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Abstract— Recently, the research on quantum-inspired evo-
lutionary algorithms (QEA) has attracted some attention in
the area of evolutionary computation. QEA use a probabilistic
representation, called Q-bit, to encode individuals in population.
Unlike standard evolutionary algorithms, each Q-bit individual
is a probability model, which can represent multiple solutions.
Since probability models store global statistical information
of good solutions found previously in the search, QEA have
good potential to deal with hard optimization problems with
many local optimal solutions. So far, not much work has
been done on evolutionary multi-objective (EMO) algorithms
with probabilistic representation. In this paper, we investigate
the performance of two state-of-the-art EMO algorithms -
MOEA/D and NSGA-II, with probabilistic representation based
on pheromone trails, on the multi-objective travelling salesman
problem. Our experimental results show that MOEA/D and
NSGA-II with probabilistic presentation are very promising in
sampling high-quality offspring solutions and in diversifying
the search along the Pareto fronts.

I. I NTRODUCTION

Evolutionary algorithms are a class of very popular op-
timization search techniques for tackling hard optimization
problems from real-world applications. To design an effective
evolutionary algorithm, the choice of proper solution repre-
sentation and the development of appropriate search oper-
ators must be considered. This is because representation of
solutions could affect some properties of the search landscap,
such as redundancy, neighborhood structure, and ruggedness
[1]. Some well-known examples of solution representations
include: binary, real-value vector, messy encodings, permu-
tation, and tree structures.

In the past two decades, evolutionary multi-objective
(EMO) algorithms have attracted a lot of interest from
researchers [2][3]. Fitness assignment and diversity main-
tenance are two major research issues in evolutionary multi-
objective optimization. However, little work has been done
on designing multi-objective oriented representation of so-
lutions. In [4], a hybrid representation was studied for
multi-objective optimization. That scheme uses both binary
and real-valued representations to encode individuals in the
population. In [5], the influence of binary and order-based
representations on the performance of EMO algorithms was
investigated for multi-objective knapsack problems.
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Currently, the mainstream state-of-the-art EMO algorithms
are based on Pareto dominance (e.g. NSGA-II [6] and
SPEA-II [7]) or on aggregating functions (e.g. MOGLS
[8] and MOEA/D [9]). The research literature shows that
Pareto-based EMO algorithms are very effective to tackle
continuous multi-objective optimization problems. In con-
trast, for tackling multi-objective combinatorial optimization
problems, EMO algorithms based on aggregating functions
seem to be more suitable. The main reason for this is that
the later approaches directly use local search to intensify
the exploration of promising regions in the search space.
Moreover, these algorithms also have advantages in dealing
with many-objective optimization problems.

In [10], a quantum-inspired evolutionary algorithm (QEA)
was developed to solve combinatorial optimization problems.
Unlike other evolutionary algorithms, a QEA uses Q-bit rep-
resentation to encode individuals. Since each Q-bit individual
encodes multiple solutions, a QEA has the ability to provide
good diversity in the population. Essentially, each Q-bit
individual can be regarded as a simple probabilistic model.
Therefore, a QEA is also a kind of multi-model estimation of
distribution algorithm (EDA) [11], which samples offspring
solutions from probabilistic models. Therefore, there are no
crossover and mutation operators used in QEA. In [12], a
QEA has been extended to solve the multi-objective knapsack
problem.

In order to find a set of diverse non-dominated solutions,
many EMO algorithms incorporate mechanisms to encourage
diversity of the population in the objective space. However,
maintaining diversity in the decision space is also crucial
to the performance of EMO algorithms. Based on this, we
develop variants of NSGA-II and MOEA/D with probabilistic
solution representation. Each probabilistic individual corre-
sponds to one pheromone matrix, which is a probability
model commonly used in ant colony optimization (ACO)
algorithm [13]. We also compare the performance of NSGA-
II and MOEA/D with probabilistic representation to their
original versions on the multi-objective travelling salesman
problem.

The rest of this paper is organized as follows. Sec-
tion II introduces some basic definitions in multi-objective
optimization. Section III briefly overviews ant colony opti-
mization. Section IV presents the new versions of NSGA-
II and MOEA/D with probabilistic presentation. Section V
describes the pheromone trails and heuristics in the multi-
objective travelling salesman problem. Experimental results
are reported and discussed in Section VI while the final
section concludes this paper.
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II. M ULTI -OBJECTIVEOPTIMIZATION

Mathematically, a multi-objective optimization problem
(MOP) can be stated as:

minimize F (x) = {f1(x), . . . , fm(x)} (1)

x ∈ Ω

wherex is the vector of decision variables,Ω is the feasible
area in the decision search space andF (x) ∈ Rm is a vector
of objective functions.

When objective functions are conflicting, solutions in the
objective space are not completely ordered. For this reason,
the optimal solutions of a MOP are trade-offs among objec-
tives, known as Pareto-optimal solutions. For two objective
vectorsu, v ∈ Rm, u is said to dominatev if and only if
ui ≤ vi for all i ∈ {1, . . . ,m}, and there exists at least one
j ∈ {1, . . . ,m} satisfyinguj < vj . A solutionx∗ ∈ Ω is said
to be Pareto-optimal if its objective vector is not dominated
by the objective vector of any other solution inΩ. The set
of objective vectors of all Pareto-optimal solutions is called
Pareto-optimal front.

Traditional methods in mathematical programming often
convert a MOP into one single objective optimization prob-
lem [14]. Among these traditional methods, weighted sum
approach is one of the most commonly used. It minimizes
the following weighted scalarizing function:

g(x, λ) =
m

∑

i=1

λifi(x), (2)

whereλ = (λ1, . . . , λm) is the weight vector withλi ≥ 0 for
all i ∈ {1, . . . ,m} and

∑m

i=1 λi = 1. The optimal solution
of g is called supported. Under some mild conditions, it is
also Pareto-optimal to the MOP in (1).

III. A NT COLONY OPTIMIZATION

Ant colony optimization (ACO) [13] is a constructive
meta-heuristic that mimics the behavior of ants when seeking
a path between the ant colony and a source of food. In ACO,
the priori information (i.e. problem-specific heuristic) on the
structure of good solutions and the posteriori information(i.e.
artificial pheromone trail) on the probabilistic distribution
of previously obtained good solutions are used to sample
offspring solutions in promising areas of the search space.
Over the years, ACO algorithms have been applied to solve
many combinatorial optimization problems [15] [16], such
as travelling salesman problem and quadratic assignment
problem.

Consider a combinatorial optimization problem(S, f,Ω)
with the following characteristics:

• C = {c1, . . . , cNc
} is a finite set of solution components;

• each statex of the problem can be represented by a
sequence of solution components〈ci, cj , . . . , ck, . . . 〉.
The set of all states is denoted byS, the set of candidate
solutions.

• Ω ⊂ S is the feasible set of the search space satisfying
certain constraints andf(s) is the cost function for each
candidate solutions ∈ S.

In ACO, artificial ants build solutions by incrementally
adding solution components to a partial solution, which is
initially empty. This procedure is stopped until a complete
solution is generated. The decision rule for accepting one
component as new member of the partial solution is deter-
mined by both heuristic information and pheromone trail.

The ACO process for constructing solutions can also be
understood as moving on a graphG = (C,L), where the
vertices are the components inC and L = {lij} is the
connection between components. Connectionslij are associ-
ated with both pheromone trailsτij , storing global search
information obtained from previous search, and heuristic
valuesηij , representing problem-specific greediness. Assume
that xr =< xr−1, ci > is the partial solution constructed so
far andci is the current node, the next nodecj is chosen from
the feasible neighborhoodNi of nodeci by applying some
probabilistic decision rules. Then, the new partial solution
xr+1 is set to< xr, j >. The decision rule is determined by
pheromone trails and heuristic values.

In the past twenty years, many variants of ACO algorithms
have been proposed. The main differences among them lie in
the design of pheromone representation (i.e. how to define
solution components) and probabilistic decision rules. For
example, in the first implementation of ACO algorithm for
the travelling salesman problem, called ant system (AS) [15],
the probability of moving from nodeci to node cj was
defined as:

pij(t) =
[τij(t)]

α · [ηij ]
β

∑

l∈Ni
[τil(t)]

α
[ηil]

β
(3)

where

• ηij = 1/dij is the priori heuristic value anddij is the
distance between citiesi and j;

• α and β are two parameters representing the relative
importance of heuristic information and pheromone
information.

• Ni is the feasible neighborhood of cityi not visited yet.

When α = 0, the closest city is more likely to be selected
as the new component of the current partial solution.

Once a complete tourx is generated, the pheromone trails
need to be updated in two steps. First, the pheromone trail
for each edge is modified by

τij(t) = (1 − ρ)τij(t)

whereρ ∈ (0, 1] is the evaporation rate.
Second, for each edge(i, j) belonging to the tourx, the

related pheromone trail is updated as follows:

τij(t + 1) = τij(t) + ∆τij(t) (4)

where∆τij(t) = 1/L(t)(L(t) is the length ofx).
In [17], one of the successors of AS, called Ant Colony

System (ACS), used a different probability decision rule.
At each step, the nodej with the maximal greediness was
chosen with probabilityq0 ∈ [0, 1]. That is,

j = argmaxl∈Ni
[τil(t)]

α
[ηil]

β
.
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The ACS approach uses the same rules as the original AS
with probability set to1 − q0.

Like evolutionary algorithms, the application of ACO
algorithms for multi-objective optimization has also attracted
interest for the research community. In [18], an empirical
analysis of multi-objective ACO algorithms was conducted
on bi-objective TSP problems.

IV. MOEA/D AND NSGA-II WITH PROBABILISTIC

REPRESENTATION

In this section, we first describe a quantum-inspired ge-
netic algorithm (QEA), in which the probabilistic representa-
tion was first used. Then, the modified versions of MOEA/D
and NSGA-II with probabilistic representation are presented.

A. QEA

QEA is an evolutionary algorithm paradigm based on the
concepts of qubits and superposition of states in quantum
mechanics. In this algorithm, solutions are encoded using a
Q-bit representation system. Each Q-bit corresponds to two
states ‘0’ or ‘1’. The probabilities of finding these two states
are denoted byα2 and β2 respectively. Normalization of
states needs to guaranteeα2 + β2 = 1. An individual in
a n Q-bit system can be defined as:

[

α1

β1
|

α2

β2
| · · · |

αn

βn

]

(5)

wheren is the number of Q-bits, and(αi, βi), i = 1, . . . , n
is a pair of complex numbers specifying the probability
amplitudes of states ‘0’ and ‘1’ of thei-th Q-bit, respectively.
Essentially, each Q-bit individual is a simple probabilistic
model, which can represent multiple states of Q-bits. In QEA,
a population of probabilistic Q-bit individuals is maintained.
It can also be viewed as a multi-modal estimation of distribu-
tion algorithm (EDA). Like classical EDA algorithms, QEA
produces offspring solutions by sampling from a probabilistic
model, i.e., observing Q-bit probabilistic individuals. Since
each Q-bit individual stores global statistical information
of good solutions obtained previously in the search, evolu-
tionary algorithms with Q-bit representation have advantage
in exploring promising areas of the search space. In [12],
a multi-objective version of quantum-inspired evolutionary
algorithm, called QMEA, was also proposed. That algorithm
uses NSGA-II as its baseline algorithm and samples new
solutions by observing Q-bit individuals.

B. MOEA/D

In [9], Zhang and Li proposed a decomposition-based
evolutionary multi-objective optimization algorithm, called
MOEA/D. It decomposes a multi-objective optimization
problem into NP single objective subproblems with objective
functions g(x, λ(i)), i ∈ {1, . . . , NP}. The main goal of
MOEA/D is to find the optimal solutions of NP subproblems
simultaneously. The information from the optimization of
one subproblem is used to assist the optimization of similar
subproblems. MOEA/D provides a general framework, which

Step 1: Initialization
Step 1.1: Initialize NP weight vectorsλ(s), s = 1, . . . , NP
and sett := 0. For each weight vectorλ(s), calculate
its neighborhoodB(s), which includes the indexes ofK
closest weight vectors toλ(s);
Step 1.2: Initialize pheromone trailsτ (s)

ij (t) and subprob-

lem heuristicsη(s)
ij , s = 1, . . . , NP;

Step 1.3: Initialize NP solutions in current population
x(s)(t), s = 1, . . . , NP by sampling from probabilistic
individuals. Set EP as an empty set.

Step 2: Reproduction and Update
for each subproblems ∈ {1, . . . , NP}

Step 2.1: Sample an offspringy from the probability
model based onτ (s)

ij (t) andη
(s)
ij ;

Step 2.2: Improvey by applying local search;
Step 2.3: Update EP withy;
Step 2.4: Competey with all neighbors.
For eachk ∈ B(s), setx(k)(t) = y if x(k)(t) is worse
thany regardingg(x, λ(k)).

end for
Step 3: Pheromone Update
for each subproblems ∈ {1, . . . , NP}

Step 3.1: Evaporate pheromone trailsτ (s)
ij (t);

Step 3.2: Update pheromone trailsτ (s)
ij (t) with x(k)(t),

k ∈ B(s);
end for
Step 4: Termination
If the stopping conditions are satisfied, then output EP and stop;
otherwise sett := t + 1 and go to Step 2.

Procedure 1: MOEA/D

is very flexible to integrate some single-objective meta-
heuristic search methods, such as differential evolution (DE)
[19], simulated annealing (SA) [20] and greedy randomized
adaptive search procedure (GRASP) [21].

In the previous implementation of MOEA/D, each sub-
problem is only associated with one individual, which is its
current best solution. As discussed in [19], the competition
between neighboring solutions might cause loss of diversity.
To avoid this weakness, more complex memory should
be used to store the information about the history of the
search for each subproblem. This memory could be a small
population or a probability model.

So far, no work has yet been done on MOEA/D with
probabilistic representation. In this paper, we investigate a
new version of MOEA/D, in which each subproblem is
associated with one probabilistic individual representedby
pheromone trails. At each generationt, MOEA/D maintains
the following data structures:

• A set of NP weight vectors -λ(1), . . . , λ(NP);
• Current population -{x(1)(t), . . . , x(NP)(t)}, where

x(s)(t), s = 1, . . . , NP is the current best solution to
g(x, λ(s));

• Pheromone population:{τ (1)
ij (t), . . . , τ

(NP)
ij (t)}, where

τ
(s)
ij (t) is the pheromone trail for the subproblem asso-

ciated withg(x, λ(s)).

• Subproblem heuristics:{η(1)
ij , . . . , η

(NP)
ij }, where η

(s)
ij
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is the heuristic for the subproblem associated with
g(x, λ(s)).

• External population EP which is used to store all non-
dominated solutions found during the search.

The algorithmic framework of MOEA/D with probabilistic
representation is described inProcedure 1.

Step 1.1 is the same as in the original MOEA/D. In Step
1.2, NP probabilistic individuals are initialized. This step
needs problem-specific information. Step 1.3 samples the
initial population with probabilistic individuals. Similarly,
Step 2.1 generates an offspring solution for the current
subproblem. Then, it is improved by local search in Step
2.2. The acceptance function in local search is the objective
function of the current subproblem. In Step 2.3, the improved
solution is used to update the external population EP. Ify is
not dominated by any member of EP, then add it into EP. If
any member of EP is dominated byy, then it is removed
from EP. In Step 2.4,y competes with all its neighbors.
After sampling and updating the current population, the
probabilistic individuals are updated in Step 3. For each
subproblem, the related pheromone trails are evaporated in
Step 3.1, and then updated by the current solutions of all
neighboring subproblems in Step 3.2.

C. NSGA-II

Step 1: Initialization
Step 1.1: Initialize NP weight vectors randomly and set
t := 0;
Step 1.2: Initialize {τ

(1)
ij (t), . . . , τ

(NP)
ij (t)} (pheromone

trails) and{η(1)
ij , . . . , η

(NP)
ij }(priori heuristics);

Step 1.3: Initialize {x(1)(t), . . . , x(NP)(t)} randomly or
by sampling from probabilistic individuals. Set EP as an
empty set.

Step 2: Sampling
for s = 1 to NP

Step 2.1: Sample an offspringy(s)(t) from the probability
model based onτ (s)

ij (t) andη
(s)
ij ;

Step 2.2: Improvey(s)(t) by applying local search;
Step 2.3: Update EP withy(s)(t).

end for
Step 3: Nondominated Sorting

Step 3.1: Rank the union of{x(1)(t), . . . , x(NP)(t)}

and{y(1)(t), . . . , y(NP)(t)} using non-dominated sorting
method;
Step 3.2: Copy the set Q of the best NP solutions into
the population into the next generation;

Step 4: Pheromone Update
for s = 1 to NP

Step 4.1Evaporate pheromone trailsτ (s)
ij (t);

Step 4.2Updateτ
(s)
ij (t) by y(s)(t) and all solutions inQ

which dominatesy(s)(t)

Step 5: Termination
If the stopping conditions are satisfied, then output EP and stop;
otherwise sett := t + 1 and go to Step 2.

Procedure 2: NSGA-II

Deb et al. proposed a fast non-dominated sorting genetic

algorithm in [6], called NSGA-II. In this algorithm, the
population is divided into a number of non-dominated fronts
in terms of Pareto dominance. Within each front, all solutions
are mutually non-dominated. The solutions in the front
closer to the true Pareto front are preferred in selection and
competition. To control the distribution of non-dominated
solutions within each front, the density values of individuals
are estimated based on crowding distance. The solutions in
the less crowed part are preferred in selection.

Compared to MOEA/D, NSGA-II has no bias in searching
any particular part of the Pareto front. All non-dominated
solutions in the current population have equal chance to be
selected for reproduction. However, this might not be effi-
cient when sampling offspring solutions due to the following
two reasons. First, the non-dominated solutions might have
very different structures in the decision space. Therefore, the
possibility of generating high-quality offspring solutions by
recombining these solutions is low. Second, the design of re-
combination operators is often problem-dependent. Efficient
recombination operators for some combinatorial optimization
problems are not always readily available.

Here, we also investigate the version of NSGA-II with
probabilistic representation, in which multiple probability
models (pheromone trails) are maintained. Each probability
model stores long-term search information. All offspring
solutions are sampled from these probability models. Similar
to MOEA/D in Procedure 1, NSGA-II also needs to main-
tain a set of weight vectors, current population, pheromone
population, subproblem heuristics and external population.
The details of NSGA-II with pheromone representation are
described inProcedure 2.

Steps 1.1 and 1.2 initialize pheromone population, current
population, and subproblem heuristics. These are similar to
the related steps in MOEA/D. Step 2.1 samples offspring
solutions from a probabilistic individual. Unlike the original
NSGA-II, tournament selection and crossover are not needed
here. In Step 2.2, a local search is applied to improve off-
spring solutions. The acceptance function used in local search
is a scalar functiong(x, λ) with normalized weight vector
generated randomly. The external population is updated in
Step 2.3, which use the same rules as in MOEA/D. Step
3 ranks all solutions in the union of current and offspring
populations by applying non-dominated sorting. The best NP
solutions are copied into the population Q in the next gener-
ation. In Step 4.1, the pheromone trails of each probabilistic
individual are evaporated. Then, they are updated by the
offspring solution generated by this probabilistic individual
as well as those members of Q that dominate the offspring
solution.

V. PHEROMONETRAILS AND HEURISTICS IN

MULTI -OBJECTIVE TRAVELLING SALESMAN PROBLEM

In this paper, we tested MOEA/D and NSGA-II with
probabilistic representation on the multi-objective travelling
salesman problem. A travelling salesman problem withm
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objectives can be formulated as:

f
(k)
i (π) =

n−1
∑

j=1

d(k)
πiπj

+ d(k)
π1πn

, k = 1, . . . ,m (6)

where

• π = (π1, . . . , πn) is a permutation of{1, . . . , n} where
n is the number of cities.

• d
(k)
πiπj is the cost between cityπi and cityπj regarding

criterion k.

Like the single objective ACO algorithms for travelling
salesman problem, solution components correspond to cities
(nodes) in a graph while links between components corre-
spond to edges between cities. In MOEA/D, the heuristic
values of each subproblemg(x, λ(s)) are defined as

η(s)
πiπj

= 1/
m

∑

k=1

λ
(s)
k d(k)

πiπj
.

The definition of heuristic values in NSGA-II is almost the
same as that in MOEA/D. The difference is that NSGA-
II uses weight vectors generated randomly and changed at
each construction step. In this paper, only bi-objective TSP
instances are tested. MOEA/D uses a set of NP weight
vectors with uniform distribution, which are generated by
λ

(s)
1 = 1/(NP-1) andλ

(s)
2 = 1 − λ

(s)
1 , s = 1, . . . , NP.

The values of pheromone trails in both algorithms are
initialized by:

τ (s)
πiπj

(0) = m /

m
∑

k=1

min
x∈P

fk(x)

whereP = {x(1)(0), . . . , x(NP)(0)}.
For each probabilistic individual, the valuesτ (s)

πiπj of
pheromone trails are increased by a certain solutionx as
follows:

∆τ (s)
πiπj

(t)|x =

{

1/g(x, λ(s)) if edge (πi, πj) belongs tox
0 Otherwise.

The total amount of pheromone values changed is:

∆τ (s)
πiπj

(t) =
∑

x∈S

∆τ (s)
πiπj

(t)|x,

where S is the set of solutions selected for pheromone
update.

VI. COMPUTATIONAL EXPERIMENTS

In this section, we compare the original MOEA/D and
NSGA-II to their variants with probabilistic representation
based on pheromone trails, which are denoted by MOEA/D-
ACO and NSGA-II-ACO respectively.

A. Experimental Settings

In our experiments, we used two 50-city TSP instances
(KROAB50 and KRCD50) as well as two 100-city TSP
instances (KROAB100 and KROCD100) [22]. All four in-
stances are bi-objective. They are constructed by combining
two benchmark single objective TSP instances. The ACS

TABLE I

AVERAGE NUMBER OF FUNCTION EVALUATIONS USED BYMOEA/D

AND NSGA-II WITHOUT LOCAL SEARCH

Instance MOEA/D NSGA-II MOEA/D-ACO NSGA-II-ACO
KROAB50 1487523 825694 95985 67450
KROCD50 1489063 862066 95948 68460
KROAB100 2395545 1449649 49068 43800
KROCD100 2379413 1437141 49218 43610

probability decision rules are used in both algorithms. We
also compared them with the original versions of MOEA/D
and NSGA-II, in which cycle crossover is used for repro-
duction. The population size is set to 200 in all algorithms
for all instances. Bothα andβ used in probabilistic decision
rules are set to 1. The probabilityq0 in ACS decision rule
is 0.95 while the pheromone evaporation rate is 0.1. The
neighborhood size in MOEA/D is 20. We also investigated
the performance of MOEA/D and NSGA-II with local search.
The 2-opt local move, which randomly exchanges two edges
in the tour, is used to generate neighboring solutions. Each
local search procedure is stopped after examining 100 neigh-
bors. The total number of runs of each algorithm for each
instance was set to 20. In each run, each algorithm is stopped
after 50 seconds for the instances with 50 cities and 100
seconds for the instances with 100 cities. All algorithms were
implemented in C++ and run in PC computer (Intel (R) Core
(TM)2 CPU, 1.86 GHz, 2GB RAM) running Windows XP.

To measure the quality of the non-dominated solu-
tions found by MOEA/D and NSGA-II, we use the in-
verted generation distance (IGD) metric in our experi-
ments [9], which can be formulated as: IGD(P, P ∗) =
∑

u∈P∗ minv∈P dist(u, v)/|P ∗|. The IGD metric computes
the average distances of solutions in a reference setP ∗ to
the setP of resultant solutions. To measure the range of
objectives inP , we also calculate the following indicator
values: R(i)(P ) = |maxx∈P fi(x) − minx∈P fi(x)|, i =
1, . . . ,m.

B. Experimental Results and Analysis

1) MOEA/D and NSGA-II without Local Search: Fig. 1
and 2 plot the non-dominated solutions found by MOEA/D,
NSGA-II, MOEA/D-ACO and NSGA-II-ACO after 20 runs.
The average number of solutions examined by each algorithm
are reported in Table I. Table II shows the mean and
standard deviation IGD-metric values of non-dominated so-
lutions found by the four algorithms. The average differences
between the best and the worse values of the non-dominated
solutions obtained by the four algorithms on each objective
are summarized in Table III. From these results, we can make
the following observations.

• Table I shows that the average number of solutions
examined by MOEA/D-ACO and NSGA-II-ACO is
much less than the number of solutions by MOEA/D
and NSGA-II. This can be explained by the fact that the
computational complexity of constructive heuristics in
MOEA/D-ACO and NSGA-II-ACO is higher than that
of crossover and mutation operators in MOEA/D and
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Fig. 1. Plots of the non-dominated solutions found by MOEA/D and NSGA-II on KROAB50 and KROCD50
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Fig. 2. Plots of the non-dominated solutions found by MOEA/D and NSGA-II on KROAB100 and KROCD100

TABLE II

MEAN AND (STANDARD DEVIATION) OF IGD-METRIC VALUES FOR THE NON-DOMINATED SOLUTIONS FOUND BYMOEA/D(ACO) AND

NSGA-II(ACO) WITHOUT LOCAL SEARCH

Instance MOEA/D NSGA-II MOEA/D-ACO NSGA-II-ACO
KROAB50 41607.1 (4112.9) 37510.0 (2714.1) 3200.6 (190.9) 2104.1 (230.4)
KROCD50 39180.4 (2396.8) 34695.0 (2370.6) 2890.4 (97.1) 2530.7 (519.1)
KROAB100 104531.7 (5587.2) 100496.0 (3144.3) 6106.5 (257.6) 5146.6 (367.4)
KROCD100 105132.8 (4759.5) 101922.1 (4746.6) 5835.5 (351.8) 4392.3 (411.7)

TABLE III

AVERAGE RANGES(R(1)
, R(2)) OF OBJECTIVES IN THE NON-DOMINATED SOLUTIONS FOUND BYMOEA/D AND NSGA-II WITHOUT LOCAL SEARCH

Instance MOEA/D NSGA-II MOEA/D-ACO NSGA-II-ACO
KROAB50 (18119, 18819) (22391, 22052) (58120, 49713) (54800, 44947)
KROCD50 (19892, 18093) (20684, 21157) (57416, 62977) (47386, 53867)
KROAB100 (21882, 27155) (28099, 27216) (135466, 129729) (123297, 114071)
KROCD100 (26880, 27700) (25900, 24171) (124089, 120009) (114902, 110945)

NSGA-II. These results also indicate that the problem-
specific constructive heuristics are more efficient than
the standard crossover and mutation operators when
sampling offspring solutions.

• It can be seen from Fig. 1 and 2 that the non-dominated
solutions found by MOEA/D-ACO and NSGA-II-ACO
are much better than those found by MOEA/D and
NSGA-II on all 4 instances. However, both EMO al-
gorithms with probabilistic representation have similar
performance in approximating the Pareto front. NSGA-
II-ACO found better solutions in the middle parts of
the Pareto fronts while MOEA/D found better extreme

solutions close to the minimum of each objective and
achieved better distribution along the Pareto fronts.

• The mean IGD-metric values in Table II show the
MOEA/D-ACO and NSGA-II-ACO found better IGD-
values than MOEA/D and NSGA-II. These results show
that the non-dominated solutions found by two EMO
algorithms with probabilistic representation are closer
to the Pareto fronts than those found by the original
versions. We can also observe that NSGA-II-ACO per-
formed better than MOEA/D-ACO on all 4 instances in
terms of the IGD-metric.

• The results in Table III show that MOEA/D-ACO
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TABLE IV

AVERAGE NUMBER OF FUNCTION EVALUATIONS USED BYMOEA/D

AND NSGA-II WITH LOCAL SEARCH

Instance MOEA/D NSGA-II MOEA/D-ACO NSGA-II-ACO
KROAB50 35436936 36149497 8039799 5978060
KROCD50 33732260 34546771 7932084 5880482
KROAB100 58859145 62359764 4631526 4156110
KROCD100 59422778 62902484 4631292 4156555

performed better than NSGA-II-ACO in diversity. The
ranges of non-dominated fronts found by MOEA/D-
ACO are wider than those of non-dominated solu-
tions obtained by NSGA-II-ACO. The reason is that
MOEA/D-ACO specifically spends equal computational
effort in searching different parts of the Pareto fronts.
In contrast, NSGA-II-ACO does not have any bias to
search any part of the Pareto fronts.

2) MOEA/D and NSGA-II with Local Search: Fig. 3 and
4 plot the non-dominated solutions found by the four algo-
rithms using local search in 20 runs. The average numbers of
solutions examined by each algorithm are reported in Table
IV. The mean and standard deviation IGD-metric values of
non-dominated solutions found by the four algorithms are
shown in Table V. The average differences between the best
and the worse values of the non-dominated solutions obtained
by the four algorithms for each objective are summarized in
Table VI. From these results, the following observations can
be made.

• The results in Fig. 3 and 4 show that all four algorithms
with local search are able to find non-dominated solu-
tions close to the Pareto fronts. Again, NSGA-II-ACO
performed better than MOEA/D-ACO in approximating
the middle parts of the Pareto fronts. From the subfig-
ures, we can see that NSGA-II performed better than
MOEA/D in convergence towards the middle parts of
the Pareto fronts no matter if probabilistic representation
is used or not. However, it is also evident that MOEA/D
has better performance in diversity.

• The mean and standard deviation of IGD-metric values
in Table V show that MOEA/D outperformed NSGA-
II on KROAB50, KROCD50, and KROAB100, and
performed slightly worse on KROCD100 in minimizing
the closeness to the Pareto fronts. This is due to the
advantage of MOEA/D in diversifying the search along
the Pareto fronts. We can also note that MOEA/D-ACO
is inferior to MOEA/D on all instances in terms of
the IGD-metric. This suggests that MOEA/D with local
search can have excellent performance in converging
towards the Pareto fronts. However, it needs to consume
more number of function evaluations (see Table IV).

• Again, the differences between the best and worse val-
ues of the non-dominated solutions show the MOEA/D-
ACO found wider ranges of non-dominated fronts than
MOEA/D. This indicates that the use of probabilistic
representation in MOEA/D is beneficial in diversifying
the search along the Pareto fronts.

VII. C ONCLUSION

In this paper, we investigated the performance of two state-
of-the-art evolutionary multi-objective (EMO) algorithms,
namely MOEA/D and NSGA-II, when using probabilistic
representation based on pheromone trails. In both algo-
rithms, an individual is encoded by a probability model,
i.e. pheromone trails. Offspring solutions are sampled from
the probabilistic individuals and problem-specific heuristics.
We compared the four algorithms without local search -
MOEA/D, NSGA-II, MOEA/D-ACO and NSGA-II-ACO on
the multi-objective travelling salesman problem. Our exper-
imental results showed that MOEA/D-ACO and NSGA-II-
ACO performed much better than the original MOEA/D
and NSGA-II without probabilistic representation. MOEA/D-
ACO performed worse than NSGA-II in finding solutions in
the middle parts of Pareto fronts but it found more diverse
Pareto fronts. We also compared the four algorithms when
using local search. Our results showed that MOEA/D found
better IGD-metric values than MOEA/D-ACO. However, it
needs more number of function evaluations. We conclude
that probabilistic representation can improve the efficiency
of EMO algorithms in sampling high-quality solutions by
constructive heuristics and in diversifying the search along
Pareto fronts by pheromone trails. In the future, we intend
to apply EMO algorithms with probabilistic representationto
other challenging multi-objective combinatorial optimization
problems.
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Fig. 3. Plots of the non-dominated solutions found by MOEA/D and NSGA-II with local search on KROAB50 and KROCD50
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