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Abstract. This paper presents an investigation into the application
of heuristic decomposition and mixed-integer programming to tackle
workforce scheduling and routing problems (WSRP) that involve time-
dependent activities constraints. These constraints refer to time-wise
dependencies between activities. The decomposition method investigated
here is called repeated decomposition with conflict repair (RDCR) and it
consists of repeatedly applying a phase of problem decomposition and
sub-problem solving, followed by a phase dedicated to conflict repair. In
order to deal with the time-dependent activities constraints, the problem
decomposition puts all activities associated to the same location and their
dependent activities in the same sub-problem. This is to guarantee the
satisfaction of time-dependent activities constraints as each sub-problem
is solved exactly with an exact solver. Once the assignments are made,
the time windows of dependent activities are fixed even if those activities
are subject to the repair phase. The paper presents an experimental study
to assess the performance of the decomposition method when compared
to a tailored greedy heuristic. Results show that the proposed RDCR is
an effective approach to harness the power of mixed integer programming
solvers to tackle the difficult and highly constrained WSRP in practical
computational time. Also, an analysis is conducted in order to understand
how the performance of the different solution methods (the decomposition,
the tailored heuristic and the MIP solver) is affected by the size of the
problem instances and other features of the problem. The paper concludes
by making some recommendations on the type of method that could be
more suitable for different problem sizes.

Keywords: workforce scheduling and routing problem, time-dependent
activities constraints, mixed integer programming, problem decomposition

1 INTRODUCTION

This paper applies Repeated Decomposition with Conflict Repair (RDCR) on a
mixed integer programming model to tackle a Workforce Scheduling and Routing
Problem (WSRP) with time-dependent activities constraints. The WSRP refers
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to assigning employees with diverse skills to a series of visits at different locations.
A visit requires certain skills so that the tasks or activities can be performed.
The problem has become important especially in the recent years because the
number of businesses using a mobile workforce is growing [9]. These businesses
usually provide services to people at their home. Examples are home care [2, 7],
home healthcare [1], security patrol services [15,19], technician scheduling [10, 14,
16], etc. In this type of scenarios, a mobile workforce must travel from its base to
visit multiple locations to deliver services.

Time-dependent activities constraints refer to the case in which visits are
time-wise related, such feature in WSRP was discussed in [4]. There are five
types of time-dependent activities constraints: synchronisation, overlap, minimum
difference, maximum difference and minimum-maximum difference. There have
been attempts to use mathematical programming to find optimal solutions for
WSRP [20,4]. The problems are usually formulated as mixed integer programs
(MIP) and implemented as a network flow problem. However, solving the problem
using mathematical programming solvers requires very high computational time.
Such solvers are able to find optimal solutions for only small instances and only
sometimes feasible solution can be found within 4 hours. It has also been shown
that when solving larger instances (e.g. more than 150 visits), it is often not
possible to find optimal solutions due to the computer memory being exhausted.
A constructive greedy heuristic (GHI) was proposed to solve WSRP with time-
dependent activities constraints [3]. That algorithm provided better solutions
than the mathematical programming solver when the number of visits is more
than 100. In addition, other solution methods such variable neighbourhood search
[17] and greedy constructive heuristics [23] have also been applied to WSRP
instances with time-dependent activities constraints.

In the literature, there are works applying mathematical programming solvers
within a decomposition approach to solve real-world problems. A decomposition
method breaks a problem into smaller parts which are easier to solve. A prob-
lem can be decomposed by exact or heuristic approaches. An example of exact
decomposition is Dantzig-Wolfe decomposition where all possible assignment
combinations can be generated [6]. This approach may require high computational
times to achieve a good solution. Heuristic decomposition generates sub-problems
by splitting the full problem using some heuristic procedure to solve each sub-
problem and integrate the partial solutions into a solution to the full problem.
This usually means that heuristic decomposition does not guarantee optimality
in the overall solution. An example of heuristic decomposition method is the Ge-
ographical Decomposition with Conflict Avoidance (GDCA) proposed in [11,13]
to tackle a home healthcare scheduling problem. Those home healthcare instances
tackled with GDCA had a fixed time for the visits instead of a time window and
had no time-dependent activities constraints. The GDCA technique decomposed
a problem by geographical regions resulting in several sub-problems which then
are tackled individually. The GDCA method was capable of finding a feasible
solution even for instances with more than 1,700 clients. Other related heuristic
decomposition methods using some form of clustering have been presented in the
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literature. For example, a large vehicle routing problem was decomposed into
various clusters of customers assigned to a vehicle in [21].

This paper applies a Repeated Decomposition with Conflict Repair (RDCR)
approach to a varied set of WSRP instances that involve time-dependent activities
constraints. In general, RDCR decomposes a problem into sub-problems which
then are individually solved with a mathematical programming solver. A sub-
problem solution gives a path or sequence of visits for each employee. However,
since an employee may be used in several sub-problems, this can lead to having
conflicting paths, i.e. different paths that are assigned to the same employee.
Another type of conflict are conflicting assignments, i.e. visits overlapping in time
assigned to the same employee. Avoiding conflicting assignments within a path
is guaranteed by the mathematical programming model. However, conflicting
paths can arise because sub-problems are individually solved and the available
workforce is shared among sub-problems. Therefore, conflicting paths need to
be resolved by a conflict repair process described later in this paper. The stage
of problem decomposition and sub-problem solving is followed by the stage of
conflict repair. These two stages are repeatedly applied as part of the RDCR
method until no more visits can be assigned in the current solution. This paper
compares the solution quality from the proposed decomposition method to the
results produced by the greedy constructive heuristic (GHI) presented in [3].
Moreover, this paper also conducts an in-depth analysis of the performance by
the RDCR and GHI methods in respect of the problem features. This analysis
aims to identify the types of problem instances in which each of the methods
performs better. This will contribute to a better understanding of what type
of approach is expected to be more successful according to the features of the
problem instance in hand. It would also help to understand what problem features
appear to present more difficulty for each method in order to identify directions
for further research.

One contribution of this paper is a decomposition method that is adapted
to tackle the WSRP with time-dependent activities constraints. The method
represents a suitable approach to harness the power of mathematical programming
solvers to tackle difficult instances of the WSRP. Another contribution of this
paper is a better understanding of the performance by the decomposition method
and the tailored constructive heuristic in respect of the problem features. The rest
of the paper is organised as follows. Section 2 describes the workforce scheduling
and routing problem. Section 3 presents the repeated decomposition with conflict
repair method and it also introduces the modification for time-dependent activities
constraints. Section 4 presents experimental results from comparing RDCR to
the GHI greedy heuristic algorithm. Section 5 concludes the paper.

2 PROBLEM DESCRIPTION

This section describes the workforce scheduling and routing problem with time-
dependent activities constraints. The MIP model to solve this problem was
originally presented in [20] for a home care crew scheduling scenario. The model
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is also described in [3,12] and hence not replicated here. As discussed in the
introduction, time-dependent activities constraints arise from situations in which
visits relate to each other time-wise. Hence, this section also describes the
constraints of this type and their formulation.

2.1 Workforce Scheduling and Routing Problem

A network flow model was proposed in [20] for a home care crew scheduling
scenario, which is an example of what is called here the workforce scheduling
and routing problem (WSRP). That model balances the number of incoming
edges and outgoing edges in each node corresponding to a visit location. An edge
represents a worker arriving or leaving the visit location. Hence, such balancing
means that a worker assigned to a visit must leave the location after performing
the task and then move to the next visit location or to the depot. This balancing
constraint is applied to each location visit except the depot which is considered
as the source and the sink in the network flow model. This same model was
also used in [3,12] where other WSRP scenarios with time-dependent activities
constraints were tackled using a greedy heuristic algorithm.

The model is a minimisation problem where the objective function is a
summation of three main costs. First is the deployment cost of assigning each
employee to visits. Second is the preferences cost of not assigning the most
preferred employee to that visit. Third is the unassigned visit cost applied when
a visit is left unassigned. Each of the three main costs in the objective function is
multiplied by weights to give some level of priority to each cost. Here, the values
for these weights are set as in [20].

The mixed-integer programming (MIP) model for the problem includes the
following constraints. A visit is either assigned to employees or left unassigned. A
visit can only be assigned to employees who are qualified to undertake activities
associated to the visit. Each path must start from the employee’s initial location
and end at the final location. The flow conservation constraint guarantees that
once employee k arrives to a visit location it then leaves that location in order to
form a working path. Visits must start in their starting time window. Assignments
of visits to employees must respect the employee’s time availability. The time
allocated for starting a visit must respect the travel time needed after completing
the previous visit. The method presented in this paper has been adapted to tackle
time-dependent activities constraints in particular. Such constraints indicate that
time-wise dependencies exist between some visits and the specific constraints
tackled here are described in more detail next.

2.2 Time-dependent Activities Constraints

A key difference with previous work described in [11] is that the WSRP scenarios
tackled here include a special set of constraints called time-dependent activities
constraints that establish some inter-dependence between activities. These con-
straints reduce the flexibility in the assignment of visits to employees because for
example, a pair of visits might need to be executed in a given order. There are five
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constraint types: overlapping, synchronisation, minimum difference, mazximum
difference and minimum-maximum difference. A solution that does not comply
with the satisfaction of these time-dependent activities constraints is considered
infeasible.

— OQOwverlapping constraint means that the duration of one visit ¢ must extend
(partially or entirely) over the duration of another visit j. This constraint is
satisfied if the end time of visit ¢ is later than the start time of visit j and
also the end time of visit j is later than the start time of visit 4.

— Synchronisation constraint means that two visits must start at the same
time. This constraint is satisfied when the start times of visits ¢ and j are
the same.

— Minimum difference constraint means that there should be a minimum time
between the start time of two visits. This constraint is satisfied when visit j
starts at least for a given time units after the start time of visit i.

— Mazimum difference constraint means that there should be a maximum time
between the start time of two visits. This constraint is satisfied when visit j
starts at most a given time units after the start time of visit i.

— Minimum-mazimum difference constraint is a combination of the two previous
conditions and it is satisfied when visit j starts at least a time units but not
later than another time units after the start time of visit i.

3 THE DECOMPOSITION METHOD

This section describes the Repeated Decomposition with Conflict Repair (RDCR)
approach used to tackle the WSRP with time-dependent activities constraints.
A previous paper [11] presented a method called Geographical Decomposition
with Conflict Avoidance (GDCA). In that work, conflicting paths and conflicting
assignments as described above were not allowed to happen. However, the exis-
tence of time-dependent activities constraints makes it more difficult to just avoid
such conflicts when assigning employees to visits. The RDCR method proposed
here again seeks to harness the power of exact optimisation solvers by repeatedly
decomposing and solving the given problem while also repairing the conflicting
paths and conflicting assignments that may arise. The overall RDCR method is
presented in Algorithm 1 and outlined next.

The RDCR method takes a WSRP problem denoted by P = (K, C), where
C is a set of visits and K is a set of available employees, and applies two main
stages. One stage is problem decomposition and sub-problem solving (lines 2 to 5).
The other stage is conflict repair stage (lines 6 to 10). The output of RDCR is a
solution made by a set of valid paths, each of which is an ordered list of visits
assigned to an employee. A valid path is assigned to exactly one employee and
does not violate any of the constraints defined in Section 2. However, the problem
decomposition and sub-problem solving stage may produce conflicting paths, i.e.
two or more paths assigned to the same employee. These conflicting paths are
then tackled by the conflict repair stage and converted into valid paths. Some
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Algorithm 1: Repeated Decomposition and Conflict Repair

Data: Problem P = (K, C) where K is a set of available workforce and C'is a
set of unassigned visits
Result: {SolutionPaths} FinalSolution

1 repeat

2 {Problem} S = ProblemDecomp(K, C);
3 for s € S do

4 ‘ sub_sol(s) = cplex.solve(s);

5 end

6 {Problem} @ = ConflictDetection(sub_sol);
7 FinalSolution.add(NonConflict(sub_sol));
8 for ¢ € Q do

9 ‘ cRepair_sol(q) = cplex.solve(q);
10 end
11 FinalSolution.add(cRepair_sol);
12 Update_Unassigned Visits(C');
13 Update_AvailableWorkforce(K);

14 until No assignment made;

visits that were already assigned in the conflicting paths might become unassigned
as a result of the repairing process. These unassigned visits are then tackled by
repeating the stages of problem decomposition and sub-problem solving followed
by conflict repair over some iterations until no more visits can be assigned. The
following subsections describe the RDCR method in more detail.

3.1 Problem Decomposition

The problem decomposition (line 2 in Algorithm 1) aims to reduce the size
of the feasible region and hence makes possible to tackle the problem with an
MIP solver. This process splits the problem into several sub-problems. Each of
these sub-problems is made of a subset of employees and visits from the full-size
problem but still considering all the types of constraints as in the model described
in Section 2. Let S be a set of sub-problems s = (K, C) € S where K, and
C; are the subsets of employees and visits respectively for sub-problem s. The
outline of the problem decomposition process is shown in Algorithm 2. The two
main steps are the visit partition (line 1) and the workforce selection (line 3).
These two processes are described in detail next.

Visit Partition Algorithm 3 shows the steps for the visit partition process.
It takes the set of visits C in a full-size problem and produces a partition
S consisting of subsets of visits C;. First, the set of visits C is grouped by
location into wvisitsList (since two or more visits might be associated to the same
geographical location). Then, each visit ¢ in wisitsList is allocated to a subset C;.
Basically, the algorithm puts visits that share the same location and visits that
are time-dependent into the same subset. The aim of this is that when solving
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Algorithm 2: Problem Decomposition

Data: {Workforce} K, {Visits} C
Result: {Problem} S is a collection of decomposition sub-problems.
VP = VisitPartition(C);
for C; € VP do
ws = WorkforceSelection(K,C});
S.add(subproblem_builder(C;,ws));
end

(3 Y

each sub-problem, it becomes easier to enforce the time-dependent activities
constraints.

Also, the algorithm observes a maximum size for each subset C; or sub-
problem. This is to have some control over the computational difficulty of solving
each sub-problem. As it would be expected, the larger the sub-problem the more
computational time required to find an optimal solution or even a feasible one
with the MIP solver. However, partitioning into too small sub-problems usually
results into solutions of low quality overall. Hence, the sub-problem size is set at
12 visits in our method. However, it is possible for a sub-problem to have more
than 12 visits if this means having all activities with the same location and the
corresponding time-dependent activities, grouped in the same sub-problem (see
line 5 of Algorithm 3).

Workforce Selection Algorithm 4 shows the steps for the workforce selection
process. It takes a subset of visits C; and the set of employees K to then select
a subset of employees ws for the given sub-problem. Basically, for each visit ¢
in C; the algorithm selects the lowest cost employee w from those employees
who are not already allocated to another visit in this same sub-problem (see
line 2 of Algorithm 4). That is, an employee w selected for visit ¢ will not be
available for another visit in C;. This process gets a set of employees no larger
than |C;|. Note that this method does not generate a partition of the workforce
K. This is because although a employee w may be selected for only one visit
within subset C};, such employee w could still be selected for another visit in a
different sub-problem, hence potentially generating conflicting paths.

3.2 Sub-problem Solving

The problem decomposition process produces a set of sub-problems each with
a subset of activities and a subset of selected employees. Each sub-problem is
still defined by the MIP model presented in Section 2 with its corresponding cost
matrix and other relevant parameters. Then, each sub-problem is tackled with
the MIP solver (line 4 in Algorithm 1). Solving a sub-problem returns a set of
paths. Once the sub-problems are solved there might be conflicting paths, i.e.
paths in different sub-problems assigned to the same employee. The conflicting
paths require additional steps to resolve the conflict while the valid paths can
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Algorithm 3: Visit Partition Module
Data: {Visits} C
Result: {{Visits}} VP = {C;|i = 1,...,|S|}; Partition set of visits

1 visitsList = OrderByLocation(C);

2 1= 0;

3 for c € visitsList do

4 for j = 1,...,i do

5 if |Cj| < subproblemSize or c.shareLocation(C;) then
6 Cj.add(c);

7 if c.hasTimeDependent then
8 Visit ¢z = PairedVisit(c);
9 Cj.add(cz);
10 end
11 end

12 end

13 if c.isNotAllocated then

14 1=i+1;

15 C;.add(c);

16 if c.hasTimeDependent then

17 Visit co = PairedVisit(c);

18 Ci,add(CQ);

19 end
20 end
21 end

be used directly. The process to identify and repair such conflicting paths is
explained next.

3.3 Conflict Repair

The conflict repair starts by identifying conflicting paths in the solutions to the
sub-problems from the problem decomposition. All valid paths are immediately
incorporated into the overall solution to the full-size problem. The process to
detect conflicting paths is shown in Algorithm 5. It takes all sub-problems
solutions and returns the set of conflicting paths . Basically, this process
searches all sub-problem solutions and identifies all employees who are assigned

Algorithm 4: Workforce Selection Module

Data: {Visits} C;, {Workforce} K

Result: {Workforce} ws

for c € C; do
Workforce w = bestCostForVisit( K ,c,ws);
ws.add(w);

end

AW N =




An Investigation of Heuristic Decomposition for WSRP 9

Algorithm 5: Conflict Path Detection Module

Data: {SolutionPaths} sub_sol; solutions from solving decomposition
sub-problems
Result: {SolutionPaths} Q; Set of conflict paths

1 for {Path} s1 € sub_sol do
2 for Path a1 € s; do
3 SolutionPaths ConflictPath = null;
4 pathConflicted=false;
5 for s, € sub_sol |s2 # s1 do
6 for Path a2 € s3 do
7 if a1.Employee = az.Employee then
8 ConflictPath.add(a2);
9 sa.remove(az);
10 pathConflicted = true;
11 end
12 end
13 end
14 if pathConflicted=true then
15 ConflictPath.add(a);
16 s1.remove(a1);
17 Q.add(ConflictPath);
18 end
19 end
20 end

to two or more paths. It then groups those conflicting paths into sub-problems
to repair. This sub-problem to repair has one employee and the set of activities
from conflicting paths that belong to that employee.

In order to repair conflicting paths, the MIP solver tackles the sub-problem
to repair which results in a valid path and some unassigned visits. The valid path
is incorporated to the solution of the full-size problem. The visits that remain
unassigned are tackled by the next iteration of the problem decomposition and
sub-problem solving stage followed by the conflict repair stage until no more
assignments can be made.

3.4 Tackling Time-Dependent Activities Constraints

As described above, there are five types of time-dependent activities constraints:
overlapping, synchronisation, minimum difference, maximum difference and
minimum-mazimum difference. Such time-dependent activities constraints are
usually related to the assignment of two visits. Also, they usually require two
employees, especially the synchronisation and overlapping cases. Hence, these
constraints cannot be enforced by the conflict repair directly because the method
builds a sub-problem to repair based on only one employee. Therefore, modifica-
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Fig. 1. Example of tackling time-dependency on synchronised assignments. Sub-figure
(a) shows the solution from solving a decomposition sub-problem. Sub-figure (b) shows
two conflict repair sub-problem solutions. The assigned times from the decomposition
sub-problem solution on visits with time-dependent activities (Visit 1 and Visit 2) are
carried on to the later stage of the process. The time windows of Visit 1 and Visit 2
are fixed to the same value when preparing conflict repair sub-problem. Fixed starting
time is enforced on Visit 1 and Visit 2 until both of them are incorporated into the
final solution or the iterative process is terminated.

tion of the sub-problem to repair is necessary. This is mainly to keep the layout
of assignments when time-dependent conditions are met.

Recall that the problem decomposition and sub-problem solving stage involves
solving sub-problems in which visits share the same location and also time-
dependent visits are grouped in the same sub-problem. Then, as defined by the
MIP model, the solution to a sub-problem satisfies all time-dependent activities
constraints. In order to keep the layout of time-dependent activities, visits of
sub-problems in the conflict repair process require a fixed assigned time for every
time-dependent activity. The fixed time is applied to time window, i.e. the earliest
starting time is equal to the latest starting time for every time-dependent activity.
Once the fixed time restriction is enforced, it affects every iteration of the process.

Figure 1 shows an example of how the modification works on a synchronisation
constraint. With reference to the figure, suppose that visit 1 and visit 2 must be
synchronised. Because visit 1 and visit 2 are time-dependent, they are grouped
into the same decomposition sub-problem. The decomposition sub-problem is
solved which gives paths for employee A and employee B, as shown in sub-figure
1(a). From that sub-figure, visit 1 and visit 2 are assigned to employee A and
employee B, respectively. Both visits have their starting time set at 10:30. Suppose
that both paths of employee A and employee B need to be repaired. At this
stage, the time-dependent modification is applied. It overrides the time window
of both visits and sets them to 10:30. Here, there are two sub-problems to repair,
presented in sub-figure 1(b). Recall that a sub-problem to repair is defined based
on an employee who has conflicting paths. Both sub-problems apply the new
time window values forcing the start time of visit 1 and visit 2 to 10:30. The new
time window is enforced until both visits are assigned to the final solution or the
iterative process is terminated.
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In the same way, the modification explained above tackles the other types
of time-dependent constraints. The time-dependent visits are grouped in the
same sub-problem and the solution of this part satisfies time-dependent activities
constraints in the decomposition step. The time-dependent modification also
applies when the time-dependent visit needs to be repaired. The modification
replaces the time window of the visit by a fixed time given by the decomposition
step. Then, this modification ensures that a solution that has gone through the
conflict repair will satisfy the time-dependent activities constraints.

4 EXPERIMENTS AND RESULTS

This section describes the experiments carried out to compare the proposed
RDCR method to the greedy heuristic (GHI) in [3] and better understand the
success of each method according to features of the problem instances.

4.1 WSRP Instances Set

The RDCR method was applied to the set of WSRP instances presented in [4, 3].
Those problem instances were generated by adapting several WSRP from the
literature. The instances are categorised in four groups: Sec, Sol, HHC and Mov.
The Sec group contains instances from a security guards patrolling scenario [18].
The Sol group are instances adapted from the Solomon dataset [22]. The HHC
group are instances from a home health care scenario [20]. Finally, the Mov group
originates from instances of the vehicle routing problem with time windows [5].
The total number of instances accumulated in these four groups is 374.

4.2 Overview of Greedy Heuristic GHI

A greedy constructive heuristic tailored for the WSRP with time-dependent
activities constraints was proposed in [3]. The algorithm starts by sorting visits
according to some criteria such as visit duration, maximum finish time, maximum
start time, etc. Then, it selects the first unassigned visit in the list and applies an
assignment process. For each visit ¢, the assignment process selects all candidate
employees who can undertake visit ¢ (considering required skills and availability).
If the number of candidate employees is less than the number of employees
required for visit ¢, this visit is left unassigned. If visit ¢ is assigned, visits that
are dependent on visit ¢ are processed. These dependent visits ¢ jump ahead
in the assignment process and are themselves processed in the same way (i.e.
processing other visits dependent on ¢’). The GHI stops when the unallocated
list is empty and then returns the solution.

4.3 Computational Results

The proposed RDCR method was applied to the 374 instances and the obtained
solutions were compared to the results reported by the greedy heuristic (GHI).
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Table 1. Statistical result from Related-Samples Wilcoxon Signed Rank Test provided
by SPSS

Total N 374
# of (RDCR < GHI), RDCR is better than RDCR 209
# of (RDCR > GHI), GHI is better than GHI 165
Test Statistic 37,806
Standard Error 2,092
Standardized Test Statistic 1.311
Asymp. Sig. (2-sided test) .190
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Fig. 2. Number of best solutions obtained by GHI and RDCR for each dataset.

First, the related-samples Wilcoxon Signed Rank Test [8] was applied to
examine the differences between the two algorithms, GHI and RDCR. The
significant level of the statistical test was set at @ = 0.05. Results of this
statistical test using SPSS are shown in Table 1 showing that RDCR produced
better solutions for 209 out of the 374 instances. However, there was no statistical
significant difference on the solution quality between the two methods.

Figures 2 and 3 compare the number of best solutions found by each of the
two methods and the average relative gap to the best known solutions. In these
figures, results are grouped by dataset. Note that the relative gap is calculated
by A = |z — z%|/|2%| where z represents an objective value of a solution and z®
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Fig. 3. Average relative gap (relative to the best known solution) obtained by GHI and
RDCR. The lower the bar the better, i.e. the closer to the average best known solution.
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is an objective value of the best known solution. Regarding the number of best
solutions, RDCR produced better results than GHI on three datasets: Sec, Sol
and HHC. Results also show that RDCR found lower values of average relative
gap on the same three datasets. On the Mov dataset, GHI performed better in
terms of number of best solutions and average relative gap.

On datasets Sec and Sol, RDCR found slightly better results than GHI as
shown by the number of best solutions and the average relative gap. In dataset
Sec, RDCR and GHI gave 11% and 18% of average relative gap respectively. This
indicates that both algorithms provide good solution quality compared to the
best known solution. On the other hand, both RDCR and GHI produced 1,216%
and 1,561% respectively for the average relative gap to the best known solution
in dataset Sol. This implies that both algorithms failed to find solutions that
are of competitive quality to the best known solution, but both algorithms are
competitive between them. It can be seen that instances in this Sol dataset are
particularly difficult as neither the GHI heuristic nor the RDCR decomposition
technique could produce solutions of similar quality to the best known solution.

On dataset HHC, the average relative gap of RDCR is much lower than the
average gap of GHI. The results show that RDCR has 8.6% relative gap while
GHI has 100%. For the HHC instances, RDCR found the best known solution
for 9 instances and GHI found the best known solution for the other 2 instances.
For these two instances, average relative gap of RDCR is 47%. However, in the 9
best solutions of RDCR, average gap of GHI is 109%. A closer look at the Sol
dataset showed that these instances have priority levels defined for the visits. It
turns out that GHI does not have sorting parameters to support such priority for
visits because the algorithms sorting parameters focus on the time and duration
of visits. On the other hand, RDCR implemented priority for visits within the
MIP model. This could be the reason that explains the better results obtained
by RDCR on this particular dataset.

On dataset Mov, GHI gives better performance. GHI delivers 8 better solutions
(7 best known) from 15 instances while RDCR gives 7 better solutions (4 best
known). The average relative gap of GHI is 310% which is less than the 486%
relative gap provided by RDCR. There are 5 instances which best known solution
is given by the mathematical programming solver. For these, the average relative
gaps to the best known given by GHI is 315% and by RDCR is 36% respectively.
It was found that the decomposition method does not show good performance
on this particular Mov dataset, especially on instances with more than 150
visits. The main reason is that the solver cannot find optimal solutions to the
sub-problems within the given time limit. Therefore, the size of sub-problems
in these Mov instances should be decreased to allow for the sub-problems to be
solved to optimality.

Figure 4 shows the cumulative distribution of RDCR and GHI solutions over
the relative gap. It shows the number of solutions which have a relative gap to the
best known less than the corresponding value in the X-axis. Note that 0% relative
gap refers to the best known solution. For this case, GHI provides 115 best known
solutions which is better than RDCR which provides 84 best solutions. This is
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Fig. 4. Cumulative distribution of GHI and RDCR solution over the relative gap.

represented by the two leftmost points in the figure. However, from the value of
10% relative gap onwards, RDCR delivers larger number of solutions than GHI.
Overall, apart from the overall number of best known solutions, RDCR provides
higher number (or equal) of solutions than GHI for different values of relative gap.
For example, if the solution acceptance rate is set at 50% relative gap, RDCR
produces 236 solutions of this quality while GHI produces 207. Hence, RDCR
delivers overall more solutions with acceptance rate up to 100% gap to the best
known.

Figure 5 shows the distribution of computational time spent by the proposed
RDCR method when solving the WSRP instances considered here. These results
show that RDCR, spends more computational time on most of the HHC instances
with an overall average time spent on each instance of 2.4 minutes. Note that
the highest computational time observed in these experiments is less than 74
minutes. On the other hand, the computational time spent by GHI is much
shorter, taking less than one second on each instance. Therefore, GHI is clearly
superior to RDCR in terms of computational time.

4.4 Performance According to Problem Difficulty

This part seeks to better understand the performance of the two algorithms
GHI and RDCR. For this, a more detailed analysis is conducted of the instances
in which each of the algorithms performs better than the other one. Then, the
problem features are analysed in detail in order to unveil any conditions under
which each of the algorithms appears to performs particularly well.

Table 2 presents the main characteristics of the problem instances in three
groups. Set All has the 374 instances. Set GHI has all problem instances in which
GHI produced better solutions than RDCR. Set RDCR has all problem instances
in which RDCR produced better solutions than GHI. The table shows average and
standard deviation values for 8 problem characteristics: the number of employees
(#Emp), the number of visits (#Visit), visit duration (VisitDur), the number
of time-dependent activities (#TimeDep), employee-visit ratio (Emp/Visit),
employee available hours (EmpHours), average visit time window (VisitWindow),
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Fig. 5. Box and Whisker plots showing the distribution of computational time in
seconds spent by RCDR for each group of instances. The wider the box the larger the
number of instances in the group. The orange straight line presents the upper limit in
the computational time spent by GHI (fixed to 1 second). The Y-axis is in logarithmic
scale.

and planning horizon (Horizon). These values are presented in the table in the
format Mean + SD. Those problem characteristics for which there is a statistical
significant difference between Set GHI and Set RDCR (using t-test at significance
level o = .05) are marked with *.

It seems obvious to relate the difficulty of a particular problem instance to
it size, which can be measured by the number of employees and the number of
visits. It could also be assumed that the length of the planning horizon might
have some influence on the difficulty of the problem in hand, although perhaps
to a lesser extent than the number of employees and visits. However, the analysis
presented here seeks to identify other problem characteristics that might have an
effect of the difficulty of the instances when tackled by each of the algorithms
RDCR and GHI. For example, it can be argued that having visits with longer
duration or large number of time-dependent activities could make the problem
instance more difficult to solve because of the higher likelihood of time conflicts
arising. In contrast, the difficulty could decrease for a problem instance that has
higher employee to visit ratio (i.e. more workers to choose from), longer employee
working hours or wider visit time windows (i.e. more flexibility for the assignment
of visits).

Considering the above, it seems from Table 2 that instances in Set RDCR are
less difficult than those in Set GHI. In respect of the problem size, instances in Set
RDCR are on average smaller than those in Set GHI, on the number of employees
(#Emp) and also the number of visits (#Visit). In addition, instances in Set
RDCR have shorter visit duration (VisitDur) and lower number of time-dependent
activities (#TimeDep) than instances in Set GHI. Moreover, note that although



16 Laesanklang, W.; Landa-Silva, D.; Castillo-Salazar, J. A.

Table 2. Summary of the problem features for different groups of problem instances.
The Set All includes all instances. The Set GHI includes the instances in which GHI
produces better solutions than RDCR. The Set RDCR includes the instances in which
RDCR produces better solutions than GHI. Values are displayed in the format mean +
std. dev.

Set All Set GHI Set RDCR

# Instances in Group 374 165 209
Problem Size

#Emp* 22.5 + 22.55 31.37 £ 27.86 15.49 &+ 16.45

#Visit* 87.22 + 53.23 117.6 + 54.65 63.26 4+ 37.83
Characteristics on Visits and Employees

VisitDur* 214.3 4+ 198.8 254.6 &+ 221.6 182.4 £ 173.4

#TimeDep* 13.95 £ 10.03 18.87 £ 10.63 10.37 + 7.91

Emp/Visit* 1.164 4+ 0.072 1.156 £ 0.074 1.172 + 0.079

EmpHours 20.8 £ 11.93 21.66 + 11.45 20.11 + 12.31
VisitWindow 392.9 4+ 297.6 406.9 + 325.9 381.9 + 274.2

Horizon 1248 + 715.9 1300 £ 687.2 1207 £ 738.4

* indicates statistical significant difference using ¢-test at significance
level o = .05.

the averages values of employee-visit ratio (Emp/Visit) are very similar for sets Set
RDCR and Set GHI, the difference is still statistically significant. The differences
between the two sets in respect of the remaining three problem characteristics,
employee available hours (EmpHours), visit time window (VisitWindow) and
planning horizon (Horizon) were found to be not statistically significant.

Then, from the above analysis it can be argued that the RDCR, approach per-
forms better than GHI on instances of lower difficulty level. However, establishing
the boundary between lower and higher difficulty is not so clear given the overlap
in values for the 8 problem characteristics between Set RDCR and Set GHI
Hence, the proposal here is to recommend the use of RDCR for instances with
less than 22.5 employees and less than 87 visits (the average values considering
all 374 instances), and the use of GHI otherwise. This recommendation can be
used as a first step for choosing between RDCR and GHI.

4.5 Performance on Producing Acceptable Solutions

The previous subsection sought to identify a boundary in problem difficulty
between those instances in which each of the methods RDCR and GHI performs
better than the other one. This subsection seeks to identify instances for which
both algorithms can deliver acceptable solutions. For this, a solution that has a
relative gap of at most 100% with respect to the best known solution is considered
acceptable, otherwise it is labelled unacceptable.

The first part of the analysis splits the problem instances into two groups.
The group Accept Heur has instances for which an acceptable solution was found
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Table 3. Summary of the problem features for different groups of problem instances.
The group Accept Heur includes instances for which an acceptable solution was found
by at least one of the two heuristic algorithms RDCR and GHI. The group Reject Heur
includes instances for which none of RDCR or GHI delivers an acceptable solution.
Values are displayed in the format mean + std. dev.

Reject Heur Accept Heur

# Instances in Group 79 295
Problem Size

#Emp* 9.911 + 4.249 25.87 £+ 25.40
#Visit* 49.39 + 21.17 97.34 + 54.75
Characteristics on Visits and Employees

VisitDur* 43.91 £+ 53.54  259.89 + 199.09
#TimeDep* 6.32 £ 3.11 15.99 + 10.27
Emp/Visit 1.168 + 0.048 1.164 £ 0.078
EmpHour* 18.02 + 13.69 21.54 £ 11.34
VisitWindow 345.60 £ 387.58 405.58 £ 268.43
Horizon* 1081.41 + 821.62 1292.61 + 608.71

* indicates statistical significant difference using t-test at
significance level a = .05.

by at least one of the two heuristic algorithms RDCR and GHI. The group
Reject Heur has instances for which none of RDCR or GHI delivers an acceptable
solution. Basically, this analysis seeks to identify a boundary in problem difficulty
for which the methods RDCR and GHI can perform better than an exact solver.
Table 3 shows the problem characteristics for the two groups Accept Heur and
Reject Heur. As before, each row shows the average and standard deviation values
for each of 8 problem characteristics. Those problems characteristics for which
there is a statistical significant difference between the two groups (using ¢-test at
significance level o = .05) are marked with *.

The results in Table 3 show that there are significant differences between the
groups Accept Heur and Reject Heur on six problem characteristics. That is, the
group Accept Heur shows higher mean values than the group Reject Heur for
the number of employees (#Emp), the number of visits (#Visit), visit duration
(VisitDur), the number of time-dependent activities (#TimeDep), employee
available hours (EmpHours), and planning horizon (Horizon). These results
indicate that GHI and RDCR. do not provide acceptable solutions on the smaller
instances with around 10 employees and 50 visits. However, these algorithms
do well on the larger instances with around 26 employees and 97 visits. This is
because the exact solver performs very well on the smaller instances but not so
well when the problem size grows. Hence, the proposal here is to recommend the
use of the exact solver for problems with less than 15 employees and 70 visits.
For larger problem instances the solver may spend too long time finding solutions
hence it is better to use GHI or RDCR considering the recommendation in the
previous subsection.
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Table 4. Summary of the problem features for different groups of problem instances.
The group Accept GHI includes instances for which an acceptable solution was found
by algorithm GHI, otherwise the instance is included in group Reject GHI. Values are
displayed in the format mean =+ std. dev.

Reject GHI Accept GHI

# Instances in Group 37 258
Problem Size

#Emp* 15.97 + 31.23 27.29 + 24.19
#Visit* 54.86 £+ 49.79 103.43 £+ 52.77
Characteristics on Visits and Employees

VisitDur* 42.06 + 53.77 291.13 + 192.69
#TimeDep* 8.00 £ 10.80 17.14 + 9.69
Emp/Visit 1.1471 £ 0.07873  1.166 + 0.0779
EmpHour 23.19 + 20.27 21.30 +£ 9.44
VisitWindow 462.90 £+ 468.99  397.36 + 226.01
Horizon 1391.78 + 1216.20 1278.38 + 566.81

“ indicates statistical significant difference using t-test at sig-
nificance level a = .05.

The second part of the analysis analysis splits the 295 problem instances from
the group Accept Heur into groups according to whether the particular method
GHI or RDCR produces acceptable solutions or not. As before, a solution that
has a relative gap of at most 100% with respect to the best known solution is
considered acceptable, otherwise it is labelled unacceptable. Table 4 shows the
split for method GHI into groups Accept GHI with 258 instances and Reject
GHI with 37 instances. There are significant differences between the two groups
on four characteristics: the number of employees (#Emp), the number of visits
(#Visit), visit duration (VisitDur) and the number of time-dependent activities
(#TimeDep) with larger values for the group Accept GHI. These results confirm
that GHI provides acceptable solutions on the larger instances but it struggles to
produce acceptable solutions for some smaller instances.

Table 5 shows the split for method RDCR. into groups Accept RDCR with 264
instances and Reject RDCR with 31 instances. There are significant differences
between the two groups on three characteristics: the number of employees (#Emp),
visit duration (VisitDur) and employee-visit ratio (Emp/Visit). The size of
instances in group Accept RDCR seems smaller than in group Reject RDCR as
given by #Emp and #Visit, although only for #Emp the difference is significant.
Instances in the group Reject RDCR have shorter visit duration and lower
employee-visit ratio. A problem instance could become more difficult to solve if
there are less workers to be assigned to visits. These results confirm that the
performance of RDCR on providing acceptable solutions suffers as the size of the
problem grows.

From the above analysis on producing acceptable solutions, some recommen-
dations can be drawn in respect of what type of approach to use according to
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Table 5. Summary of the problem features for different groups of problem instances.
The group Accept RDCR includes instances for which an acceptable solution was found
by algorithm RDCR, otherwise the instance is included in group Reject RDCR. Values
are displayed in the format mean 4 std. dev.

Reject RDCR Accept RDCR

# Instances in Group 31 264
Problem Size

#Emp* 46.74 + 54.91 23.42 + 17.88
#Visit 155.6 + 59.01 95.20 + 53.95
Characteristics on Visits and Employees

VisitDur* 41.19 +62.94  285.57 4+ 193.80
#TimeDep 15.35 + 7.38 16.07 £ 10.57
Emp/Visit* 1.077 £ 0.0654  1.174 £ 0.0731
EmpHour 20.82 + 16.58 21.62 + 10.60
VisitWindow 407.11 + 453.92  405.40 + 238.84
Horizon 1249.41 + 995.01 1297.68 + 636.26

" indicates statistical significant difference using t-test at
significance level a = .05.

Table 6. Type of approach recommended according to the problem size and number of
instances in each size class.

Algorithm Exact Method RDCR Heuristic GHI
#Instance 79 37 227 31
Problem Size Very Small Small Medium Large
Average #Emp  9.91 15.97 23.42 - 27.29 49.74
Average #Visit  49.39 54.86 95.20 - 103.43  155.6

the problem size. Table 6 shows the type of approach recommended according
to the problem size and number of instances in each size class. The first row of
the table shows the suggested algorithm for each size class, Heuristic refers to
either GHI or RDCR. For each size class, the table shows the number of instances
(#Instance), the problem size label, the average number of employees (Average
#Emp) and the average number of visits (Average #Visit). It is suggested that
to use the exact method to solve very small instances, to use RDCR to solve
small and medium instances and to use GHI to solve medium and large instances.
The problem size class with the largest number of instances is the medium class
for which the two heuristic algorithms, GHI and RDCR, find acceptable solutions.
These recommendations in Table 6 were drawn from looking at the reject groups
in Tables 3 to 5. Both GHI and RDCR do not perform well when solving small
instances, given that group Reject Heur in Table 3 has the smallest average
problem size. RDCR should be used for instances larger than those in group
Reject Heur, Table 4 shows that the Reject GHI group has average problem size
larger than the Reject Heur group and smaller than the Reject RDCR group.
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GHI tends to be effective in the largest instance group, it can be seen from Table
5 that the Reject RDCR group has the largest average problem size compared to
the Reject GHI group and Reject Heur. However, both RDCR and GHI have
similar performance as their acceptable solutions are similar in number.

5 CONCLUSION

This paper presented a decomposition method for mixed integer programming to
solve instances of the workforce scheduling and routing problem (WSRP) with
time dependent activities constraints. The method uses heuristic partition and
selection to split a problem into sub-problems. A sub-problem solution gives a
path or sequence of visits for each employee. Each sub-problem is individually
solved by the MIP solver. Within a sub-problem solution or path, all constraints
are satisfied. Paths may conflict with paths from other sub-problems, i.e. two or
more different sequences of visits but assigned to the same employee. This can be
fixed by a conflict repair process. However, conflict repair requires modification
to support time-dependent activities constraints since the repairing process may
rearrange assignment time. Thus, the modification maintains the layout of time-
dependent activities by fixing the assigned time of the time-dependent activities.
Therefore, the solution from conflict repair does not violate any constraints.

The proposed RDCR approach is applied to solve four WSRP scenarios with a
total of 374 instances. The experimental results showed that RDCR is able to find
better solutions than the GHI heuristic for 209 out of the 374 instances. However,
the statistical test showed that RDCR does not perform significantly different to
the deterministic greedy heuristic (GHI). RDCR showed better performance on
three out of four datasets. The computational time required to solve a problem
instance with RDCR ranged from less than a second to 74 minutes. The average
computational time was under 3 minutes. Overall, the proposed RDCR with
time-dependent modification is able to effectively solve WSRP instances with
time-dependent activities constraints. The method found competitive feasible
solutions to every instance and within reasonable computational time.

The paper also conducts a study to investigate the performance of RDCR
in respect of some problem features related to the problem size. The analysis
has shown that RDCR provides better solutions particularly in smaller instances.
Hence, instances with less than 87 visits and less than 22 workers should be
tackled by RDCR to obtain higher quality solutions. Furthermore, another aim of
the study was to determine the class of problem size that can be more effectively
tackled with the heuristic approaches RDCR and GHI. For this, acceptable
solutions are considered to be those that have a relative gap of no more than
100% with respect to the best known solution. The analysis revealed that RDCR
and GHI work effectively in a wide range of problem sizes. The GHI method
appears to be less effective on smaller instances while RDCR appears to be less
effective on larger instances. Therefore, in order to produce acceptable solutions
as defined here, it is recommended to use an exact solver for very small instances,
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to use RDCR for small and medium instances and to use GHI for medium and
large instances.

As future work it is suggested to improve the computational time of the
proposed RDCR approach. Such improvement might be achieved by applying
different methods to partition the set of visits or by using more effective workforce
selection rules. Also, determining the right sub-problem size could be interesting
as it could help to balance solution quality and time spent on computation.
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