
A Genetic Algorithm for a Workforce Scheduling
and Routing Problem

Haneen Algethami, Rodrigo Lankaites Pinheiro, Dario Landa-Silva
School of Computer Science, ASAP Research Group

The University of Nottingham, United Kingdom
Email: {psxha7, psxrp2, dario.landasilva}@nottingham.ac.uk

Abstract—The Workforce Scheduling and Routing Problem
refers to the assignment of personnel to visits across various
geographical locations. Solving this problem demands tackling
scheduling and routing constraints while aiming to minimise the
total operational cost. This paper presents a Genetic Algorithm
(GA) tailored to tackle a set of real-world instances of this
problem. The proposed GA uses a customised chromosome
representation to maintain the feasibility of solutions. The per-
formance of several genetic operators is investigated in relation to
the tailored chromosome representation. This paper also presents
a study of parameter settings for the proposed GA in relation to
the various problem instances considered. Results show that the
proposed GA, which incorporates tailored components, performs
very well and is an effective baseline evolutionary algorithm for
this difficult problem.

Keywords—Genetic Algorithms, Indirect Solution Representa-
tion, Genetic Operators, Workforce Scheduling and Routing

I. INTRODUCTION

The Workforce Scheduling and Routing Problem (WSRP)
is described as the assignment of personnel to visits, requested
by customers, across different geographical locations. This
problem combines personnel scheduling and routing problems,
both of which are known to be NP-Hard [1]. The scheduling
aspect of the problem assigns personnel to visits in order to
fulfil the work demands and other requirements. The routing
aspect of the problem consists of generating routes for the
workers to service customers across various locations within
given time-windows. The objective is to minimise operational
costs while attending the additional requirements expressed by
customers, workers and the business. A type of WSRP arises
in home health care where nurses and care workers should be
assigned to visit patients in their homes in order to carry out
some tasks, e.g. administering medication, monitoring serious
illness and unstable health status and injections. A set of real-
world home health care problem instances presented in [2] are
tackled in this paper with a tailored genetic algorithm.

Genetic Algorithms (GAs) have been shown to be effective
approaches to find solutions for scheduling problems where
exact methods are less effective, e.g. [3], [4]. GAs have also
been applied to problems combining scheduling and routing
[5], [6]. Nevertheless, to the best of our knowledge, genetic
components have not been explicitly investigated for WSRP.
A comprehensive study of genetic operators within a steady
state GA for WSRP was presented in [7]. That study showed
that achieving feasibility in solutions to this problem is a
serious challenge for most known genetic operators. Even after

incorporating a repair operator, infeasibility was a serious issue
for the steady state GA.

Given the infeasibility issue mentioned above, this paper
presents an efficient GA customised for tackling the combined
setting of scheduling and routing in WSRP. To this end, the
specific objectives of this research are:

• To develop an indirect chromosome encoding scheme
that ensures the feasibility of solutions.

• To develop cost-based genetic operators tailored for
the indirect chromosome encoding scheme.

• To carry out computational tests to evaluate the pro-
posed GA and compare the performance of the various
genetic operators considered. A total of 42 problem
instances from six different real-world home health
care scenarios were used in the experiment.

The remainder of this paper is organised as follows. Section
II reviews recent developments in designing problem-specific
chromosome representations. Then, Section III describes the
WSRP, its formulation and the instances used in this paper.
Section IV outlines the proposed GA. Section V presents the
experimental study and discusses the results. The paper is then
concluded in Section VI.

II. RELATED WORK

Research has been conducted on WSRP scenarios with
connected activities or tasks. Activities are said to be connected
when there is some precedence relation between activities or
when some activities need two or more workers. The existence
of connected activities gives raise to time-dependent activities
constraints. A study by Castillo-salazar et al. [8] applied a
mixed integer programming (MIP) solver to tackle WSRP with
time-dependent activities constraints. That study revealed that
tackling instances with 50 activities or more required consid-
erable computational time. Hence, a greedy heuristic tailored
for such scenarios with connected activities was proposed in
[9] and an MIP with decomposition method was proposed in
[10]. That decomposition method splits each problem into sub-
problems and solves each sub-problem with an MIP solver.
Then, the partial solutions are combined and the solution
to the overall problem is further improved with a heuristic
repair process. The MIP with decomposition outperformed the
greedy heuristic in 56% of all instances although using more
computational time due to the heuristic repair process.

Research has also been conducted on WSRP scenarios with
non-connected activities or tasks, i.e. problems with no time-
dependent activities constraints. An MIP with decomposition
method [11] required considerable computation time (up to
several hours) to solve larger problem instances with hundreds
of tasks, indicating the need for faster solution methods.
A Variable Neighbourhood Search (VNS) algorithm using
problem-specific neighbourhood heuristics was presented in
[2]. The VNS obtained high-quality solutions and in less
computation time for the same set of problem instances used in
[11]. The present paper considers WSRP scenarios with non-
connected activities. An initial investigation was presented in
[7] comparing various genetic operators within a simple GA
to tackle the subject problem. The components of that simple
GA included a direct representation scheme, a time-window
conflict reduction heuristic and a repair mechanism to tackle
infeasibility. Up to 39.68% of solutions in the last iteration
were found to be infeasible even with the time-window conflict
reduction heuristic. Using the repair operator was too expens-
ive in terms of computational time. Hence the motivation for
designing a GA capable of maintaining feasibility in these
WSRP scenarios with non-connected activities.

Only few works have investigated Evolutionary Algorithms
(EAs) to solve problems combining scheduling and routing.
A fuzzy GA for home health care worker scheduling was
implemented in [6]. However, in that work attention was given
to developing an algorithm to produce better solutions without
explicitly investigating the genetic elements involved. Also,
repair heuristics were used to deal with infeasible solutions.
Researchers have investigated various methods to maintain
solution quality throughout the execution of GAs by sustaining
a healthy population. Two quality measures of a healthy
population can be solution feasibility and population diversity.
Constraint handling techniques such as initialisation methods,
tailored operators and repair heuristics can be used to control
solution feasibility while maintaining a diverse population.

Two main types of chromosome encoding techniques exist
in the literature: direct an indirect representations. A direct rep-
resentation can be a vector that directly encodes the solution,
e.g. a simple permutation of visits, jobs, operations, etc. [12].
Direct representations are easy to implement and can produce
a large number of encoded solutions in the search space. How-
ever, constraints are usually not handled by the representation,
thus it can produce infeasible solutions and hence complicate
the search [13]. An indirect representation encodes an abstract
form of the solution that requires an encoding mechanism prior
to the chromosome decoding in order to obtain a solution.
Indirect representations often use a straightforward procedure
to transform a chromosome into a candidate solution [13]. The
level of abstraction is chosen in order to balance between
genotype simplicity and fast encoding/decoding. One main
advantage of indirect representations is that problem-specific
information can be incorporated into the design of the encoding
scheme, thus constraints can be handled by the representation.
As a result, smaller and simpler search spaces are produced.
For example, special encoding schemes have been developed
to exploit problem-specific knowledge when tackling a highly
constrained real-world problem such as nurse rostering [14].

The study in [3] investigated different solution representa-
tion schemes with different degrees of directness in scheduling

problems. The algorithms with less direct solution representa-
tions required less computation time than algorithms with dir-
ect representations. It was also shown that indirect representa-
tions can achieve better results in scenarios with large search
spaces. Similarly, [4] described an encoding scheme designed
for machine selection and operation sequencing that respects
all constraints while implementing different crossovers. The
encoding scheme ensured the generation of a high-quality
initial population with better performance when compared to
previously published algorithms. Recent work on WSRP also
suggests that incorporating problem-specific knowledge into
the representation helps to maintain the feasibility of solutions
[2], [7]. Indirect representation techniques have also been
used in [15] where a WSRP was tackled with particle swarm
optimisation. However, in that work, solutions still required
improvements with a repair operator.

The intended contribution of this work is to present
an efficient customised chromosome representation combined
with problem-specific genetic operators for tackling real-world
WSRP instances. To the best of our knowledge, such approach
has not yet been proposed in the literature. The proposed
solution encoding is capable of producing competitive feasible
solutions for a highly constrained WSRP. The paper also
presents a study of genetic operators using the proposed solu-
tion encoding. Eight well-known genetic operators plus five
proposed tailored operators are implemented. The proposed
GA harnesses the power of these genetic components to solve
the WSRP instances considered.

III. PROBLEM DESCRIPTION

The goal in the WSRP tackled here is to generate a daily
plan of visits by workers to customers at different locations.
There is a set of workers W = {w1, w2, . . . , w|W |} and a set
of tasks T = {t1, t2, . . . , t|T |} requested by customers. The
assignment of a worker to travel to a customer location to
perform a task is called a visit. Note that some tasks might
require more than one worker, hence a task might generate
more than one visit. In particular, this paper tackles a Home
Health Care (HHC) planning problem in which workers are
nurses, doctors, health carers, etc. and customers are patients
receiving health care at their home. Several features are import-
ant in solutions to HHC scenarios, such as as distance travelled,
assigning all visits, customers and workers requirements and
preferences [16]. Thus, it is desirable that a good quality plan
for a HHC planning problem has all those features while
minimising operational cost. Please refer to [11] for details
of the MIP model for the WSRP tackled here.

Seven problem datasets from real-world HHC scenarios
are tackled in this paper. These datasets have been provided
by an industrial partner and correspond to HHC scenarios in
the UK. Each dataset is composed of seven problem instances
for a total of 42 instances. Table I shows the main features
of each problem instance and the mean for all instances in
each dataset. These features are: the number of visits, the
number of workers and the number of geographical areas (visit
locations are grouped into areas). Note that dataset A has the
smallest instances while instances in dataset B are larger and
the instance size increases with D, E and F. Problem instances
in dataset C are different as they have a much larger number
of workers.

Table I. MAIN FEATURES OF THE 42 HOME HEALTH CARE PROBLEM INSTANCES.

A B
01 02 03 04 05 06 07 mean 01 02 03 04 05 06 07 mean

Number of Visits 31 31 38 28 13 28 13 26 36 12 69 30 61 57 61 46
Number of Workers 23 22 22 19 19 21 21 21 25 25 34 34 32 32 32 30

Number of Areas 6 4 5 4 4 8 4 5 6 5 7 5 8 8 7 7

C D
01 02 03 04 05 06 07 mean 01 02 03 04 05 06 07 mean

Number of Visits 177 7 150 32 29 158 6 80 483 454 585 520 538 610 611 543
Number of Workers 1037 618 1077 979 821 816 349 813 164 166 174 174 173 174 173 171

Number of Areas 8 4 7 8 6 11 6 7 13 12 15 15 15 15 15 14

E F
01 02 03 04 05 06 07 mean 01 02 03 04 05 06 07 mean

Number of Visits 418 425 462 351 461 301 498 416 1211 1243 1479 1448 1599 1582 1726 1470
Number of Workers 243 244 267 266 278 278 302 268 805 769 898 789 889 783 1011 901

Number of Areas 13 14 15 13 15 13 16 14 45 46 54 47 59 44 64 51

Table II. OBJECTIVES AND CONSTRAINTS IN THE WSRP.

Objectives Hard Constraints Soft Constraints

Travelling Cost Skills Requirements Unassigned Visits
Payment Cost Time-Conflicts Area Availability

Maximum Hours Time Availability
Preferences
(skills,worker,area)

A solution to the WSRP considered here requires all visits
to be assigned while satisfying some requirements as follows.
Assigning visits must be done according to workers skills,
time-conflicts must be avoided, workers’ maximum working
hours must not be exceeded. Also, workers time and area
availability as well as preferences expressed by workers’
and customer’ should be observed. Such preferences include
workers preferring to work in certain geographical areas,
customers requiring workers with special skills and customers
preferring certain workers. A time-conflict occurs when a
worker is assigned to visits overlapping in time. Table II lists
the WSRP objectives and constraints considered here. From the
hard constraints in the table, skills requirements and maximum
hours are enforced by the assignment of only suitable workers
to visits. The time-conflicts hard constraint and all the soft
constraints are dealt within the objective function.

For a solution S, the objective function includes the opera-
tional cost and the penalty cost due to the non-satisfaction of
requirements. The operational cost is given by O(S) = c+ d
with payment cost represented by c and travelling cost repres-
ented by d, i.e. wages plus the journeys cost for all workers.
The penalty cost includes the non-satisfaction of preferred
skills (ρs), preferred workers (ρw) and preferred areas (ρa).
This is given by P (S) = 3V − ρs− ρw− ρa. The value 3V is
used because the values of (ρs), (ρw) and (ρa) can be between
0 and 1. The number of assignments or visits is V . The penalty
cost also includes the violation of workers availability in terms
of area (ψa) and time (ψt). This is given by A(S) = ψa +ψt.
Finally, the number of unassigned visits (ω) and the number
of time-conflicts (φ) are also part of the penalty cost.

f(S) = λ1×O(S)+λ2×P (S)+λ3×A(S)+λ4ω+λ5φ (1)

Then, the objective function for a solution S is given
by equation (1). Each of the five terms is multiplied by a

coefficient (λ1, . . . , λ5) to enforce levels of priority with λ5
being the highest and λ1 the lowest. Hence, the occurrence of
time-conflicts (φ) carries a higher penalty than the occurrence
of unassigned visits (ω) and so on. Note that there are two
terms in the objective function associated to the area in which
workers are assigned to visit. If a worker is assigned outside
his/her available area, this is accounted through ψa in A(S).
If a worker is not assigned to one of his/her preferred areas,
this is accounted through ρa in P (S).

IV. PROPOSED GENETIC ALGORITHM (GA)

An effective baseline GA to tackle the HHC problem in-
stances in the previous section is described here. The proposed
GA uses an indirect chromosome encoding and incorporates
various genetic operators including some new problem-specific
ones that utilise heuristics to generate improved offspring. The
proposed GA works as follows. First, an initial population of
N individuals (one-day plans) is created based on the indirect
chromosome encoding to ensure solutions feasibility. At the
start of each generation, 9N/20 pairs of parent individuals
are selected using binary tournaments. With some probability,
one of the eight studied crossovers is applied to each pair
of parents to generate two offspring. With some probability,
each offspring goes through one of the five studied mutation
operators. At the end of each generation, the population is
updated using an elitism strategy. The N/10 best individuals
from the current population are kept and along with the 9N/20
offspring individuals generated, the new population of N
solutions is formed. The indirect chromosome encoding and
genetic operators are described next.

A. Indirect Chromosome Encoding

Each individual in the population is represented by a vector
of integers of length V (number of visits). Each position in
the vector corresponds to a visit and the integer represents the
worker assigned to that visit. The visits in the chromosome are
sorted in a non-decreasing order of their start time. A worker
suitability list (wsl) is created for each visit. For each visit, wsl
contains suitable workers only and ranked by a penalty scoring
mechanism. The penalty score of each worker is calculated by
estimating the impact of assigning that worker to that visit,
considering incurred operational cost and penalty cost due to
preferences and availability restrictions. The lower the penalty
score the better. Then, the first worker in the wsl for a gene is

the most suitable one for that visit, followed by the next best
suitable worker and so on. Figure 1 illustrates an example of
the indirect chromosome encoding for a day plan with V = 7
visits. Each worker wj has a penalty score according to their
suitability to work in visit vk, where k = 1, 2 . . . , V . Each
visit has a wsl with the four most suitable workers and the
best worker (lowest penalty score) at the top. On the right of
the figure, the chromosome shows the encoded solution and
gives an index of a worker in the wsl for each visit. Below the
chromosome, the decoded solution shows the actual worker
assigned to each visit.

Fig. 1. Example of the Indirect Chromosome Encoding Scheme.

Another key usability of the wsl is time-conflict reduction.
When a worker is being considered for a specific visit, the
solution is evaluated to find out if time-conflicts arise. The
initial population for the GA is created randomly by generating
a vector of V integers between 0 and Lk − 1 where Lk

is the length of wsl for visit vk. If a time-conflict occurs
because of the worker randomly assigned to visit vk, the next
worker in the wsl for that visit is considered until a suitable
worker is found with no time-conflicts arising. This time-
conflict reduction mechanism can be illustrated with Figure 1
as follows. Time-conflicts that arise when processing the visits
are indicated with ∗. For example, w2 is assigned to both v1
and v3 while w3 is assigned to v2. No time-conflict arises
because v1 and v3 do not overlap. However, the chromosome
assigns w2 to v4 and a time-conflict occurs as v3 overlaps with
v4. Then, the next most suitable worker that does not provoke
a time-conflict, in this case w5, is assigned to v4. Hence,
the wsl decoder in this indirect chromosome encoding scheme
helps to assign suitable workers to visits while avoiding time-
conflicts. Note that the penalty scores are not used during the
generation of initial solutions, they are used for the tailored
genetic operators described below.

B. Genetic Operators

Several crossover and mutation operators are implemented
here. Some of these operators are taken from the literature
and others are specially designed for the problem and solu-
tion representation considered here. Four crossover operat-
ors are taken from the literature: Single Point (1PX), Two
Point (2PX), Uniform (UX) and Half Uniform (HUX) [17].
Four mutation operators are taken from the literature: Swap,
Inversion, Flip and Scramble [18]. Four problem-specific
crossover operators are designed here: Cost-Based Greedy
(CGX), Partially Matched Greedy (PMGreedyX), Flat-Costs
(FCX) and Partially Matched Flat-Costs (PMFCX). Also, one

problem-specific mutation operator is designed here: Zero-
Flip Mutation. The indirect chromosome encoding scheme
described above allows to implement all genetic operators
while maintaining the feasibility of solutions. The problem-
specific crossover and mutation operators developed here are
described next.

Algorithm 1 Cost-Based Greedy Crossover (CGX)
Require: Pair of parent individuals p1 and p2
Ensure: Pair of offspring individuals o1 and o2

1: o1, o2 ← new empty individuals
2: o′1, o

′′
1 ← temporary individuals

3: for i← 1 to V do
4: o′1 ← o1 ∪ pi1
5: o′′1 ← o1 ∪ pi2
6: if f(o′1) < f(o′′1) then
7: o1 ← o1 ∪ pi1
8: o2 ← o2 ∪ pi2
9: else

10: o2 ← o2 ∪ pi1
11: o1 ← o1 ∪ pi2
12: end if
13: end for

The Cost-Based Greedy Crossover (CGX) is essentially
a variation of a local search constructive heuristic that uses
the objective function to transfer the best genes from each
parent to one of the offspring individuals. Algorithm 1 shows
how this CGX crossover operator works. The operator goes
through each of the V positions in the chromosome. For each
ith position, it copies offspring o1 plus the corresponding gene
from each parent respectively to o′1 and o′′1 (steps 4 and 5).
Then, the parent’s gene that results in a better individual is
actually added to offspring o1 while the other parent’s gene
is added to offspring o2 (steps 6 to 12). Then, CGX produces
one offspring (o1) with the best parent’s gene selected at each
step and one offspring (o2) with the other parent’s gene.

The Partially Matched Greedy Crossover (PMGreedyX)
is an extension of the well-known partially matched crossover
(PMX). Algorithm 2 shows how PMGreedyX works. Basically,
it selects a crossover segment (steps 4 and 5) to exchange genes
as usual (steps 17 to 20) and applies the same mechanism as
CGX outside the crossover segment (steps 6 to 16).

The Flat-Costs Crossover (FCX) operator is an extension
of the constructive heuristic proposed by [2] that successfully
obtained good results for WSRP. Instead of computing the
objective function f(S) for the partial solution as in the CGX
operator, the FCX crossover uses the penalty scores in the wsl.
Algorithm 3 shows how this FCX crossover operator works.
The operator goes through each of the V positions in the
chromosome. For each ith position, the crossover selects the
better scored worker from the two parents for offspring o1
and the other worker for offspring o2. The FCX operator also
produces one offspring (o1) with the best parent’s gene selected
at each step and one offspring (o2) with the other parent’s gene,
but a ‘flat-cost’ is used instead of the full f(S) calculation.

Like PMGreedyX, the Partially Matched Flat-Costs
Crossover (PMFCX) is an extension of the well-known PMX
crossover, but in this case the mechanism applied outside the
crossover segment is the one used in FCX. Due to limited

Algorithm 2 Partially Matched Greedy Crossover (PM-
GreedyX)
Require: Pair of parent individuals p1 and p2
Ensure: Pair of offspring individuals o1 and o2

1: o1, o2 ← new empty individuals
2: o′1, o

′′
1 ← temporary individuals

3: rand := Number chosen at random from [0,1)
4: Point1 := 2 + |rand ∗ (V − 4)|
5: Point2 := Point1 + 2 + |rand ∗ (V − Point1)− 2)|
6: for i← 1 to Point1 − 1 and i← Point2 + 1 to V do
7: o′1 ← o1 ∪ pi1
8: o′′1 ← o1 ∪ pi2
9: if f(o′1) < f(o′′1) then

10: o1 ← o1 ∪ pi1
11: o2 ← o2 ∪ pi2
12: else
13: o2 ← o2 ∪ pi1
14: o1 ← o1 ∪ pi2
15: end if
16: end for
17: for i← Point1 to Point2 do
18: o2 ← o2 ∪ pi1
19: o1 ← o1 ∪ pi2
20: end for

Algorithm 3 Flat-Costs Crossover (FCX)
Require: Pair of parent individuals p1 and p2. The set of wsl

for all visits, Mi,j is the penalty score for the jth worker
in the wsl for visit vi.

Ensure: Pair of offspring individuals o1 and o2.
1: o1, o2 ← new empty individual
2: for i← 1 to V do
3: if (Mi,pi

1
< Mi,pi

2
) then

4: o1 ← o1 ∪ pi1
5: o2 ← o2 ∪ pi2
6: else
7: o2 ← o2 ∪ pi1
8: o1 ← o1 ∪ pi2
9: end if

10: end for

space, the pseudocode for PMFCX is omitted from this paper.
Besides, as it will be discussed in the results section, this
operator did not perform very well.

The Zero-flip Mutation operator simply replaces the
worker currently assigned to a visit by the most suitable worker
for that visit, regardless of time-conflicts. That is, the integer
in position i of the chromosome is changed to 0 indicating
that the first worker in wsl is now assigned to visit vi.

V. EXPERIMENTAL STUDY AND RESULTS

Experiments were conducted to assess the performance
of the proposed GA on the 42 real-world WSRP scenarios
from Table I. The machine used was an I7 4-core with hyper-
threading and 16GB, the code was implemented in Java.

The first set of experiments was to identify the best genetic
operators and parameter settings for each problem instance
except those in dataset F (the largest ones). The different

Table III. GA PARAMETER SETTINGS

Variable Value

Population Size N 100, 250 and 500
Mutation Rate Pm 1%, 10%, 30%, 40% and 50%
Crossover Rate Pc 10%, 50% and 100%
Stopping Criterion 5 minutes
Selection Strategy Elitist

parameter settings in Table III were tested. This means that
for each of the 35 problems instances in groups A to E, there
were 1800 configurations (8 crossovers × 5 mutations × 45
parameter settings). Each configuration used the same initial
population and was executed 4 times, each one ran for 5
minutes. This means a massive amount of computation time
but since it was possible to execute parallel runs, the total
computation time was drastically reduced but still accounted
for many days. Since each mutation operator was combined
with one crossover operator at a time, in order to compare
results for each dataset, average values of runs were computed.
These values were normalised because of the different scales
in the results for the different groups of problem instances. The
observations made in these experiments informed the setting
of parameters for the F problem instances.

The performance of each mutation operator is shown in
Figure 2. The x axis presents the instance sets while the y
axis presents the average gap to the best-known solutions. For
each mutation operator, a point in the graph corresponds to the
average gap considering all instances in the corresponding set.
The dash line joining the 5 points is only used to visualise the
overall performance of the mutation operator across all sets.
Fig. 2 shows that for all instances the Flip mutation operator
produced clearly better results on sets A, B and C. It also
performed better on sets D and E but by a smaller margin.
The Flip mutation operator is the only one that introduces new
genes (using the wsl) to the chromosome encoding. The other
mutation operators only reallocate existing genes. This may be
the contributing factor that introduces diversity to enhance the
overall performance of the Flip mutation. The much better
results obtained by the Flip mutation on sets A, B and C
might be because the algorithm was able to perform many
more generations than for sets E and F. This increased the
algorithm’s ability to bring new genes into the population and
boost its performance.

In order to investigate whether certain mutation rate is
better overall, aggregated results are now presented in Figure
3 for each mutation rate on each set of instances. Setting an
appropriate mutation rate helps a GA not to get stuck in local
optima. The order of the mutation rates in Figure 3 for sets A
and B is inverted with respect to the order for sets E and F,
with set C being the inflection point. For the smaller instances,
a high mutation rate proves to be considerably more effective
than a low mutation rate. However, as the instances grow in
size, the opposite happens, with a low mutation rate being
more effective. The reason for this is that a high mutation rate
reduces the convergence rate of the algorithm but increases
diversity in the population [19]. Hence, on the long term,
having a high mutation rate aids the overall performance of
the GA. Although the algorithm is converging slower, it is
exploring a wider region of the search space and avoiding

A B C D E

0

0.2

0.4

0.6

0.8

G
ap

to
B

es
t-

K
no

w
n

V
al

ue

Flip Inversion Scramble
Swap Zero Flip

Fig. 2. Performance Comparison Between the Mutation Operators.

A B C D E

0

0.1

0.2

0.3

G
ap

to
B

es
t-

K
no

w
n

R
at

e

Pm =1 % Pm = 10% Pm = 30%
Pm = 40% Pm = 50%

Fig. 3. Performance Comparison Between the Mutation Rates Pm.

local optima with a higher probability. A low mutation rate,
however, helps the algorithm to converge much faster, but the
likelihood of getting stuck into local optima is higher. Given
the time limit set for each run in these experiments, many
more generations take place for sets A and B than for sets
D and E. Hence, the highest mutation rates provides better
results on set A and B and the lowest mutation rate provides
better results on sets D and E. Then, on smaller problem
instances, higher mutation rates give better results because
the increase in diversity allows the algorithm to avoid local
optima. On larger problem instances, lower mutation rates
give better results because with few generations, speed of
convergence is more important than diversity. Perhaps with
much longer computation time, higher mutation rates could
produce better results on sets D and E but such experiments
were not conducted here.

The performance of each crossover operator is shown in
Figure 4. The figure shows that two of the four proposed
crossover operators, CGX and PMGreedyX, outperformed
well-known crossovers such as 1-point and UX. These results
support the idea of having problem-specific operators to help
the GA to converge to better solutions. These cost-based
crossover operators CGX and PMGreedyX exploit domain-
knowledge to provide improved solutions. Figure 4 shows that
the performance of the crossover operators also depends on

A B C D E

0

0.2

0.4

0.6

0.8

1

G
ap

to
B

es
t-

K
no

w
n

V
al

ue

FCX CGX HUX PMFCX
PMGreedyX 1PX 2PX UX

Fig. 4. Performance Comparison Between the Crossover Operators.

the problem size. For sets A and B, CGX obtained the best
results. Since problem instances in sets A and B have less
number of visits, the greedy evaluation in CGX is fast and
helps in the convergence to better solutions. Also on sets A
and B, PMGreedyX performed better than FCX and PMFCX
but worse than CGX. This might be a consequence of the
additional time that this PMX extended crossover spends on
constructing an offspring compared to CGX. For the larger
problem instances in sets D and E, FCX performed the best,
while it performed worse than other operators in sets A, B
and C. This seems to indicate that instead of the greedy
evaluation, using the pre-calculated penalty scores in wsl is
more effective in larger problems but it reduces the search
space too much in smaller problem instances. However, one
of the proposed operators with pre-calculated penalty scores,
PMFCX, performed the worse across all sets. This might be
an indication that combining PMX with FCX to construct an
offspring is not too successful. The flat-cost evaluation affected
the production of offspring with an increase in the number of
generations. Thus, estimated costs were not accurate enough
in the case of PMFCX. Note that for the set C, PMGreedy
obtained slightly better results that CGX. This might be due
to the much larger number of workers in the problem instances
of set C. This could be an advantage for PMXGreedy when
exchanging workers between the two crossover points based
on the greedy evaluation.

Figure 5 shows the comparison between crossover rates
across sets. Results indicate that a low crossover rate of 10%
was not successful. For the higher crossover rates of 50%
and 100%, the following observations are made. For larger
problems (longer chromosomes) in sets D and E, the highest
crossover rate is better. But for smaller problems in sets A,
B and C, a rate of 50% gives better results. The number of
generations may also play a role in these results. A lower
crossover rate with slower convergence might be fine for
smaller instances given the limited run-time. However, for
larger instances, the number of generations is lower hence
higher crossover rate could help to speed up the convergence.

Fig. 6 shows the comparison between population sizes for
all sets. For the smaller problems in sets A, B and C, larger
population sizes give better results. For the larger problems
in sets D and E, the smaller the population size the better
results obtained. The size of the problem instance is of course

A B C D E

0

0.1

0.2

0.3

G
ap

to
B

es
t-

K
no

w
n

R
at

e

Pc = 10 % Pc = 50 % Pc = 100 %

Fig. 5. Performance Comparison Between the Crossover Rates Pc.

A B C D E

0

5 · 10−2

0.1

0.15

0.2

0.25

G
ap

to
B

es
t-

K
no

w
n

R
at

e

N = 100 N = 250 N = 500

Fig. 6. Performance Comparison Between the Population Sizes N .

reflected in the length of the chromosome. This means that in
smaller problem instances, a larger population helps to have
more diversity, while in larger problem instances the longer
chromosomes means less need for a larger population.

Based on the above findings, the combinations of genetic
operators and their corresponding rates proposed here are as
follows for each set of problem instances:

A,B: Flip, Pm = 50 %, GCX, Pc= 50%, N= 500.

C: Flip, Pm = 30 %, GCX, Pc= 50%, N= 500.

D,E: Flip, Pm = 10 %, FCX, Pc= 100%, N= 100.

Using the above settings, further experiments were con-
ducted for all problem instances but with longer computation
times. The experiments for the largest problem instances in set
F were executed using the same settings as for sets D and E.
The computation times used were as follows: 15 minutes per
run for sets A, B and C; 60 minutes per run for sets D and
E; 8 hours per run for set F. Note that due to the much longer
run-time for instances in sets of D, E and F, the population
size was increased to N = 250 to allow more exploration.

Table IV presents the average best results obtained with the
proposed baseline GA using the settings recommended above.
Results from the GA are compared to the MIP decomposition
method in [11] and the VNS algorithm in [2]. For each problem
instance, the table shows the solution quality f(S) obtained by

each method and the computation time in seconds Cpt in which
the best solution by the method was found. When available,
the optimal solution quality and corresponding computation
time are also shown. These optimal results were obtained with
an MIP solver solving the whole problem instance as reported
in [20]. For each problem instance, the best known solution
quality value (this is of course the optimal solution when
available) and best computation time are highlighted in bold.

The results in Table IV indicate that for the smaller
problems in sets A, B and C, the proposed GA is quite
competitive matching the best known results for many of those
instances. The VNS seems to provide better overall results but
the GA outperforms the MIP decomposition method. For some
of these small problem instances the GA spends considerable
more time than the other methods, however, still below 15
minutes which is quite acceptable. The MIP decomposition
method solves sub-problems to optimality but the integrated
solutions are not optimal. Nevertheless, the MIP decomposition
obtains good quality solutions in short computation times.

For the largest problems instances in sets D and F, the
proposed GA performed better than the MIP decomposition
method (results with the VNS were not available). For in-
stances in set D, the GA did not match the results from the
VNS but it got very close and the GA outperformed the MIP
decomposition in those instances. It is argued that the proposed
baseline GA obtained the better results on the largest instances
in sets E and F because of the tailored indirect chromosome
encoding scheme and genetic operators.

VI. CONCLUSIONS

This study was undertaken to design problem-specific
elements on a Genetic Algorithm (GA) to tackle a Workforce
Scheduling and Routing Problem (WSRP) and evaluate their
offline tuning. An indirect chromosome encoding scheme was
designed to produce and maintain feasible solutions throughout
the evolutionary process. In addition to four crossover and four
mutation operators taken from the literature, four crossover
operators and one mutation operator were designed for the
subject problem. Hence, eight crossover operators and five
mutation operators were implemented in this study.

Comprehensive computational experiments were conducted
using various settings of crossover rate, mutation rate and
population size, for each combination of one crossover op-
erator and one mutation operator. A total of 35 real-world
problem instances, grouped into five sets, were used for these
experiments in order to identify the recommended GA settings
for each set of problems. The results from this experiments
showed that the indirect chromosome encoding is effective
in maintaining the feasibility of solutions and that some of
the proposed crossover operators helped the GA to perform
well depending on the size of the problem instances. Among
the mutation operators implemented, the flip mutation made a
significant difference improving the performance of the GA,
particularly on smaller instances.

Following the experiments on the GA settings, further
experiments with longer computation times were executed
using the identified GA settings. Also, another set of 7 problem
instances was used, these are the largest of all problems. Res-
ults obtained with the proposed baseline GA were compared

Table IV. COMPARISON OF OVERALL RESULTS FOR ALL SOLUTION METHODS ON ALL PROBLEM INSTANCES.

Optimal GA VNS MIP DECOMP. Optimal GA VNS MIP DECOMP.
f(S) Cpt f(S) Cpt f(S) Cpt f(S) Cpt f(S) Cpt f(S) Cpt f(S) Cpt f(S) Cpt

A

01 3.5 7.0 3.5 4.5 3.5 3.0 5.7 3.7

D

01 - - 171.7 3414.5 170.3 3036.2 496.4 1060.0
02 2.5 8.0 2.5 20.6 2.5 0.3 4.5 3.6 02 - - 168.2 3456.5 163.9 2840.8 372.9 1192.1
03 3.0 14.0 3.2 169.2 3.0 29.3 10.7 3.7 03 - - 181.7 3473.7 178.2 3172.8 3213.3 1209.0
04 1.4 5.0 1.4 238.5 1.4 6.9 3.1 2.9 04 - - 170.2 3438.0 167.1 3313.8 418.9 3005.1
05 2.4 1.0 2.4 1.3 2.4 0.1 3.5 1.8 05 - - 162.0 3499.8 161.1 2818.5 243.9 1306.7
06 3.5 5.0 3.5 90.0 3.6 29.5 3.7 2.4 06 - - 178.4 3532.3 177.4 2996.0 1411.3 1222.0
07 3.7 1.0 3.7 0.9 3.7 0.1 4.8 1.6 07 - - 178.7 3465.3 177.9 2930.4 753.3 1361.9

B

01 1.7 21.0 1.7 449.0 1.7 156.5 1.8 8.1

E

01 - - 1.2 3435.6 - - 33.0 8408.0
02 1.8 2.0 1.8 0.8 1.8 0.0 1.9 4.3 02 - - 1.2 3512.8 - - 26.0 12448.4
03 1.7 6003.0 1.8 444.7 1.7 473.2 2.1 32.9 03 - - 1.2 3536.2 - - 29.0 20746.6
04 2.1 25.0 2.1 118.2 2.1 9.0 2.2 15.2 04 - - 1.3 3511.8 - - 28.5 15190.5
05 1.8 585.0 1.9 328.2 1.8 135.3 4.7 25.3 05 - - 2.2 3460.7 - - 270.1 32619.2
06 1.6 184.0 1.7 354.0 1.6 194.3 2.5 24.1 06 - - 1.3 3350.1 - - 24.6 24212.1
07 1.8 300.0 1.8 315.9 1.8 305.0 4.1 23.6 07 - - 1.7 3502.1 - - 427.8 51057.3

C

01 - - 118.0 939.5 114.2 301.3 905.0 211.6

F

01 - - 2109.0 28628.6 - - 64305.1 3446.4
02 3.2 6.0 3.2 0.0 3.2 0.0 3.6 0.6 02 - - 2116.4 28418.7 - - 73291.2 1111.0
03 - - 105.0 861.2 103.5 550.3 1186.3 26.3 03 - - 609.4 28591.2 - - 115235.2 4555.1
04 11.1 90.0 11.1 5.2 11.2 0.9 81.3 3.1 04 - - 1331.5 28256.4 - - 102994.2 4219.2
05 12.3 55.0 12.5 96.7 12.3 0.3 68.9 1.1 05 - - 200.6 28667.2 - - 101438.2 6156.5
06 - - 142.0 847.0 140.4 323.5 3102.3 47.0 06 - - 627.2 28181.4 - - 76007.1 9695.6
07 4.3 1.0 4.3 0.0 4.3 0.0 5.3 0.2 07 - - 3499.1 28262.4 - - 176540.6 3832.8

to published results. The comparison showed that the GA
is capable of finding some best-known results for the larger
problem instances and matching the best-known results for
some of the smaller ones. Hence, the proposed baseline GA
with problem-specific components is an effective evolutionary
approach to solve the highly-constrained WSRP scenarios
considered. Future work will aim to improve the performance
of this baseline GA.

REFERENCES

[1] R. Lassaigne and M. De Rougemont, Logic and complexity. Springer
Science & Business Media, 2012.

[2] R. L. Pinheiro, D. Landa-Silva, and J. Atkin, “A variable neighbourhood
search for the workforce scheduling and routing problem,” Proceedings
of the 7th World Congress on Nature and Biologically Inspired Com-
puting (NaBIC 2015), December 2015.

[3] T. Urlings, R. Ruiz, and F. S. Serifoglu, “Genetic algorithms with
different representation schemes for complex hybrid flexible flow line
problems,” International Journal of Metaheuristics, vol. 1, no. 1, pp.
30–54, 2010.

[4] G. Zhang, L. Gao, and Y. Shi, “An effective genetic algorithm for the
flexible job-shop scheduling problem,” Expert Systems with Applica-
tions, vol. 38, no. 4, pp. 3563–3573, 2011.

[5] P. Cowling, N. Colledge, K. Dahal, and S. Remde, “The trade off
between diversity and quality for multi-objective workforce schedul-
ing,” in Evolutionary Computation in Combinatorial Optimization, ser.
Lecture Notes in Computer Science, J. Gottlieb and G. Raidl, Eds.
Springer Berlin Heidelberg, 2006, vol. 3906, pp. 13–24.

[6] M. Mutingi and C. Mbohwa, “Health-care staff scheduling in a fuzzy
environment: A fuzzy genetic algorithm approach,” in Conference
proceedings (DFC Quality and Operations Management). International
Conference on Industrial Engineering and Operations Management,
2014.

[7] H. Algethami and D. Landa-Silva, “A study of genetic operators for
the workforce scheduling and routing problem,” MIC 2015 conference
proceedings, 2015.

[8] J. A. Castillo-Salazar, D. Landa-Silva, and R. Qu, “Workforce schedul-
ing and routing problems: literature survey and computational study,”
Annals of Operations Research, pp. 1–29, 2014.

[9] J. A. Castillo-Salazar and D. Landa-Silva, “A greedy heuristic for
workforce scheduling and routing with time-dependent activities con-
straints,” Proceedings of the 4th International Conference on Operations
Research and Enterprise Systems (ICORES 2015), pp. 367–375, January
2015.

[10] W. Laesanklang, D. Landa-Silva, and J. A. Castillo-Salazar, “Mixed
integer programming with decomposition for workforce scheduling and
routing with time-dependent activities constraints,” in Proceedings of
the 5th International Conference on Operations Research and Enter-
prise Systems (ICORES 2016), February 2016, pp. 330–339, published
in: Proceedings of the 5th International Conference in Operations
Research and Enterprise Systems. ISBN 9789897581717, pp. 330-339.

[11] W. Laesanklang, R. Pinheiro, H. Algethami, and D. Landa-Silva,
“Extended decomposition for mixed integer programming to solve a
workforce scheduling and routing problem,” in Operations Research
and Enterprise Systems, ser. Communications in Computer and In-
formation Science, D. de Werra, G. H. Parlier, and B. Vitoriano, Eds.
Springer International Publishing, 2015, vol. 577, pp. 191–211.

[12] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-
shop scheduling problems using genetic algorithmsi. representation,”
Computers & industrial engineering, vol. 30, no. 4, pp. 983–997, 1996.

[13] F. Rothlauf, “Representations for genetic and evolutionary algorithms,”
Studies in Fuzziness and Soft Computing, vol. 104, pp. 9–32, 2003.

[14] U. Aickelin and K. A. Dowsland, “An indirect genetic algorithm for a
nurse-scheduling problem,” Computers & Operations Research, vol. 31,
no. 5, pp. 761 – 778, 2004.

[15] C. Akjiratikarl, P. Yenradee, and P. R. Drake, “Pso-based algorithm for
home care worker scheduling in the {UK},” Computers & Industrial
Engineering, vol. 53, no. 4, pp. 559–583, 2007.

[16] D. Mankowska, F. Meisel, and C. Bierwirth, “The home health care
routing and scheduling problem with interdependent services,” Health
Care Management Science, vol. 17, no. 1, pp. 15–30, 2014.

[17] S. Hartmann, “A competitive genetic algorithm for resource-constrained
project scheduling,” Naval Research Logistics (NRL), vol. 45, no. 7, pp.
733–750, 1998.

[18] S. N. Sivanandam and S. N. Deepa, “Terminology and operators of ga,”
in Introduction to genetic algorithms, 1st ed. Springer, 2007.

[19] E. K. Burke, J. P. Newall, and R. F. Weare, “Initialization strategies
and diversity in evolutionary timetabling,” Evolutionary computation,
vol. 6, no. 1, pp. 81–103, 1998.

[20] W. Laesanklang and D. Landa-Silva, “Mixed integer programming with
decomposition to solve a workforce scheduling and routing problem,”
Proceedings of the 4th International Conference on Operations Re-
search and Enterprise Systems (ICORES 2015), pp. 283–293, January
2015.

