1 samples offspring

trails) and{n

for s =1 to NP solutions from a probabilistic individual. Unlike the oingl
Step 2.1 Sample an offspring(*) (¢) from the probability NSGA-Il, tournament selection and crossover are not needed
model based onl.(jiS)(t) andm(;}?); here. In Step 2.2, a local search is applied to improve off-
Step 2.2 Improvey ®)(t) by applying local search; spring solutions. The acceptance function used in locatkea
Step 2.3 Update EP withy(® (¢). is a scalar functiony(z, A) with normalized weight vector
end for generated randomly. The external population is updated in
Step 3: Nondominated Sorting Step 2.3, which use the same rules as in MOEA/D. Step

Step 3.1 Rank the_union of{z"(t),..., NP (#)}| 3 ranks all solutions in the union of current and offspring
and{y™(¢),...,y™NP (1)} using non-dominated sortig populations by applying non-dominated sorting. The best NP
method; . | solutions are copied into the population Q in the next gener-
Step 3.2 Copy the set Q of the best NP solutions o440 | Step 4.1, the pheromone trails of each probaiailist

the population into the next generation; S
Step 4: Pheromone Update individual are evaporated. Then, they are updated by the

for s — 1 to NP offspring solution generated by this probgbilistic indval .
Step 4.1Evaporate pheromone traitg?” (¢); aslvxt/_ell as those members of Q that dominate the offspring
solution.

Step 4.2UpdateTz.(;)(t) by y'*)(t) and all solutions irQ
which dominateg,(®)(t)
Step 5: Termination V. PHEROMONE TRAILS AND HEURISTICS IN

If the stopping conditions are satisfied, then output EP and 5top;p y T1-0BJECTIVE TRAVELLING SALESMAN PROBLEM
otherwise set := ¢+ 1 and go to Step 2.

Procedure 2: NSGA-II In this paper, we tested MOEA/D and NSGA-II with
probabilistic representation on the multi-objective @&iting
Deb et al. proposed a fast non-dominated sorting genesalesman problem. A travelling salesman problem with
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TABLE |

ObjeCtlves can be formulated as: AVERAGE NUMBER OF FUNCTION EVALUATIONS USED BYMOEA/D

n-1 AND NSGA-Il WITHOUT LOCAL SEARCH

k
) =3 dl, +dE k=1,....m (®)
ot instance | MOEA/D | NSGA-l | MOEA/D-ACO | NSGA-II-ACO
KROAB50 | 1487523 | 825694 95985 67450
where KROCD50 | 1489063 | 862066 95948 68460
) ) KROABI00 | 2395545 | 1449649 49068 43800
o m=(m,...,m,) iS a permutation of 1,...,n} where KROCDI00 | 2379413 | 1437141 49218 43610

n is the number of cities.
. dﬁrkzn is the cost between city; and cityr; regarding
criterion k. probability decision rules are used in both algorithms. We
Like the single objective ACO algorithms for travelling /S0 compared them with the original versions of MOEA/D
salesman problem, solution components correspond te citi@"d NSGA-Il, in which cycle crossover is used for repro-
(nodes) in a graph while links between components corréiction. The population size is set to 200 in all algorithms
spond to edges between cities. In MOEA/D, the heuristifor all instances. Botlr and 3 used in probabilistic decision

values of each subproblegiz, \(*)) are defined as rules are set to 1. The probability in ACS decision rule
is 0.95 while the pheromone evaporation rate is 0.1. The
) — 1/zm:)\<s)d(k) . neighborhood size in MOEA/D is 20. We also investigated
Ting = ke T the performance of MOEA/D and NSGA-II with local search.

L o ) . The 2-opt local move, which randomly exchanges two edges
The definition of heuristic values in NSGA-II is almost thej,, the tour. is used to generate neighboring solutions. Each
same as that in MOEA/D. The difference is that NSGA1oc4) search procedure is stopped after examining 100 neigh
Il uses weight vectors generated randomly and changed s The total number of runs of each algorithm for each
each construction step. In this paper, only bi-objectivé®TS;gtance was set to 20. In each run, each algorithm is stopped
instances are tested. MOEA/D uses a set of NP weighfer 50 seconds for the instances with 50 cities and 100
V((esgtors with uniform g;strlbunorz,s)whmh are generated byeconds for the instances with 100 cities. All algorithmsave
Al =1/(NP-1) and ;" =1 — )‘1_ 8§ = Loy NP-_ implemented in C++ and run in PC computer (Intel (R) Core
The values of pheromone trails in both algorithms argrM)2 CPU, 1.86 GHz, 2GB RAM) running Windows XP.

initialized by: To measure the quality of the non-dominated solu-
m tions found by MOEA/D and NSGA-Il, we use the in-
Tﬁf?rj(o):m/zg};fk(x) verted generation distance (IGD) metric in our experi-
k=1 ments [9], which can be formulated as: IGRP*) =
where P — {x(1>(0)7m7m(NP)(0)}_ > uep- Minyep dist(u,v)/|P*|. The IGD metric computes

the average distances of solutions in a referencePseto
the setP of resultant solutions. To measure the range of
objectives inP, we also calculate the following indicator

_ values: R)(P) = |max,ep fi(x) — mingep fi(z)],i =
A (1)), :{ 1/g(z,A\*)) if edge (m;, 7;) belongs tox 1. m.

For each probabilistic individual, the valueéfij of
pheromone trails are increased by a certain solutioas
follows:

iy 0 Otherwise
B. Experimental Results and Analysis
1) MOEA/D and NSGA-II without Local Search: Fig. 1
A7) (1) = Z ATE) ()]s, and 2 plot the non-dominated solutions found by MOEA/D,
o s NSGA-Il, MOEA/D-ACO and NSGA-II-ACO after 20 runs.
d he average number of solutions examined by each algorithm
are reported in Table |. Table II shows the mean and
standard deviation IGD-metric values of non-dominated so-
VI. COMPUTATIONAL EXPERIMENTS lutions found by the four algorithms. The average diffeesnc
In this section, we compare the original MOEA/D andPetween the best and the worse values of the non-dominated
NSGA-II to their variants with probabilistic represenati Selutions obtained by the four algorithms on each objective

based on pheromone trails, which are denoted by MOEA/[I€ Summarized in Table Ill. From these results, we can make

The total amount of pheromone values changed is:

where S is the set of solutions selected for pheromon
update.

ACO and NSGA-II-ACO respectively. the following observations.
) . « Table | shows that the average number of solutions
A. Experimental Settings examined by MOEA/D-ACO and NSGA-II-ACO is

In our experiments, we used two 50-city TSP instances much less than the number of solutions by MOEA/D
(KROAB50 and KRCD50) as well as two 100-city TSP and NSGA-II. This can be explained by the fact that the
instances (KROAB100 and KROCD100) [22]. All four in- computational complexity of constructive heuristics in
stances are bi-objective. They are constructed by comipinin  MOEA/D-ACO and NSGA-II-ACO is higher than that
two benchmark single objective TSP instances. The ACS of crossover and mutation operators in MOEA/D and

2311



x10° KROABS0 KROCDS50

x10*
oF—

7t % o MOEAD r o MOEAD
(G O NSGA-Il L O NSGA-II
R + MOEA/D-ACOH 8 + MOEA/D-ACO[
& *__NSGA-II-ACO = «_ NSGA-II-ACO
) 7k e B
O% oo tt; ° Gl
) O obog
¢ o o [ =
%%% o ~ % % &
o Tl & %%&y S0
&, 0g Gy o
*s;, °®
4
e
3 o
e
e g s Aok
2 I . 2 . O B g
2 3 4 5 6 7 8 2 3 4 5 6 7 8
fi x10* f x10'
Fig. 1. Plots of the non-dominated solutions found by MOEA/ &NSGA-Il on KROAB50 and KROCD50
« 10" KROAB100 « 10" KROCD100
16} o[ o wmoeaD T ® 5 MoeaD
O NSGA-Il 14 g o NsGA-ll
+  MOEA/D-ACO iy + MOEA/D-ACO
1 NSGA-II-ACO[ X NSGA-II-ACO
e 12 % % Ty b
: T
s § S22,
e 2o  om 10} &
o c
10 —% oo %
%

| %

| Ky‘:"% 6 \R\;m

3
4t MM 1 4
B iy x
Bl M—H,¢‘
10 12

14

f x10* f *

4 6 8

Fig. 2. Plots of the non-dominated solutions found by MOEAMR &NSGA-Il on KROAB100 and KROCD100

TABLE I
MEAN AND (STANDARD DEVIATION) OF IGD-METRIC VALUES FOR THE NONDOMINATED SOLUTIONS FOUND BY MOEA/D(ACO) AND
NSGA-II(ACO) WITHOUT LOCAL SEARCH

Instance

MOEA/D NSGA-I MOEA/D-ACO | NSGA-II-ACO

KROAB50 | 41607.1 (4112.9) | 37510.0 (2714.1)| 3200.6 (190.9) | 2104.1 (230.4)
KROCD50 | 39180.4 (2396.8) | 34695.0 (2370.6) | 2890.4 (97.1) | 2530.7 (519.1)
KROABI00 | 104531.7 (5587.2)] 100496.0 (3144.3)| 61065 (257.6) | 5146.6 (367.4)
KROCD100 | 105132.8 (4759.5)] 101922.1 (4746.6)| 5835.5 (351.8) | 4392.3 (411.7)

TABLE 1lI

AVERAGE RANGES(R(I), R(Q)) OF OBJECTIVES IN THE NONDOMINATED SOLUTIONS FOUND BY MOEA/D AND NSGA-Il WITHOUT LOCAL SEARCH

Instance

MOEA/D

NSGA- MOEA/D-ACO NSGA-II-ACO
KROAB50 | (18119, 18819)| (22391, 22052)| (58120, 49713) | (54800, 44947)
KROCD50 | (19892, 18093)| (20684, 21157)| (57416, 62977) | (47386, 53867)
KROABI00 | (21882, 27155)| (28099, 27216)| (135466, 129729)| (123297, 114071)
KROCD100 | (26880, 27700)| (25900, 24171)| (124089, 120000)| (114902, 110945)

NSGA-II. These results also indicate that the problem-
specific constructive heuristics are more efficient than
the standard crossover and mutation operators whene
sampling offspring solutions.

It can be seen from Fig. 1 and 2 that the non-dominated
solutions found by MOEA/D-ACO and NSGA-II-ACO
are much better than those found by MOEA/D and
NSGA-II on all 4 instances. However, both EMO al-
gorithms with probabilistic representation have similar
performance in approximating the Pareto front. NSGA-
II-ACO found better solutions in the middle parts of
the Pareto fronts while MOEA/D found better extreme

solutions close to the minimum of each objective and
achieved better distribution along the Pareto fronts.
The mean IGD-metric values in Table Il show the
MOEA/D-ACO and NSGA-II-ACO found better IGD-
values than MOEA/D and NSGA-II. These results show
that the non-dominated solutions found by two EMO
algorithms with probabilistic representation are closer
to the Pareto fronts than those found by the original
versions. We can also observe that NSGA-II-ACO per-
formed better than MOEA/D-ACO on all 4 instances in
terms of the IGD-metric.

e The results in Table Ill show that MOEA/D-ACO
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TABLE IV
AVERAGE NUMBER OF FUNCTION EVALUATIONS USED BYMOEA/D
AND NSGA-Il WITH LOCAL SEARCH

VII. CONCLUSION

In this paper, we investigated the performance of two state-
of-the-art evolutionary multi-objective (EMO) algorittan

Instance MOEA/D NSGA-II MOEA/D-ACO | NSGA-II-ACO . e
KROABG50 | 35436936 | 36149497 8039799 5978060 namely MOEA/D and NSGA-Il, when using probabilistic
KROCDS0 | 33732260 | 34546771 7932084 5880482 representation based on pheromone trails. In both algo-
KROAB100 | 58859145 | 62359764 4631526 4156110 . P . -

KROCDI00 | 50422778 | 62902484 4631292 Z156555 rithms, an individual is encoded by a probability model,

i.e. pheromone trails. Offspring solutions are samplednfro
the probabilistic individuals and problem-specific heticts
performed better than NSGA-II-ACO in diversity. The We compared the four algorithms without local search -
ranges of non-dominated fronts found by MOEA/D-MOEA/D,’ N,SGA'”' MOEND'ACO and NSGA-II-ACO on
the multi-objective travelling salesman problem. Our expe

ACO are wider than those of non-dominated solu:
tions obtained by NSGA-II-ACO. The reason is thaimental results showed that MOEA/D-ACO and NSGA-II-

MOEA/D-ACO specifically spends equal computationaf*\CO_Performed much better than the original MOEA/D

effort in searching different parts of the Pareto trontsand NSGA-Il without probabilistic representation. MOEA/D

In contrast, NSGA-II-ACO does not have any bias +\CO performed worse than NSGA-II in finding solutions in
search any, part of the Pareto fronts. the middle parts of Pareto fronts but it found more diverse

. . Pareto fronts. We also compared the four algorithms when
2) MOEA/D and NSGA-II with Local Search: Fig. 3 and ging |ocal search. Our results showed that MOEA/D found
4 plot the non-dominated solutions found by the four algopatier IGD-metric values than MOEA/D-ACO. However, it
rithms using local search in 20 runs. The average numbers @f4s more number of function evaluations. We conclude
solutions examined by each algorithm are reported in Tablga; propabilistic representation can improve the efficien
IV. The mean and st.andard deviation IGD-metric .values % EMO algorithms in sampling high-quality solutions by
non-dominated solutions found by the four algorithms argynsiryctive heuristics and in diversifying the searcglo
shown in Table V. The average differences between the bgsi etg fronts by pheromone trails. In the future, we intend
and the worse values of the non-dominated solutions olataing, apply EMO algorithms with probabilistic representatton

by the four algorithms for each objective are summarized igiher challenging multi-objective combinatorial optirion
Table VI. From these results, the following observations Caproblems.

be made.

« The results in Fig. 3 and 4 show that all four algorithms REFERENCES

with local search are able to find non-dominated solu-
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TABLE V
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