
S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): Developmentsin
Computational Models (DCM 2010)
EPTCS 26, 2010, pp. 135–146, doi:10.4204/EPTCS.26.13

c© G. Terrazas, D. Landa-Silva & N. Krasnogor
This work is licensed under the
Creative Commons Attribution License.

Towards the Design of Heuristics by Means of Self-Assembly

German Terrazas
ASAP Group, School of Computer Science

University of Nottingham, UK

gzt@cs.nott.ac.uk

Dario Landa-Silva
ASAP Group, School of Computer Science

University of Nottingham, UK

jds@cs.nott.ac.uk

Natalio Krasnogor
ASAP Group, School of Computer Science

University of Nottingham, UK

nxk@cs.nott.ac.uk

The current investigations on hyper-heuristics design have sprung up in two different flavours: heuris-
tics that choose heuristics and heuristics that generate heuristics. In the latter, the goal is to develop a
problem-domain independent strategy to automatically generate a good performing heuristic for the
problem at hand. This can be done, for example, by automatically selecting and combining different
low-level heuristics into a problem specific and effective strategy. Hyper-heuristics raise the level of
generality on automated problem solving by attempting to select and/or generate tailored heuristics
for the problem at hand. Some approaches like genetic programming have been proposed for this. In
this paper, we explore an elegant nature-inspired alternative based on self-assembly construction pro-
cesses, in which structures emerge out of local interactions between autonomous components. This
idea arises from previous works in which computational models of self-assembly were subject to
evolutionary design in order to perform the automatic construction of user-defined structures. Then,
the aim of this paper is to present a novel methodology for theautomated design of heuristics by
means of self-assembly.

1 Introduction

A hyper-heuristicis a search methodology that selects and combines heuristics to generate good solutions
for a given problem. The design of a hyper-heuristic is important and we believe that adapting natural
construction models is a suitable approach to consider. Cooperative construction processes capable of
orchestrating adequate building blocks to achieve efficient composites are observed in nature such as
self-assembly and self-organisation. In particular, self-assembly is a phenomenon in which complex
structures emerge out of local interactions between autonomous components. The purpose of this paper is
to propose a nature-inspired cooperative strategy as a method for the automated construction of heuristic
search strategies. Given a computational search problem and a set of simpler heuristics embodied in self-
assembly entities, the idea is to develop a novel methodology for the bottom-up manufacture of heuristic
composites capable of producing high quality solutions. For this to be done, our methodology unfolds
three main steps: execution threads analysis, assemblies characterisation and evolutionary design. In the
following, Section 2 gives a brief introduction to hyper-heuristics, self-assembly and the context of our
investigation. Section 3 enlarges on the proposed approachgiving details of the model components and
the methodology. After that, experiments and initial results are presented and discussed in Section 4.
Finally, conclusions and further work are the subject of Section 5.

http://dx.doi.org/10.4204/EPTCS.26.13
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


136 Towards the Design of Heuristics by Means of Self-Assembly

2 Self-assembly Design and Hyper-heuristics

Self-assembly is a natural construction process where aggregates emerge spontaneously throughout the
progressive interactions among the constituents of the system [26]. Made upon cooperative self-reliant
components, self-assembly systems are distributed, not necessarily synchronous, autopoietic mecha-
nisms for the bottom-up fabrication of supra-structures. Polymerisation, nucleic acid structures and
crystallisation, to name but a few, are some of the many examples of self-assembly found in nature.

With the aim to automate the design of a computational model of self-assembly, our previous work
has focused on theself-assembly Wang tilesmodel which is formally defined as a quintuple(T ,Σ,g,L ,τ)
whereT is a finite set of non-empty Wang tiles with square shape,Σ is a set of colours which label the
edges associated to a tile,g is called theglue functionthat evaluates the strength between any two colours
of Σ, L is a two-dimensional square lattice with interconnected unit square cells andτ is a positive value
that models the kinetic energy of the system [27]. Initially, tiles belonging toT are randomly located in
the lattice, the cells of which can be occupied by one tile at any time. Once tiles are placed on the lattice,
they undergo random walks. When two or more tiles collide, the strength between the colours of each
pair of colliding edges is evaluated. Subject to this evaluation and the value of the kinetic energy, the
associated tiles either self-assemble or remain separated. That is, if the resulting strength is bigger than
τ then the tiles stay still for ever forming an aggregate, otherwise they bounce off. In particular, an evo-
lutionary algorithm, through the process of selection, crossover and mutation, has driven the automated
design of Wang tiles capable of self-assembling into a user-defined shape.

Hyper-heuristics are defined as search methodologies that select and combine low-level heuristics to
solve hard computational search problems [7, 22]. The general aim of a hyper-heuristic is to manufacture
unknown heuristics which are fast, well performing and widely applicable to a range of problems. During
the process of fabrication, hyper-heuristics receive feedback from the problem domain which indicates
how good the chosen heuristics are in relation to the problemat hand and, hence, driving the search
process. Although there are some reported conditions underwhich free lunches are possible [20], hyper-
heuristics do not violate the no-free-lunch theorem which indicates that all algorithms that search for
optimum of a cost function perform exactly the same when averaged over all possible cost functions,
so no algorithm, including hyper-heuristics, is better than another when considering all optimisation
problems. Studying novel approaches for the development ofhyper-heuristics is important since they
are domain-independent problem strategies that operate ona space of heuristics, rather than on a space
of solutions, and rise the level of generality on automated problem solving. Hyper-heuristics have been
employed for solving search and optimisation problems suchas bin-packing [23, 8], timetabling [19],
scheduling [12, 11] and satisfiability [2] among others. Fordetailed reviews of hyper-heuristics and their
applications, please refer to [22, 18, 10, 7].

The automated manufacture of heuristic search strategies by means of hyper-heuristics has received
increasing attention in the last ten years or so. Recent investigations have sprung up in two main different
flavours of hyper-heuristics: 1) heuristics that choose heuristics and 2) heuristics that generate heuris-
tics. In the first case, a learning mechanism assists the selection of low-level heuristics according to their
historical performance during the search process. In the second case, the focus is on the search of compo-
nents that once combined generate a new heuristic suitable for the problem at hand. Approaches based on
genetic programming have been proposed for the automated generation of heuristics [9, 16, 12]. From an
engineering point of view, we believe that the manufacture of aggregates resulting from local interactions
among autonomous cooperative entities is an interesting route for developing a new alternative within
the second flavour of hyper-heuristics. That is, our interest is on applying self-assembly as a mechanism
to develop a hyper-heuristic approach to then automatically generate problem-specific good performing



G. Terrazas, D. Landa-Silva & N. Krasnogor 137

heuristics. An early idea of program constructions by meansof self-assembly is reported in [15] where
the automated self-assembly programming paradigm (ASAP2) is introduced as a self-assembly model for
unconventional computing. ASAP2 is defined in terms of gas’ molecules embodying portions of software
sampled from man-made program libraries. Thus, software molecules interact to one another subject to
different values of temperature and pressure giving rise toa variety of program architectures. The pur-
pose of the present investigation is to apply previous experiences in evolutionary design of self-assembly
Wang tiles in order to develop a nature-inspired cooperative strategy for the automatic construction of
heuristic search strategies.

3 Proposed Approach

This section presents our approach for the automated designof heuristics by means of self-assembly.
In the first part, we introduce the motivation, the components of the model and the general aim of our
strategy. In the second part, we give a detailed step-by-step description of the methodology together with
the goals associated to each stage.

3.1 Model

Inspired by the physical process of crystallization, Winfree has introduced the Tiles Assembly Model [28]
as a quadruple(T , ts,g,τ) whereT is a finite set of non-empty tile types,ts is a seed tile belonging to
T , g is a strength function andτ is a threshold parameter. This model has proven to have computational
power by simulating a one-dimensional blocked cellular automata. This simulation demonstrates that a
unique pattern is always produced, regardless of the order in which tiles are aggregated, and that such
arrangement represents information ultimately modified bytile additions interpreted as rewrite rules.
Winfree’s model has been employed for solving NP-hard problems [4, 5, 6] proving that tile structures
interpreted as programs are in fact successful. The aim of our model lies in the automatic development of
problem solving entities. To be more precise, we consider a self-assembly Wang tile as an independent
low-level heuristic(Figure 1(a)) and an aggregate as asolving strategyin full (Figure 1(b)).

(a) (b)

Figure 1: A self-assembly Wang tile embedding a heuristic with two inputs and an output (a); an aggre-
gate defining a composition of self-assembly heuristics with two alternative execution threads comprising
five heuristics each (b).



138 Towards the Design of Heuristics by Means of Self-Assembly

Although there can be sophisticated ways to decide which is the input/output of a tile and how to
execute the low-level heuristics of an aggregate, we preferto adopt a simple alternative based on the
construction of sequences of low-level heuristics. We refer to these sequences asexecution threads(Fig-
ure 1(b)), the construction process of which and the way theyoperate are given in Section 4.1. Thus,
given an instance of a combinatorial optimisation problem and a set of low-level heuristics embedded in
self-assembly Wang tiles, the questions pursued by our research are:

Is it possible to automatically design an assembly of heuristics, the execution threads of which help
to find optimal solutions for a given combinatorial optimisation problem?

If the answer to the above question is yes, is it possible to reuse the methodology in order to tackle a
different combinatorial optimisation problem?

In order to address these questions, we propose a methodology divided in three main stages: 1)
execution thread analysis, 2) assembled heuristic characterisation and 3) evolutionary design. These
stages are described in more detail in the following subsection.

3.2 Methodology

The purpose of theexecution thread analysisin stage 1 is to shed light on common combinations of
heuristics that help to produce high quality solutions whenapplied to a given problem instance. Hence,
given a set of execution threads, the research question to address in stage 1 is:

Is it possible to identify common combinations of heuristics? If yes, how do they look like and how
reliable is the performance of such combinations when applied to different instances of the problem at
hand?

After the analysis and assessment of the execution threads,the best ranked ones are selected and their
associated assembled heuristics are used as input to stage 2. Then, the goal of theassembled heuristics
characterisationin stage 2 is to define the target shape that the self-assemblysystem should attempt to
generate. Thus, given a set of assembled heuristics the question to address in stage 2 is:

Which is the morphology characterizing the high quality assembled heuristics?

The findings reported in [27, 26] recognise the application of evolutionary algorithms as suitable
mechanisms for the automated design of Wang tiles capable ofself-assembling in a user defined target
shape. Therefore, given a target shape and a set of low-levelheuristics embedded in a self-assembly
Wang tiles system, the aim of theevolutionary designin stage 3 is to address the following question:

Is it possible to conduct an automated design of a set of low-level heuristics, the assemblages of which
return high quality solutions when applied to a given combinatorial optimisation problem instance?

The above methodology is expected to produce a novel procedure for the automated construction
of tailored effective and efficient heuristic search strategies. This would also bring additional evidence
to support the claim that cooperative strategies found in nature are robust mechanisms suitable for the
development of solutions to combinatorial optimisation problems.



G. Terrazas, D. Landa-Silva & N. Krasnogor 139

4 Experiments and Results

This section presents the preliminary findings obtained by stage 1 of the above methodology. The chosen
combinatorial optimisation problem is the widely known Travelling Salesman Problem (TSP) in its sym-
metric version. As this paper presents a proof of concept, a relatively easy to solve instance is employed
to illustrate the concept of self-assembly hyper-heuristics. The TSP instance considered here is kroA100
which comprises 100 cities distributed in the Euclidean space. The objective value corresponding to the
known optimum solution (shortest tour) for this instance is21282 (see TSPLIB1). For the experiments
in this paper, we take the known optimum tour of kroA100 and apply 200 random swaps in order to
generate a ‘disturbed’ tour. In this way, we generated 10 different ‘disturbed’ tours which are then used
to evaluate the performance of the execution threads (combinations of heuristics).

Algorithm 1 ExecutionThreadsAnalysis
Require: PI a symmetric TSP instance

1. ETSc← collectN execution threads
2. for all execution threadsETi in ETSc do
3. apply(ETi ,PI, times)
4. end for
5. ETSf ← filter bestETSc

6. PATTERNS← analyse common heuristicsETSf

7. csET← build aPATTERNS-based execution thread
8. for all execution threadsETi in ETSf ∪{csET} do
9. ETSr ← generate 300 random execution threads

10. for all execution threadsETj in ETSr do
11. apply(ETi ,PI, times)
12. apply(ETj ,PI, times)
13. end for
14. end for
15. assessETSf vs. ETSr

Theexecution threads analysisstage involves 3 steps: execution threads collection, detection of pat-
terns of heuristics and performance evaluation. For this, we developed the procedure shown in Algorithm
1 where lines 1 to 5 define the first step, lines 6 to 7 specify thesecond step and the remaining lines out-
line the performance evaluation step. Each of these steps isdescribed in more detail in the following
subsections.

4.1 Execution Threads Collection

In order to generate the execution threads, we employed a percolation cluster model. A percolation model
is defined as a collection of both empty and occupied sites distributed across a lattice. In this model, the
non-empty sites of the lattice can be partitioned into clusters such that there is always a path between any
two sites of the same cluster and non-empty sites of different clusters are disconnected. In particular, we
employed a 2D square site percolation cluster with occupation probabilityρ ∈{0.05,0.1,0.15, . . . ,0.95}.
That is, for each site of the cluster a random valuev∈ [0,1] is obtained. Ifv≤ ρ then the site is filled

1http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html



140 Towards the Design of Heuristics by Means of Self-Assembly

with a low-level heuristic chosen at random, otherwise it stays empty. Figure 2 shows two percolation
clusters generated withρ = 0.2 andρ = 0.5.

(a) (b)

Figure 2: Two percolation clusters on a two-dimensional square lattice usingρ = 0.2 (a) andρ = 0.5
(b). The low-level heuristics are uniformly distributed across the percolation cluster.

The reason for using percolation clusters is that the geometry (shape) of the resulting aggregates
is similar to the ones resulting from the self-assembly Wangtiles system. In addition, since there is a
correlation between the occupation probabilityρ (size of the aggregates) and the length of the possible
random walks [13], different values ofρ would allow us to systematically explore different lengthsof
execution threads. Therefore, in order to collect an execution thread, a random walk over the lattice is
performed. That is, a non-empty site in the lattice is arbitrary selected and from there the nearest one is
chosen at random. If the selected site hosts a heuristic, theexecution thread increments its length and
the process is repeated by choosing the following nearest site. Otherwise, the execution thread does not
increment its length and the collection finishes. Note that backward walks and crossings could increment
the length of the execution thread by adding occurrences of the already collected heuristics. Figure 3
shows an example of five execution threads collected from a site percolation cluster withρ = 0.5.

Figure 3: Sample execution threads collected from a percolation cluster. Red sites indicate the initial
heuristic from where the execution threads start. Green sites are the successive heuristics collected as the
random walk is performed.



G. Terrazas, D. Landa-Silva & N. Krasnogor 141

For the chosen problem, the low-level heuristics used here are local searches for the TSP that can be
deterministic (e.g. always selecting the best of a set of improving two-edges interchange) or stochastic
(e.g. selecting at random from a set of improving two-edges interchange, and hence potentially giving
different results if re-executed). In particular,2-Opt, 3-Opt, OR-OptandNode Insertionare determinis-
tic whereas1-city Insertion, 2-exchange, Arbitrary InsertionandInver-overare stochastic. These eight
low-level heuristics are originally defined in [1, 3, 14, 21,25] and can be summarised as follows:

2-Opt, that eliminates and reconnects those two edges which best minimise the length of the tour.

3-Opt, that eliminates and reconnects those three edges which best minimise the length of the tour.

OR-Opt, that eliminates and reinserts a sub-tour of three consecutive cities to the best location, then
eliminates and reinserts a sub-tour of two consecutive cities to the best location and, finally, eliminates
and reinserts a sub-tour of one city to the best location.

Node Insertion, that removes and reinserts the city which best minimises the length of the tour.

k-city Insertion, that removes a sub-tours beginning with a randomly chosen cityi through cityi + k,
connectsi−1 to i +k+1 and reinsertsselsewhere in the tour. In particular, we setk= 1.

n-exchange, that removesn edges and reinsertsn new edges to rebuild a feasible tour. In particular,
we setn= 2.

Arbitrary Insertion, that removes a sub-tourS beginning with a randomly chosen cityi through a
randomly chosen cityj, connects cityi− 1 with city j + 1 and reinserts each city ofS in the cheapest
possible way.

Inver-over, that removes a sub-tourS beginning with a randomly chosen cityi through a randomly
chosen cityj, and reinsertsS inverted, i.e. connecting cityi−1 to city j and cityi to city j +1.

In our case, the low-level heuristics described above operate in a hill climber style [17], i.e. there is
always an improvement on the TSP where they apply.

4.2 Detection of Patterns of Heuristics

For each experiment, we generated 50 percolation clusters with each of the nineteen values ofρ . From
each of the resulting clusters, 100 execution threads were collected and applied to the same problem
instance. In this context, an execution thread applicationis seen as a pipeline process in which the
chain of processing elements is given by the sequence of low-level heuristics and the information to
be processed is the problem instance. Thus, heuristics are applied one after another in the order in
which they appear in the execution thread and producing better or equal solutions at each step. With the
purpose to illustrate this process, Figure 4 depicts a very simple example in which an execution thread,
comprising of 1-city insertion and 2-exchange heuristics,is applied to a TSP instance. Red tile indicates
the chosen initial heuristic, where the execution thread starts, and the green tiles the successive collected
ones. Therefore, the application of the execution thread begins by applying the heuristic embedded in
the red tile and follows by applying the heuristics embeddedin the rest of the consecutive green tiles.



142 Towards the Design of Heuristics by Means of Self-Assembly

Figure 4: An execution thread in which applications of two 2-exchange heuristics and a 1-city insertion
heuristic find the optimum solution for the Star of David tour. Edges and cities where the three low-level
heuristics apply are coloured in red.

In order to identify common combinations of heuristics within the collected execution threads, we
grouped the execution threads according to theρ that generated their underlying percolation cluster.
Within each group, the execution threads are then sorted according to the distance between the solution
that the execution thread produces and the known optimum solution. The top five execution threads
within each group are then selected and encoded as sequencesof characters using ‘A’ to represent 1-
city insertion, ‘C’ to represent 2-opt, ‘D’ to represent 3-opt, ‘E’ to represent OR-opt, ‘T’ to represent
2-exchange, ‘F’ to represent node insertion, ‘G’ to represent arbitrary insertion and ‘H’ to represent
inver-over. Hence, in order to identify common combinations of heuristics among the filtered execution
threads, we employ a multiple sequence alignment (MSA) method [24] over the encodings. The results
reveal that there are indeed occurrences of common combinations, i.e. patterns of heuristics, among the
best ranked execution threads. Thus, these findings give a positive answer to the first research question
that we stated for stage 1 of our methodology (Section 3.2). Figure 5 highlights in blue the patterns found
among the best five execution threads collected from percolation clusters usingρ = 0.9.

Figure 5: Multiple sequence alignment of the top five execution threads collected from percolation clus-
ters generated withρ = 0.9. Capitals highlighted in blue indicate the common sequences of heuristics.

An extra execution thread is then constructed in terms of thespotted patterns of heuristics. This pro-
cedure consists in copying the matching characters betweentwo or more encodings into a new sequence



G. Terrazas, D. Landa-Silva & N. Krasnogor 143

from left to right and following the position in which they appear. For instance, Figure 5 shows that
cET is the resulting pattern-based execution thread encoded as TEEDGCGGCDDACT, after combining
the common patterns from the input execution threads ET1 to ET5. Given that this execution thread is
built in terms of common combinations of heuristics, its performance is then expected to be as good as
(or better than) any of the top ranked. Notice that the lengthof the constructed execution thread varies
according to the number of matches. Since this is related to the way in which the construction procedure
is defined, we left open to further investigations other alternatives to construct the common execution
thread, e.g. by calculating the optimal common sequence in the alignment.

4.3 Performance Evaluation

Since the best five execution threads were evaluated only once, a better way to assess their performance
is needed. For that reason, we assess the best five execution threads, and the one constructed in terms of
patterns of heuristics, by conducting a vis-a-vis comparison between their performances and randomly
generated ones with the hope that, on average, the best tour improvements are obtained by the common-
sequence execution threads. Thus, for each of the six execution threads, 300 copies are obtained and
for each of these copies a new execution thread equal in length is randomly created. Since stochastic
low-level heuristics could be part of an execution thread, atotal of 10 independent evaluations are per-
formed and the average distance between the lengths of the resulting tours and the known optimum was
considered as the measure of its performance.

Two representative analyses of the performance evaluationresults obtained across the 10 experiments
are shown in Figure 6 (a - b). The boxplots in Figure 6 (a) depict the assessment when employing a TSP
tour with value 165905 whilst the boxplots in Figure 6 (b) correspond to the results for a TSP tour with
value 191550. In general, we can observe that in both experiments the best five execution threads (ET1,
ET2, ET3, ET4, ET5) outperform on average the associated randomly generated ones (RNDs1, RNDs2,
RNDs3, RNDs4, RNDs5). In particular, some of the smallest observations depicted by the boxplots of
RNDs1 and RNDs5 in Figure 6 (a) show that few randomly generated execution threads outperformed
ET1 and ET5 in Figure 6 (a). A similar situation can be observed between RNDs2 in Figure 6 (b) and
ET2 in Figure 6 (b). This is not surprising since among all theavailable heuristics, there is still the
chance that certain arrangements of such were not considered during the execution threads collection
step. Nevertheless, according to the values of the medians,the amount of missing arrangements found
among the 300 randomly generated is still not enough to outperform in average a systematically collected
execution thread.

Regarding the execution threads constructed in terms of patterns of heuristics (cET), it is clear that
their performance is better when compared to the associatedrandomly generated execution threads
(RNDs6). In addition, it is always the case that the performance of an cET (common-sequence exe-
cution thread) is as competitive as the performance of the best five input execution threads. Hence, these
findings indicate that the discovered patterns are in fact beneficial combinations of low-level heuris-
tics necessary for solving a symmetric TSP instance. All in all, the analyses and results unfolded here
constitute a positive answer to the second research question stated for the first stage of the presented
methodology (Section 3.2), i.e. the identified common-sequences of heuristics are indeed reliable.



144 Towards the Design of Heuristics by Means of Self-Assembly

ET1 RNDs1 ET2 RNDs2 ET3 RNDs3 ET4 RNDs4 ET5 RNDs5 cET RNDs6

1
2

3
4

5
6

7

D
is

ta
nc

e 
to

 O
P

T
 in

 %

(a)

ET1 RNDs1 ET2 RNDs2 ET3 RNDs3 ET4 RNDs4 ET5 RNDs5 cET RNDs6

1
2

3
4

5
6

D
is

ta
nc

e 
to

 O
P

T
 in

 %

(b)

Figure 6: Performance evaluation of two independent experiments. Each boxplot summarises a vis-a-
vis comparison between the performances of the best ranked execution threads (ET1, ET2, ET3, ET4,
ET5) and their associated randomly generated (RNDs1, RNDs2, RNDs3, RNDs4, RNDs5) as well as the
pattern-based execution thread (cET) and its associated randomly generated (RNDs6).



G. Terrazas, D. Landa-Silva & N. Krasnogor 145

5 Conclusions

In this paper, we proposed a nature-inspired approach for the automated design of heuristics following the
rationale of hyper-heuristics which are heuristic methodsto generate tailored heuristics for the problem
in hand. Our model considers the use of self-assembly Wang tiles embedding low-level heuristics and
their assemblages as higher-level heuristic strategies. The proposed methodology consists of 3 stages:
execution thread analysis, assembled heuristics characterisation and evolutionary design.

In particular, we reported experiments and results from theexecution threads analysisstage involving
three steps: execution threads collection, detection of patterns of heuristics and performance evaluation.
On the one hand, the initial findings confirm that there are indeed common patterns of heuristics among
the top ranked execution threads. This emergent recurrent structures are non-divisible local search strate-
gies beneficial to achieve good solutions when solving a symmetric TSP instance. On the other hand,
the assessment of the execution threads produced positive results about the reliability, with respect to the
performance, of the collected local search strategies. These findings reveal that the top execution threads
are good performing arrangements of heuristics and that theemergent patterns are beneficial to obtain
good solutions.

To continue with our methodology, future work involves the morphological characterisation of the
common-sequence assembled heuristics and the evolutionary design. The integration of these two stages
together with the methodology presented here is expected toproduce a novel procedure for the automated
construction of heuristic search strategies.

6 Acknowledgements

The research reported in this work is funded by EPSRC grant (EP/D061571/1)Next Generation Decision
Support: Automating the Heuristic Design Process.

References

[1] G. Babin, S. Deneault, and G. Laporte. Improvements to the or-opt heuristic for the symmetric traveling
salesman problem.Journal of the Operational Research Society, (58):402–407, 2007.

[2] M. B. Bader-El-Den and R. Poli. A gp-based hyper-heuristic framework for evolving 3-sat heuristics. In
Genetic and Evolutionary Computation Conference, pages 1749–1749. ACM, 2007.

[3] J. Brest and J. Zerovnik. A heuristic for the asymmetric traveling salesman problem. InMetaheuristics
International Conference, pages 145–150, 2005.

[4] Y. Brun. Constant-size tileset for solving an NP-complete problem in nondeterministic linear time. InDNA
Computing, volume 4848, pages 26–35. Springer Berlin / Heidelberg, 2008.

[5] Y. Brun. Reducing tileset size: 3-SAT and beyond. InDNA Computing, page 178, 2008.

[6] Y. Brun. Solving np-complete problems in the tile assembly model.Theor. Comput. Sci., 395(1):31–46, 2008.

[7] E. K. Burke, E. Hart, G. N. Kendall, J. Newall, P. Ross, andS. Schulenburg.Handbook of Meta-Heuristics,
chapter Hyper-Heuristics: An Emerging Direction in ModernSearch Technology, pages 457–474. Kluwer,
2003.

[8] E. K. Burke, M. R. Hyde, and G. Kendall. Evolving bin packing heuristics with genetic. InParallel Problem
Solving from Nature, volume 4193, pages 860–869. Springer-Verlag, 2006.



146 Towards the Design of Heuristics by Means of Self-Assembly

[9] E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward. Automatic heuristic generation with genetic program-
ming: evolving a jack-of-all-trades or a master of one. InGenetic and Evolutionary Computation Conference,
pages 1559–1565. ACM, 2007.

[10] K. Chakhlevitch and P. I. Cowling. Hyperheuristics: Recent developments. InAdaptive and Multilevel
Metaheuristics, volume 136, pages 3–29. Springer, 2008.

[11] P. Cowling and K. Chakhlevitch. Hyperheuristics for managing a large collection of low level heuristics
to schedule personnel. InIEEE Congress on Evolutionary Computation, pages 1214–1221. IEEE Computer
Society, 2003.

[12] P. Cowling, G. Kendall, and L. Han. An investigation of ahyperheuristic genetic algorithm applied to a trainer
scheduling problem. InIEEE Congress on Evolutionary Computation, pages 1185–1190. IEEE Computer
Society, 2002.

[13] S. J. G. M. Paily and S. Neogi. Two dimensional random walk on percolation clusters. Available athttp://
www.personal.psu.edu/saj169/PercolationRW/PercolationRw.html.

[14] N. Krasnogor and J. Smith. Memetic algorithms: The polynomial local search complexity theory perspective.
Journal of Mathematical Modelling and Algorithms, 7:3–24, 2008.

[15] L. Li, J. Garibaldi, and N.Krasnogor. Automated self-assembly programming paradigm: initial investigation.
In IEEE International Workshop on Engineering of Autonomic and Autonomous Systems, pages 25–36. IEEE,
2006.

[16] M. Oltean and D. Dumitrescu. Evolving tsp heuristics using multi expression programming. InConference
on Computational Science, volume 3037, pages 670–673, 2004.

[17] E. Özcan, B. Bilgin, and E. Korkmaz. Hill climbers and mutational heuristics in hyperheuristics. InParallel
Problem Solving from Nature, pages 202–211, 2006.

[18] E. Özcan, B. Bilgin, and E. E. Korkmaz. A comprehensive analysis of hyper-heuristics.Intell. Data Anal.,
12(1):3–23, 2008.

[19] N. Pillay and W. Banzhaf. A study of heuristic combinations for hyper-heuristic systems for the uncapacitated
examination timetabling problem.European Journal of Operational Research, 197(2):482–491, 2009.

[20] R. Poli and M. Graff. There is a free lunch for hyper-heuristics, genetic programming and computer scientists.
In European Conference on Genetic Programming, pages 195–207. Springer-Verlag, 2009.

[21] G. Reinelt.The traveling salesman: Computational solutions for TSP applications. Springer-Verlag, 1994.

[22] P. Ross.Hyper-heuristics, pages 529–556. Springer, 2005.

[23] P. Ross, S. Schulenburg, J. G. Marı́n-Blázquez, and E.Hart. Hyper-heuristics: Learning to combine simple
heuristics in bin-packing problems. InGenetic and Evolutionary Computation Conference, pages 942–948.
Morgan Kaufmann Publishers Inc., 2002.

[24] J. Setubal and J. Meidanis.Introduction to Computational Molecular Biology. PWS Publishing, 1997.

[25] G. Tao and Z. Michalewicz. Inver-over operator for the tsp. InParallel Problem Solving from Nature, pages
803–812. Springer-Verlag, 1998.

[26] G. Terrazas.Automated Evolutionary Design of Self-Assembly and Self-Organising Systems. PhD thesis,
University of Nottingham, 2008.

[27] G. Terrazas, M. Gheorghe, G. Kendall, and N. Krasnogor.Evolving tiles for automated self-assembly design.
In IEEE Congress on Evolutionary Computation, pages 2001–2008. IEEE Computer Society, 2007.

[28] E. Winfree. Simulations of computing by self-assembly. In DNA-Based Computers, pages 213–242, 1998.

http://www.personal.psu.edu/saj169/PercolationRW/PercolationRw.html
http://www.personal.psu.edu/saj169/PercolationRW/PercolationRw.html

	1 Introduction
	2 Self-assembly Design and Hyper-heuristics
	3 Proposed Approach
	3.1 Model
	3.2 Methodology

	4 Experiments and Results
	4.1 Execution Threads Collection
	4.2 Detection of Patterns of Heuristics
	4.3 Performance Evaluation

	5 Conclusions
	6 Acknowledgements

