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ABSTRACT 

In this paper, we investigate the adaptation of the Greedy Randomized Adaptive Search Procedure 

(GRASP) and Iterated Greedy methodologies to the Capacitated Clustering Problem (CCP). In 

particular, we focus on the effect of the balance between randomization and greediness on the 

performance of these multi-start heuristic search methods when solving this NP-hard problem. The 

former is a memory-less approach that constructs independent solutions, while the latter is a memory-

based method that constructs linked solutions, obtained by partially rebuilding previous ones. Both 

are based on the combination of greediness and randomization in the constructive process, and 

coupled with a subsequent local search phase.  We propose these two multi-start methods and their 

hybridization and compare their performance on the CCP. Additionally, we propose a heuristic based 

on the mathematical programming formulation of this problem, which constitutes a so-called 

matheuristic. We also implement a classical randomized method based on simulated annealing to 

complete the picture of randomized heuristics. Our extensive experimentation reveals that Iterated 

Greedy performs better than GRASP in this problem, and improved outcomes are obtained when both 

methods are hybridized and coupled with the matheuristic. In fact, the hybridization is able to 

outperform the best approaches previously published for the CCP. This study shows that memory-

based construction is an effective mechanism within multi-start heuristic search techniques. 

 

Keywords:    Capacitated Clustering, GRASP, Matheuristic, Graph partitioning. 
 
 

1. Introduction 

Multi-start heuristic procedures were originally conceived as a way to exploit local or neighborhood 

search, by simply apply the search multiple times starting from different random initial solutions. 

Modern multi-start heuristic methods for combinatorial optimization problems usually incorporate a 

powerful form of diversification in the generation of solutions to help overcome local optimality. 

Without this diversification, such methods can become confined to a small region of the solution 

space, making it difficult, if not impossible, to find a global optimum. Most of such methods perform 

these steps iteratively: apply a randomized constructive method followed by a local search procedure.  

In these methods, diversification comes from the iterative randomized construction of solutions.  

Multi-start heuristic methods for combinatorial optimization can be classified as suggested by Martí 

et al. (2013) in memory-based and memory-less procedures. GRASP (Greedy Randomized adaptive 

Search procedure) is probably the best well-known memory-less multi-start heuristic method 

(Resende and Ribeiro 2010), while tabu search (Glover and Laguna 1997) is nowadays a reference for 

memory based approaches.  In this paper, we focus on both memory-based and memory-less multi-

start heuristic methods, and investigate the effect of randomization in these designs.  We use the 

Capacitated Clustering Problem (CCP), an NP-hard combinatorial optimization problem, as a test case 

for our proposals and findings. This paper is the second part of our study on the CCP, initiated in 

Martínez-Gavara et al. (2015), with two main objectives. The first one is to improve the results of the 

previous methods. The second objective is to compare memory-based with randomized constructive 

algorithms. 
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Many constructive heuristic algorithms for combinatorial optimization build a solution incrementally, 

by adding at each step, an element to the partial solution under construction. The way in which this 

element is selected, constitutes the distinguishing component of the constructive method.  In this 

paper, we are interested in the interaction between greediness and randomization within the 

constructive method.  Since there is no guarantee that a greedy randomized approach will produce a 

solution that is locally optimal, local search if often applied after the construction step in an attempt 

to find an improved solution that is also locally optimal. This was first proposed by Feo and Resende 

(1989) for the Set Covering Problem and was later referred to as GRASP. 

Strategic oscillation (SO) is a methodology closely linked to the origins of tabu search, and operates by 

directing the local search moves in relation to a critical level identified in the construction stage. This 

methodology provides an interesting alternative to improve traditional constructive approaches. In 

particular, we consider a constructive/destructive type of strategic oscillation, where constructive 

steps “add” elements and destructive steps “drop” elements from the solution. The alternation of 

constructive and destructive steps is a successful strategy to enhance of such traditional constructive 

procedures. In this paper, we focus on a simplified and effective SO method known as Iterated Greedy 

(IG). This method generates a sequence of solutions by iterating over a greedy constructive heuristic 

using two main phases: destruction and construction. IG is a memory-based multi-start easy to 

implement that has exhibited state-of-the-art performance in some settings (Ruiz and Stützle, 2008). 

In this paper, we investigate these two successful methodologies in multi-start methods: GRASP and 

Iterated Greedy, and their hybridization. The former constructs independent solutions, while the latter 

can be viewed as a constructive method of linked solutions. These are two very different approaches 

to construct a solution. Both methods combine greediness and randomization in different ways.  The 

aim of this investigation is to identify ways to exploit better greediness and randomization. For our 

experiments, we consider the CCP, which is a difficult optimization problem. However, our objective 

is to identify effective strategies and patterns that could succeed in other settings. Hence, the 

intended contribution of this paper is to exploit greediness and randomization within the context of 

multi-start heuristic search effectively. In a broader sense, we can say that we are comparing memory-

less and memory-based designs within constructive methods. 

We complete this introduction with the next subsection where the CCP is described both in general 

and in the context of the handover minimization in mobility networks, and illustrate it with an 

example. Section 2 describes the solution methods for this problem. It is divided into several 

subsections, where the first one, Subsection 2.1, is devoted to previous GRASP methods for the CCP. 

The main contributions of our paper are described in the following subsections. In particular, 

Subsection 2.2 describes a new 2-1 neighborhood to improve solutions, while Subsection 2.3 describes 

the destructive algorithms for IG. GRASP designs only incorporate constructive neighborhoods but, as 

mentioned, IG incorporates the notion of destructing a solution. Finally, Subsection 2.4 is devoted to 

our IG algorithms, including a hybrid heuristic of both previous methods called IG-GRASP for which we 

also adapt the filtering mechanism introduced in Laguna and Martí (1999) to make the search more 

efficient. Our final contribution is a post-processing based on the integer linear programming 

formulation of the CCP. Section 3 describes how we enhance the standard formulation by adding valid 

inequalities adapted from the literature. In particular, we propose a matheuristic procedure that in 

some cases is able to improve the best solution found with the hybridized heuristic by solving the 

enhanced formulation on a fraction of the original variables. The paper finishes with a computational 
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study with extensive experimentation, which reveals the contribution of the memory-based elements, 

and the associated conclusions. 

1.2 The Capacitated Clustering Problem 

The problem of maximizing diversity deals with selecting a subset of elements from a given set in order 

to maximize the diversity among the selected elements; see Glover et al. (1995). Several models have 

been proposed to deal with this combinatorial optimization problem. All of them require a diversity 

measure, typically based on a distance function. The definition of this distance between elements is 

customized to specific applications. As described in Glover et al. (1998), maximization diversity models 

have applications in plant breeding, social problems, ecological preservation, pollution control, 

product design, capital investment, workforce management, curriculum design, and genetic 

engineering. The most studied model related to diversity is probably the Maximum Diversity Problem 

(MDP) also known as the Max-Sum Diversity Model (Ghosh 1996), in which the objective is to 

maximize the sum of the distances between the selected elements. The Max-Min Diversity Problem 

(MMDP), in which the minimum distance between the selected elements is maximized, has been also 

well documented in recent studies; see Resende et al. (2010). 

In this paper we consider an interesting variant within the diversity models. The aim of the Capacitated 

Clustering Problem (CCP) is to find a partition of the set of points into different groups in order to 

maximize some weighted measure of the distance among the points in the same group. Early 

developments on clustering were devoted to a different variant. Osman and Christofides (1994) 

introduced a variant of the clustering problem where the objective is to minimize the total scatter of 

objects from the 'centre' of the cluster to which they have been allocated. A simple constructive 

heuristic, a λ-interchange generation mechanism, a hybrid simulated annealing (SA) and tabu search 

(TS) algorithm which has computationally desirable features using a new non-monotonic cooling 

schedule, were proposed. França et al. (1999) followed upon the same variant in which the objective 

is to find 𝑝 customers, called medians, from which the sum of the distances to all other customers in 

the cluster is minimized. In this article, an adaptive tabu search approach is applied to solve the 

problem. More recently, Scheuerer and Wendolsky (2006) developed a scatter search algorithm for 

the same problem. Chaves and Lorena (2010) considered a different variant in which each cluster has 

a center but they maximize the diversity with respect to this center. Other successful hybridizations 

of the tabu search and simulated annealing methodologies are Swarnkar and Tiwari (2004) and Mishra 

et al. (2008). 

One of the most recent applications of the CCP can be found in the context of facility planners at mail 

processing and distribution centers within the US Postal Service. In particular, in the design of the 

zones to help rationalize the bulk movement of mail, see Deng and Bard (2011). Morán-Mirabal et al. 

(2013) tackled a very interesting real-world problem, which as shown in Martínez-Gavara et al. (2015) 

turns out to be an application of the CCP. Hence, we use this real-world application in the context of 

mobility networks for the investigation presented here.  

Any mobile transceiver such as cell phones, tablets, portable computers, etc. needs a radio signal for 

communication among such devices.  Furthermore, these mobile transceivers move between areas or 

cells that are covered by fixed base stations, and they may need to connect over time to several 

different base stations. The transfer of connection from one base station to another is called a 
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handover.  A mobility network (see Fig. 1) also contains some radio network controllers (RNC), which 

control many of the base station operations, including traffic and handover. Handovers between base 

stations connected to different RNCs tend to fail more often than handovers between base stations 

connected to the same RNC. Handover failures result in dropped connections and therefore should be 

minimized. To sum up, the Handover Minimization Problem consists to assign towers to RNCs such 

that RNC capacity is not violated and the number of handovers between base stations connected to 

different RNCs is minimized. The set of base stations assigned to a RNC can be viewed as a cluster, and 

the minimization of handovers between different clusters is equivalent to the maximization of 

handovers within the same cluster. Therefore, this problem is equivalent to the CCP. 

 

Fig 1. Typical Mobility Network. 

We wish to partition a set 𝑉 of 𝑛 nodes into 𝑝 clusters such that the sum of benefits 𝑐𝑒,  of edges 𝑒 ∈

𝐸 within each cluster is maximized, and the sum of the node weights, 𝑤𝑖 ≥ 0 of nodes 𝑖 ∈ 𝑉 within 

the same cluster is within some integer capacity limits, 𝐿 and 𝑈. 

Figure 2 shows a small example of a CCP with nine nodes and benefits associated with the edges. We 

consider three clusters with a capacity bound between 3 and 5 for each one. Nodes are numbered 

from 0 to 8. Assume that the node weights are 𝑤𝑖 = 1 for 𝑖 ∈ {0,1,4,5,6,7,8}, 𝑤2 = 2 and 𝑤3 = 3.  

  

Fig 2.  Small example. 

 

Fig 3. Example of feasible solution to a CCP. 
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Figure 3 shows a feasible solution to this CCP. It consists of three clusters: 𝑉1 = {3,4,8}, 𝑉2 = {1,2,7} 

and 𝑉3 = {0,5,6}, where the sum of the node weights within each cluster is 5, 4 and 3, respectively. 

This feasible solution has an overall benefit of 19.  

2. Methods 

In this section, we first describe the three previous GRASP methods proposed for the CCP, and then 

describe our new methods. Note that these three GRASP methods implemented a local search based 

on exchange and insertion moves. We propose a new GRASP in which the local search implements a 

2-1 move (two elements are exchanged with a single element from another cluster). 

2.1 Previous GRASP methods 

Three different GRASP methods have been proposed for the Capacitated Clustering Problem:  

 PrevGRASP1: Deng et al. (2011) proposed a GRASP with a post-processing stage by using Path-

Relinking. 

 PrevGRASP2: Morán-Mirabal et al. (2013) also applied GRASP with path-relinking and included 

the variant known as evolutionary path-relinking. 

 PrevGRASP3: Martínez-Gavara et al. (2015) proposed a simplified GRASP that provides high-

quality solutions in short computing times. 

In the construction phase of the PrevGRASP1 (Deng and Bard, 2011), the 𝑝 clusters are first seeded 

with the heaviest weight edges algorithm (HWE), and then completed with a greedy randomized 

procedure. Specifically, the HWE identifies the 𝑝 nodes with the largest weights and assigns them, 

separately, to the 𝑝 clusters. The heaviest edges incident to these nodes are then identified, and their 

endpoints are assigned to the corresponding clusters. An alternative constructive method, labeled 

CMC, also proposed by Deng and Bard (2011) was shown to be inferior to HWE and therefore we do 

not consider it here. 

Let us consider the example in Figure 2 to illustrate the behavior of the HWE algorithm. HWE produces 

clusters containing two nodes. Initially, the heaviest node (node 3) is assigned to cluster V1, while the 

second heaviest node (node 2) is assigned to cluster V2. As long as the remaining nodes have all the 

same weight, cluster 3 is left empty. In the next step, the heaviest unassigned edge incident with each 

cluster is assigned to it. Thus, edge (3,4), with a weight of 4,  is assigned to cluster V1, similarly edge 

(1,2) is placed into V2. Finally, the heaviest unassigned edge (1,7) is then assigned to V3. At this point, 

a candidate list 𝐶𝐿 of elements is built to continue the construction process according to the GRASP 

methodology. In particular, 𝐶𝐿 is formed with the nodes and edges (pairs of nodes) that can be 

inserted into a solution cluster without exceeding the upper capacity limit 𝑈. At the end of the 

construction phase the three clusters are 𝑉1 = {3,4,8}, 𝑉2 = {1,2,7} and 𝑉3 = {0,5,6}. 

In the second phase of PrevGRASP1, the authors used three different neighborhoods to improve a 

constructed solution 𝑥: 𝑁1(𝑥), 𝑁2(𝑥), and 𝑁3(𝑥). Let  𝑉𝑘 be the set of nodes in cluster 𝑘 of this 

solution, and let 𝑊𝑘 be the sum of the weights of the nodes in 𝑉𝑘 (i.e., 𝑊𝑘 = ∑ 𝑤𝑖𝑖∈𝑉𝑘
); then, 𝑊𝑘 must 

be within the capacity limits: 𝐿 ≤ 𝑊𝑘 ≤ 𝑈 for 𝑘 = 1, 2, … , 𝑝. 𝑁1(𝑥) is the result of extended insertion 

moves, which consider temporarily infeasible moves. If node 7, in the example shown in Figure 3, is 
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moved from cluster 𝑉2 to cluster 𝑉1 but there is not enough capacity in cluster 𝑉1 for the node 7 

(weight of node 7 is 1, and the sum of the weights in cluster 𝑉1 is 5). Then, instead of discarding the 

move, node 4 in 𝑉1 could be moved from cluster 1 to cluster 𝑉3, which has enough capacity for 

including it, and then node 7 is placed in cluster 𝑉1. In addition, the extended insertion move is 

feasible. Applying it to the solution from the construction phase, this movement 𝑁1(𝑥) produces the 

solution of Figure 4.  

 

 

Fig 4. Neighborhood 𝑁1(𝑥) in PrevGRASP1. 

 

Fig 5. Neighborhood 𝑁2(𝑥) in PrevGRASP1. 

 

𝑁2(𝑥) consists of edge insertions. Given an edge (𝑖, 𝑗) ∈ 𝐸, two cases may arise; both nodes i and j 

are in the same cluster, or the edge spans two clusters. The edge insertion considers moving both 

nodes to another cluster, as long as the resulting solution remains feasible. In the example case shown 

in Figure 3, edge (7, 8) spans two different clusters, 𝑉1 and 𝑉2. The resulting solution considers moving 

both nodes to cluster V3, obtaining the graph shown in Figure 5 in which dashed edges carry additional 

benefits. Only capacity-feasible moves are considered. Finally, 𝑁3(𝑥) implements a classical swap 

move, that is, one in which a node 𝑖 is moved from a cluster 𝑘 to a cluster 𝑠, and simultaneously a 

node 𝑗 is moved from the cluster 𝑠 to the cluster 𝑘.  As in the other neighborhoods, the move is 

performed only if the resulting solution is feasible.  

In their computational experiments, Deng and Bard (2011) compared their designs and concluded that 

the combination of HWE with Randomized Variable Neighborhood Descent (RVND) resulted in the 

best overall performance. In this improvement method the neighborhood to be searched in the next 

iteration is probabilistically selected, where the probability of selection is linked to the merit of each 

neighborhood as determined by the quality of the solutions found during the search. We use this 

variant for the purpose of comparison later in this paper. 

In PrevGRASP2 (Morán-Mirabal et al. 2013) a GRASP with Path Relinking is proposed for the handover 

minimization in mobile networks problem, which as discussed above, is equivalent to the CCP. A 

randomized greedy algorithm constructs a solution one by assigning one base station (node) to an 

RNC (cluster) one at a time. RNCs are initially permuted at random and the algorithm scans the RNCs 

in the permutation order, dealing with only one RNC at a time. Let 𝑘 be the current RNC being scanned. 

Base stations are assigned to the RNCs while they have available capacity. After scanning all available 

RNCs, it may occur that not all base stations are assigned. In such a case, a repair procedure is applied 

to seek feasibility. 
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Once the randomized greedy construction method produces an assignment vector, a local search 

algorithm attempts to improve the assignment by making changes on it. Specifically, Morán-Mirabal 

et al. (2013) proposed three local search algorithms, move-1, move-max, and swap-2. The three 

algorithms scan the base stations in increasing order of their total traffic (capacity of the nodes). For 

base station 𝑖, the procedure move-1 checks if there is any other RNC with enough capacity to 

accommodate 𝑖 such that the reassignment from its current RNC to the other one reduces the total 

handover count. If such RNC is found, base station 𝑖 is reassigned to it. In terms of the CCP, maximizes 

the sum of the benefits within each cluster. Consider the initial feasible solution 𝑉1 = {3,4,8}, 𝑉2 =

{1,2,7} and 𝑉3 = {0,5,6}, shown in Figure 3, then the move-1 reassigns node 8 from 𝑉1 to  𝑉3, obtaining 

a total benefit of 23 instead of 19, which is equivalent to reduce the total handover count from 26 to 

22, see Figure 6. In the case of move-1, the procedure is restarted at the first base station in the 

permutation (i.e. the base station with the smallest traffic), whereas in the case of move-max it 

proceeds to the next station in the permutation (i.e. the station with least traffic among those with 

more traffic than the just reassigned station). After scanning all base stations without finding any 

improving move, the procedure ends. In the case of swap-2, pairs of base station assignments are 

considered for swapping.  

 

Fig 6. Move-1 in PrevGRASP2. 

Finally, in PrevGRASP3 (Martínez-Gavara et al. 2015) a GRASP implementation is proposed in which 

only nodes are candidates in the construction process and two simple neighborhoods are combined 

into a deterministic Variable Neighborhood Descent (VND) design. The GRASP method starts by 

seeding the 𝑝 clusters 𝑉1, 𝑉2, … , 𝑉𝑝 with 𝑝 randomly selected nodes. Then, the clusters are explored in 

lexicographical order assigning elements until all of them satisfy the lower bound constraint. In the 

example shown in Figure 1, the clusters are initialized by the seeds 𝑉1 = {4}, 𝑉2 = {2}, 𝑉3 = {0}. For 

the first cluster, the candidate list is formed with all the unassigned nodes and the value 𝐼(𝑖, 1) is 

calculated for all pairs (𝑖, 1) of nodes and clusters 1. 𝑅𝐶𝐿1—that is, the restricted candidate list of 

nodes for cluster 1—is formed with all nodes 𝑖 for which 𝐼(𝑖, 1) is within a percentage 𝛼 ∈ ]0,1]  of 

the maximum value 𝐼𝑚𝑎𝑥 = max
𝑖∈𝐶𝐿

𝐼(𝑖, 𝑘) in 𝐶𝐿. Then the method selects randomly an element in 𝑅𝐶𝐿1, 

and performs the corresponding assignment. In this case simply example 𝑅𝐶𝐿1 = {3}, then node 3 is 

added to cluster 1. It is proceed in a similar way for the all clusters. Figure 7 shows the partial solution 

obtained at the end of this phase.  
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Fig 7. Initial partial solution in PrevGRASP3. 

The next step consists of assigning all the unassigned nodes to those clusters such that the sum of the 

weights of the elements plus the weight of the new node is lower than or equal to the upper bound 

U, in our example, 5. The candidate list 𝐶𝐿 is formed with the pairs (𝑖, 𝑘) with unassigned nodes 𝑖 and 

those clusters 𝑘 such that the solution remains feasible. The method proceeds to evaluate 𝐼(𝑖, 𝑘) for 

all (𝑖, 𝑘) in 𝐶𝐿, build 𝑅𝐶𝐿 with the (𝑖, 𝑘) pairs with an evaluation within a percentage 𝛼 ∈ ]0,1]  of the 

maximum value in 𝐶𝐿, and select one pair at random. It stops when all the nodes have been assigned 

to clusters. In the example above, suppose that the clusters are set by 𝑉1 = {3, 4}, 𝑉2 = {1, 2}, 𝑉3 =

{0,6,7,8}, so only the node 5 is left. In that case, the 𝐶𝐿 is formed by node 5 to cluster 𝑉3 with a 

contribution of 5, to cluster 𝑉1 with a contribution of 1 and no contribution to cluster 𝑉2. This 

constructive method is denoted by CM. 

Once a solution 𝑥 is obtained, the improvement method consists of a deterministic VND based on two 

neighborhoods, 𝑁0(𝑥) and 𝑁3(𝑥). The method determines first a best neighbor 𝑥′ of 𝑥 in 𝑁0(𝑥). If 𝑥′ 

is better than 𝑥, then 𝑥 is replaced with 𝑥′ and the method searches now for the best neighbor in 

𝑁0(𝑥′), thus performing a local search in 𝑁0 while it improves the current solution.  When the current 

solution 𝑥 cannot be improved in 𝑁0, then the method resorts to 𝑁3 and determines the best neighbor 

𝑥′ of 𝑥 in 𝑁3(𝑥).  If 𝑥′ is better than 𝑥, then the method comes back to search in 𝑁0(𝑥′); otherwise the 

VND finishes. In short, the algorithm performs a local search for the best solution in 𝑁0 and only resorts 

to searching 𝑁3 when the process is trapped in a local optimum found in 𝑁0. The improvement method 

considers only feasible moves. 

2.2 A new 2-1 Neighborhood  

The neighborhood 𝑁4(𝑥) explores the exchange of two nodes, say 𝑖 and 𝑗, in the same cluster 𝑘 with 

a node 𝑙 in another cluster 𝑠.  This move (Martínez-Gavara et al. 2015) can be simply called a 2-1 

exchange, and it makes possible to swap nodes that individually are not allowed for reasons of 

capacity, as illustrated below.  We propose a GRASP, called GRASP2-1, in which the constructive 

method is the one in PrevGRASP3 but the improvement method performs 2-1 exchanges.  
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Fig 8. Example of a 2-1 exchange in neighborhood 𝑁4(𝑥). 

Consider the example illustrated in Figure 8-left. Cluster 𝑉1 contains nodes 7 and 8 with weights 𝑤7 =

𝑤8 = 1 and does not have any remaining capacity. Cluster 𝑉3 contains node 4 with 𝑤4 = 1 and it has 

a remaining capacity of 1. The 2-1 exchange moves nodes 7 and 8 from 𝑉1 to 𝑉3, and node 5 from 

cluster 𝑉3 to 𝑉1, in such a way that results in a feasible solution (shown on the right part of Figure 8) 

with an improved objective function.  In GRASP2-1, the entire neighborhood of 2-1 exchanges 𝑁4(𝑥) 

is explored. For a given solution, all the 2-1 exchanges are evaluated and the best one, according to 

the objective function, is selected.  In other words, we implement a best-of-all strategy, in which the 

entire neighborhood is examined and the best move is selected in each iteration of the local search. 

Algorithm 1. Local search based on 𝑁4(𝑥), IM2-1. 

It is worth mentioning that we explored the implementation of a VND post-processing method in 

GRASP2-1, as it is implemented in PrevGRASP3.  However, preliminary results not reported here, 

showed the superiority of GRASP2-1 without this VND post-processing. We therefore limit GRASP2-1 

to apply the improvement method described above, called IM21, to the solutions constructed with 

the method in PrevGRASP3 described in the previous subsection. 
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1. Let x be the solution obtained with the constructive phase 
while(improve) 

 for(each cluster A) 

  for(each cluster B) 

2.               𝑖, 𝑗 two nodes in A 

3.              𝑘 one node in B 
4.              𝑚21 ← exchange 𝑖, 𝑗 from A to B and 𝑘 from B to A 
5.              𝑒𝑣𝑎𝑙(𝑖,𝑗)𝑘  ← profit of move 𝑚21 

                  if 𝑒𝑣𝑎𝑙(𝑖,𝑗)𝑘 provides the best value then 

6.                    𝑒𝑣𝑎𝑙𝑏𝑒𝑠𝑡 ← 𝑒𝑣𝑎𝑙(𝑖,𝑗)𝑘 

                  end 

end 

 end 

7.   xi ← be the solution of the 𝑒𝑣𝑎𝑙𝑏𝑒𝑠𝑡.  

 if xi provides better objective than x then 

8.      x ← xi 

 end 

end 
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2.3 Destructive Neighborhoods 

Our first destructive method DM1 applies a simple mechanism removing some nodes randomly from 

each cluster.  The percentage of elements removed in each cluster is defined by the search parameter 

𝛽1. Our second destructive method, DM2, is based on a greedy mechanism. Given a feasible solution 

𝑥, where 𝑉𝑘 is the set of nodes assigned to a cluster 𝑘, for each element 𝑖 in cluster 𝑘 we define 𝐼(𝑖, 𝑉𝑘) 

as the contribution of node 𝑖 to the objective function value in cluster 𝑘. In mathematical terms: 

 

𝐼(𝑖, 𝑉𝑘) = ∑ 𝑐(𝑖,𝑗) 
𝑗∈𝑉𝑘

 

 

where 𝑐(𝑖,𝑗) is the cost or benefit of the arc (𝑖, 𝑗).  Let 𝐼(𝑖) = ∑ 𝑐(𝑖,𝑗)𝑗∈𝑉   be the potential contribution 

of node 𝑖 to the objective function. Then, the relative contribution of node 𝑖 to cluster 𝑘 can be 

computed as: 

𝐼𝑅(𝑖, 𝑉𝑘) =
𝐼(𝑖, 𝑉𝑘)

𝐼(𝑖)
. (1) 

If this value, which is in [0,1] by design, is small, it indicates that node 𝑖 might increase the objective 

function if moved to a different cluster. Then, the candidate list of nodes in 𝑉𝑘 to be considered for a 

move (𝐶𝐿) in the current solution is formed by 

 

𝐶𝐿(𝑉𝑘) = {𝑖 ∈ 𝑉𝑘: 𝐼𝑅(𝑖, 𝑉𝑘) ≤ 𝛾𝑘}, (2) 
 

where 

𝛾𝑘 = 𝛿 min
𝑖∈𝑉𝑘

𝐼𝑅(𝑖, 𝑉𝑘) + (1 − 𝛿) max
𝑖∈𝑉𝑘

𝐼𝑅(𝑖, 𝑉𝑘)     with   𝛿 ∈ [0,1]. (3) 

 

As shown above, the threshold 𝛾𝑘 is computed by means of the parameter 𝛿, which manages how 

restrictive is 𝐶𝐿. If 𝛿 is close to 1 then 𝛾 is close to the minimum of the relative contributions, and the 

candidate list contains a small fraction of the nodes in 𝑉𝑘. On the contrary, if it is close to 0, then 𝐶𝐿 

contains most of the nodes in the cluster. The destructive method DM2 removes from the solution, a 

percentage 𝛽2 of elements from the candidate list of each cluster. 

2.4 Iterated Greedy 

The Iterated Greedy method (IG) alternates between destructive and constructive phases. During the 

destructive phase, some elements are removed from the solution. Next, it applies a greedy 

constructive method to reconstruct the partial solution and obtain a new solution. Then, an 

acceptance criterion is applied to decide whether the new solution replaces the current solution or 

not. The method iterates following this pattern until a stopping criterion is met.  We refer the reader 

to Ying et al. (2010) and Lozano et al. (2014) for descriptions of successful applications of IG. In this 

subsection we investigate two different IG algorithms, IG and IG-GRASP. 

Our first implementation of the Iterated Greedy methodology, called simply IG1, starts from an initial 

solution 𝑥, built with the CM algorithm and improved with IM2-1 (see Section 2.2). Then, IG1 

iteratively alternates between destructive and constructive phases. In the destructive phase, a 

percentage 𝛽1 of the nodes are removed using the procedure DM1. Then, the constructive phase 
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applies the greedy heuristic CM to reconstruct the solution. Additionally, the local search phase IM2-

1 is applied to improve the new solution. This method is shown in Algorithm 2, in which we can see 

the update mechanism of the incumbent solution each time a newly reconstructed solution has been 

obtained. 

 

 

 

 

 

 
Algorithm 2. Iterated Greedy IG1. 

Algorithm 3 below describes our hybridization between IG and GRASP called IG-GRASP. Initially, as in 

IG1, it builds a complete solution with CM and then improves it with IM2-1. Then, the algorithm 

iteratively applies the destructive algorithm DM2, then the constructive method CM, and finally the 

improvement procedure IM2-1. However, after a number of pre-established iterations (𝛾 𝑛) applying 

these three methods consecutively with no improvement, instead of ending the procedure (as it is the 

case of IG), the hybrid algorithm resorts to GRASP2-1 to generate a new solution (built from scratch) 

to start again.  

 

Algorithm 3. Hybridization of Iterated Greedy with GRASP (IG-GRASP).  

An interesting distinction between different IG methods is in the acceptance criterion to select the 

solution for applying the destructive method.  As described in Lozano et al. (2014), in the ‘Replace if 

better’ acceptance criterion, the new solution is accepted only if it provides a better objective function 

1. Let x be the initial solution 
2. Let T be the maximum time allowed 

3. xb ← x 

while(Time limit T is not reached) 

4.  y ← DM1(x) 

5.  yc ← CM(y) 

6.  xi ← IM2-1(yc) 

     if xi is better than xb then 

7.        xb ← xi 
     end 

8.  x ← xb 

    end 

1. Let x be the initial solution 

2. Let T be the maximum time allowed 

3. Let 𝛾 𝑛 be the maximum of iteration without improving allowed 
4. xb best solution generated 

while(T is not reached) 

5.   yc ← CM(xb) 

6.   xi ← IM2-1(yc) 

while(𝑙 < 𝛾 𝑛) 

8.       y ← DM2(xi)  

9.       yc ← CM(y)  

10.       xi ← IM2-1(yc)  

         if xi provides better objective than xb then 

11.          xb ← xi 

12.              𝑙 ← 0  
    else 

13.          𝑙 ←  𝑙 + 1 
end 

end 



 

13 

 

value. In other words, the IG iterates over the best solution found. However, this can lead to 

stagnation situations of the search due to insufficient diversification. On the other hand, the “Always 

replace” acceptance criterion applies the destruction phase to the most recently visited solution, 

independently to its objective function value. This criterion clearly favors diversification over 

intensification, because it promotes a stochastic search in the space of local optima. We applied the 

latter one to our IG variants.  

After a number of iterations, it is possible to estimate the fractional improvement achieved by the 

application of the improvement phase and use this information to increase the efficiency of the search 

(Laguna and Martí, 1999). In particular, based on the average improvement achieved by the local 

search in previous iterations, the filtering method discards the constructed solutions when it is unlikely 

that they improve the best found so far, saving the associated computation time. It is based on a 

search parameter 𝜆 representing a threshold on the number of standard deviations away from the 

estimated average percentage improvement. Preliminary experiments to test the effect of different 𝜆 

values have been performed and are reported in Section 4. 
 

3. Theory: A Matheuristic post-processing 

This section first describes the standard mathematical programming formulation for the CCP. Then, 

we propose adaptations of valid inequalities to strength the formulation, and finally a method to use 

the information from the best solution found with the heuristics to fix some variables in this 

formulation, which permits to apply it to large size problems (as a heuristic method itself). 

Let the binary variable 𝑦𝑒𝑘 = 1 if and only if edge 𝑒 has both of its end points in cluster 𝑘, and let the 

binary variable 𝑥𝑖𝑘 = 1 if and only if node 𝑖 is assigned to cluster 𝑘. The CCP can be formulated as 

proposed by Morán-Mirabal et al. (2013) as a mixed integer program.  

                        (CCP) Maximize         ∑ ∑ 𝑐𝑒𝑦𝑒𝑘

𝑒∈𝐸

𝑝

𝑘=1

 

                         subject to            ∑ 𝑥𝑖𝑘

𝑝

𝑘=1

= 1                      ∀𝑖 ∈ 𝑉 

                                                        𝑦𝑒𝑘 ≤ 𝑥𝑖𝑘 ,                          ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸, 𝑘 = 1, … , 𝑝 

                                                        𝑦𝑒𝑘 ≤ 𝑥𝑗𝑘 ,                          ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸, 𝑘 = 1, … , 𝑝 

                                                        𝐿 ≤ ∑ 𝑤𝑖𝑥𝑖𝑘

𝑛

𝑖=1

≤ 𝑈           ∀𝑘 = 1,2, … , 𝑝 

                                                    𝑥𝑖𝑘 ∈ {0,1}                          ∀𝑖 ∈ 𝑉, 𝑘 = 1, … , 𝑝 

                    0 ≤ 𝑦𝑒𝑘 ≤ 1                       ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸, 𝑘 = 1, … , 𝑝 

Ferreira et al. (1998) proposed several valid inequalities for a family of clustering problems. We 

adapted some of them to the CCP. The first one is the so-called triangle inequality. If we denote with 
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𝑦𝑒𝑘 = 𝑦𝑖𝑗𝑘  as the binary variable that takes the value 1 if edge 𝑒 = (𝑖, 𝑗) is in cluster 𝑘, it is easy to see 

that: 

𝑦𝑖𝑗𝑘 + 𝑦𝑗𝑠𝑘 ≤ 1 + 𝑦𝑠𝑖𝑘  

For every set of three edges (𝑖, 𝑗), (𝑗, 𝑠), (𝑠, 𝑘) ∈ 𝐸. This inequality can be generalized to  

𝑦𝑖𝑗𝑘 + 𝑦𝑗𝑡𝑘 + 𝑦𝑡𝑠𝑘 ≤ 2 + 𝑦𝑠𝑖𝑘  

We consider the integer linear formulation above with these two families of inequalities. It is clear 

from previous papers that we cannot directly solve medium and large instances with this formulation 

to optimality. We therefore propose a heuristic to use this extended model. 

The method, called Math, starts by solving the problem with a heuristic, say for example GRASP-IG, 

and then use the solution obtained to fix some variables in the integer linear program. This is indeed 

a standard method in mathematical programming: to “refine“ a heuristic solution. In particular, we fix 

a proportion  of the number of edges |𝐸| in the formulation according to the heuristic solution. If for 

example vertices 1 and 2 are in the same cluster 𝑘 in the heuristic solution, we can set 𝑥1𝑘 = 𝑥2𝑘 =

𝑦12𝑘 = 1 , and 𝑥1𝑙 = 𝑥2𝑙 = 𝑦12𝑙 = 0 for the clusters 𝑙 ≠ 𝑘.  We consider the edges in 𝐸 ordered 

according to their benefits, where the edge with the largest benefit comes first, and set the variables 

associated to the first |𝐸| edges to 1. It is clear that if  is close to 1, most of the variables are fix in 

the model, and then it is very likely that we obtain the same heuristic solution when solving the model. 

On the other hand, if the proportion  is very small, and close to 0, only a few variables are set in the 

model, and therefore it is unlikely to solve the model in moderate computing times. We try several 

values of this parameter in our computational experiments: = 0.1, 0.25, 0.5, 0.75, and 0.9. 

4. Computational Experiments 

This section describes the computational experiments that we performed to test the effectiveness and 

efficiency of the procedures described above: PrevGRASP1, PrevGRASP2, PrevGRASP3, and our new 

GRASP2-1. Additionally, we test the proposed Iterated Greedy algorithm, IG1, and the hybrid method 

IG-GRASP. The six methods have been implemented in C and to generate random numbers we use the 

rand() function. All experiments were performed on a 2.8 GHz Intel Core i7 with 8 GB of RAM. 

We have two main objectives in this section. We first perform a preliminary testing with the objective 

of finding effective configurations for our methods (i.e., to fine tune their algorithmic parameters). 

This experimentation has important implications since the performance of the methods strongly 

depends on the values of the key search parameters. To prevent the over training of the algorithm, 

we perform these experiments on a small set of representative instances. We are looking for a robust 

configuration of our methods that performs well across all types of instances. Since run time is a critical 

factor in the heuristic domain, the goal is to find parameter values that result in an effective tradeoff 

between solution quality and computational effort. Once the methods are configured, we perform the 

final step of our experimentation: the competitive testing. The objective in this second stage is to show 

that our algorithm is able to obtain better solutions than the existing methods. Note that we have to 

adopt a statistical perspective to compare the algorithms. We consider a set of instances and run the 

different methods under the same conditions (same computer and total running time), and we report 
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average results.  To generalize the results from the sample set considered to the entire set of instances 

of this problem (population), we apply statistical tests, which permit to draw sound conclusions.  

We employed 60 CCP problem instances in our experimentation. This benchmark set of instances, 

referred to as CCPLIB, is available at http://www.optsicom.es/ccp.  This benchmark, formed with three 

sets (RanReal, DB, and MM) was used and described in Martínez-Gavara et al. (2015), so we do not 

reproduce here its characteristics. We have selected 15 representative instances with different 

characteristics to perform a preliminary experimentation in order to identify effective values for 

parameters in our new three methods: IG, GRASP21, and IG-GRASP. Specifically, we selected 6 

RanReal instances with 𝑛 = 240, 𝑝 = 12, 𝐿 = 75, and 𝑈 = 125, 3 DB instances with 𝑛 = 82, 𝑝 =

8, 𝐿 = 25, and 𝑈 = 75 and 6 MM instances, one of each combination (𝑏, 𝑟) with 𝑛 = 100, 200.  

We use the following metrics to measure the merit of each procedure: 

𝐷𝑒𝑣 Local average percent deviation from the best value.  

𝐵𝑒𝑠𝑡 Fraction of instances for which a procedure is able to match the best solution.  

𝑆𝑐𝑜𝑟𝑒 Fraction of the instances for which the competing procedures “win” (i.e., they produce better 

solutions than the other procedures being scored). This is calculated as (𝑞(𝑝 − 1) − 𝑟)/

(𝑞(𝑝 − 1)), where 𝑝 is the number of procedures being compared, 𝑞 is the number of 

instances, and 𝑟 is the number of instances in which the 𝑝 − 1 competing procedures find a 

better result. Hence, the best score is 1 (when 𝑟 = 0) and the worst is 0 ( 𝑟 = 𝑞(𝑝 − 1)).  

In our first preliminary experiment, we test the parameter β1 in the IG1 method, which gives the 

number of removed elements max(1, 𝛽1 |𝑉𝑘|) in each cluster 𝑉𝑘. This parameter is tested in the 

set {0.1,0.3,0.5,0.7}, where the 15 representative instances are run for 60 seconds, obtaining the 

best value with β1 = 0.1, as it is shown in Table 1. 

𝜷𝟏 𝑫𝒆𝒗 𝑩𝒆𝒔𝒕 𝑺𝒄𝒐𝒓𝒆 𝑻𝒊𝒎𝒆 

0.1 0.31% 67% 0.67 60.03 

0.3 0.59% 20% 0.67 60.07 

0.5 0.70% 20% 0.60 60.09 

0.7 0.83% 27% 0.27 60.16 

Table 1. Best parameter values identified for the IG1 method. 

In the second preliminary experiment, we test the parameter α applied in the construction 

algorithm of GRASP2-1 to balance randomization and greediness. We do not report the results of 

this experiment since we did not observe significant differences among the α-values tested. 

Following the selection of the other previous GRASP methods (Martínez-Gavara et al. 2015) we 

set the value of α to 0.6. 

In our third preliminary experiment we test the three parameters of the IG-GRASP algorithm: 

 𝜷𝟐, which is percentage of the removed elements in the candidate list of each cluster, 

 𝜹, which controls the candidate list size in DM2, and 

 𝜸, which determines the termination criterion for the entire method. 

http://www.optsicom.es/ccp
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We utilized a sequential design in which we set the value of each parameter one at a time, while 

the others are kept constant. Each run consisted of 60 seconds of CPU time. For the sake of 

simplicity, we only report here the results of the experiment to set 𝛾 (see Table 2). This table 

shows, as expected, a trend in which as the number of iterations increases, the quality of the 

solution also increases. Note however, that values larger than 0.5 do not follow this trend and 

obtain lower quality results.  We therefore set this parameter to γ = 0.5. In a similar way, we set 

β2 = 0.1, 𝛿 = 0.7 after the experimentation. 

𝜸 𝑫𝒆𝒗 𝑩𝒆𝒔𝒕 𝑺𝒄𝒐𝒓𝒆 𝑻𝒊𝒎𝒆 

0.1 0.22% 13% 0.18 60.61 

0.3 0.06% 47% 0.73 62.81 

0.5 0.00% 87% 0.93 64.61 

0.7 0.02% 60% 0.82 64.53 

Table 2. Best 𝛾 parameter values identified for the IG-GRASP method. 

In our final preliminary experiment, we test the efficiency of the filtering mechanism in GRASP (Laguna 

and Martí, 1999). Table 3 reports the results obtained with the method when running with different 

values of the two filter parameters. The first one is 𝑡𝑚𝑎𝑥, the number of initial iterations for which 

we compute the mean and standard deviation of the improvement achieved with the local search. 

The second one is 𝜆 , the value to compute the filtering threshold. Specifically, this table reports Dev 

and Time, as in the previous experiments, and the average number of solutions discarded for 

improvement, # skipped, in 100 constructions. 

𝒕𝒎𝒂𝒙 𝝀 𝑫𝒆𝒗 # 𝒔𝒌𝒊𝒑𝒑𝒆𝒅 𝑻𝒊𝒎𝒆 

10 

-1 0.51% 85 9.80 

0 0.24% 69 20.47 

1 0.13% 41 37.74 

2 0.06% 18 55.45 

3 0.03% 6 63.71 

20 

-1 0.50% 78 15.38 

0 0.11% 36 42.02 

1 0.11% 36 42.58 

2 0.05% 11 59.62 

3 0.02% 2 65.28 

Table 3. Results of testing filtering in GRASP2-1 construction. 

Table 3 shows that the GRASP method discards more constructed solutions for low values of 𝜆 and 

therefore requires less CPU time (when compared to larger 𝜆-values).  For example, with 𝑡𝑚𝑎𝑥 = 10 

and 𝜆 = 1, we can observe that 41 constructed solutions are discarded out of the 100 on average; 

which means that the improvement method is only applied to the remaining 59 solutions. The 

associated CPU time is therefore lower than in the regular GRASP implementation without the filtering 

strategy (37.74 seconds on average, which is significant lower than the 88.54 reported of the regular 

GRASP2-1 application). The average percentage deviation of this variant is 0.12%, instead of the 0.00% 

for the unfiltered GRASP2-1, which can be considered relatively good for its associated running time. 

On the other hand, this table shows that there are small differences when using 𝑡𝑚𝑎𝑥 = 10 and when 
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using 𝑡𝑚𝑎𝑥 =  20, with a slightly improvement in the former case.  

We now undertake experiments to compare the new GRASP method, GRASP2-1, to the three previous 

GRASP methods in the entire set of instances. Note that the PrevGRASP2 method (Morán-Mirabal et 

al. 2013) was designed for the handover minimization in mobility networks, and therefore it can only 

be applied to the MM instances since it does not target general CCP instances. We therefore split 

Table 4 into two sections. The first section compares PrevGRASP1 and PrevGRASP3 to the new 

GRASP2-1 on the Ranreal and DB instances. The second section compares PrevGRASP2 to GRASP2-1 

on the MM instances. The results in Table 4 indicate that GRASP2-1 is the best performing GRASP 

variant. The statistical analysis confirms it. We applied the Friedman non-parametric statistical test to 

the data in Table 4 and obtained a 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.001 < 0.01, which indicates the existence of 

significant performance differences among the three methods. Additionally, we applied the Wilcoxon 

test between PrevGRASP3 and GRASP2-1 and obtained a 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.01, indicating that there are 

significant performance differences between these two methods. 

Procedure 𝑫𝒆𝒗 𝑩𝒆𝒔𝒕 𝑺𝒄𝒐𝒓𝒆 𝑻𝒊𝒎𝒆 

Ranreal and DB instances 

PrevGRASP1 5.67% 7% 0.38 60.00 

PrevGRASP3 9.62% 27% 0.28 60.00 

GRASP2-1 0.05% 70% 0.77 60.40 

MM instances 

PrevGRASP2 0.80% 40% 0.40 60.00 

GRASP2-1 0.79% 60% 0.60 60.00 

Table 4. Comparison of GRASP methods. 

We now compare our new three methods: GRASP2-1, IG1 and IG-GRASP on the entire data set, and 

report the results in Table 5. We include in this table a standard Simulated Annealing, SA (Johnson et 

al. 1989) based on the same neighborhood 𝑁4(𝑥), as a baseline method based on randomization. Note 

that we could have considered other randomized metaheuristics, such as PSO or GAs (see for example 

De et al. 2016, De et al. 2017, or Pratap et al. 2016), which probably would provide better solutions 

than this straightforward SA. However, the inclusion of this method is just to evaluate how a basic 

randomized procedure would perform in this context. 

Results in Table 5 provide an important lesson about the way in which greediness and randomization 

are combined in the different methods.  It turns out that the IG1 approach seems more effective than 

the GRASP methodology to solve the CCP instances.  In particular, IG1 is able to match 38% of best-

known solutions while GRASP2-1 only matches 2% of them.  As expected, improved outcomes are 

obtained when these methodologies are hybridized. In particular, IG-GRASP obtains 70% of the best-

known solutions.  We applied the Friedman non-parametric statistical test to the results for all 

instances and obtained a 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.01, indicating the existence of significant performance 

differences among the methods. Additionally, we also applied the Wilcoxon test between IG1 and IG-

GRASP obtaining a significant 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.005 < 0.01, which confirms the superiority of IG-GRASP. 
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Procedure 𝑫𝒆𝒗 𝑩𝒆𝒔𝒕 𝑺𝒄𝒐𝒓𝒆 𝑻𝒊𝒎𝒆 

GRASP2-1 2.39% 2% 0.36 60.20 

IG1 0.54% 38% 0.78 60.00 

IG-GRASP 0.24% 70% 0.90 63.30 

SA 5.40% 0% 0.01 60.00 

Table 5. Performance comparison of new approaches. 

In an attempt to understand the reasons for the superiority of IG-GRASP with respect to GRASP2-1, 

we perform a further analysis. Specifically, we recorded the objective function value of both the 

constructive phase and the improvement phase for the first 50 iterations in each method. Figure 9 

shows the results. In GRASP2-1 the constructed solution is obtained from scratch at each iteration. 

However, in IG-GRASP the constructed solution is partially destroyed and reconstructed, which results 

in better outcomes than GRASP2-1.  This figure clearly shows that the constructed solutions in IG-

GRASP are in a higher position in the graphic than the constructed solutions in GRASP2-1. We believe 

that this figure provides evidence of the robustness of the IG1 approach, which consistently obtains 

high-quality solutions. 

  

Fig 9. First 50 iterations of GRASP2-1(left) and IG-GRASP(right). 

Figure 9 also supports an important point in terms of metaheuristic methodologies. The inclusion of 

memory structures can provide better outcomes than the memory-less methods. As a matter of fact, 

this figure clearly shows that the partial destruction and posterior reconstruction of a solution 

performs much better than the construction of a solution from scratch. In other words, it seems that 

even low and medium quality solutions may contain subset of elements that combined with other 

elements can lead to high-quality solution.  In terms of memory structures, we can simply conclude 

that it is better to retain certain structures in the search process. An open question is if random or 

selective selection of these elements can make a difference. We refer the interested reader in this 

topic to the strategies coined under the term of “vocabulary building” introduced by Glover and 

Laguna (1997). 

We include an additional experiment to evaluate the Matheuristic described in Section 3. In particular, 

we run the IG-GRASP on the 15 instances in our training set and apply the Math post-processing in 

which a fraction  of the edges is fixed in the mathematical programming formulation, solved with 

Gurobi. Table 6 shows the average percentage deviation, 𝐷𝑒𝑣., of the solutions obtained with different 
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values of , as well as the number of instances in which Gurobi is able to improve upon the heuristic 

solution, #𝐼𝑚𝑝𝑟𝑜𝑣𝑒, and the average running time, 𝑇𝑖𝑚𝑒. We run Gurobi for a maximum of 1,800 

seconds and report the total time used. This table shows that, as expected, when the  parameter 

takes a low value (close to 0), the running time is relatively high, since the mathematical model is 

large. On the hand, when  approaches to 1, many variables are fixed and Gurobi solves a relatively 

small model. In this case, computing times are very modest. 

Procedure  𝑫𝒆𝒗 # 𝑰𝒎𝒑𝒓𝒐𝒗𝒆𝒅 𝑻𝒊𝒎𝒆 

IG-GRASP --- 0.00% 0 62.00 

 

 

IG-GRASP+Math 

0.1 3.85% 4 1324.73 

0.25 -0.27% 5 662.99 

0.50 -0.49% 5 300.83 

0.75 -0.26% 5 72.25 

0.90 -0.25% 5 64.17 

Table 6. Matheuristic performance on training set of instances. 

In all the cases, the mathematical programming post-processing is only able to improve the initial 

heuristic solution in a small fraction of the instances tested. Note however, that these heuristic 

solutions are obtained with a complex metaheuristic (IG-GRASP), and could be the optimal solution of 

the problem.  Special mention deserves the case in which =0.9 in which we are able to identify 5 new 

best solutions with a small extra running time.  

5. Conclusions 

In this paper, we have tackled the difficult CCP problem to investigate the crucial issue of balancing 

randomization and greediness in two multi-start heuristic search methods, Iterative Greedy (IG) and 

Greedy Randomized Search Procedure (GRASP). The GRASP methodology constructs independent 

solutions, while IG constructs linked solutions obtained by partially rebuilding previous ones. From an 

artificial intelligence perspective, they represent different approaches to problem solving.  Although 

both are the result of the combination of greediness and randomization in the constructive process, 

GRASP is a memory-less method, while IG is a memory-based method. It is important to point out 

that memory-based designs have been extensively study in the context of improvement methods, 

such as the well-known tabu search methodology. However, memory-based methods has been mostly 

ignored in constructive algorithms. This is specially surprising since memory-based constructions were 

actually proposed in early tabu search designs, and developed under the name of strategic oscillation. 

In this paper, we first reviewed previous GRASP designs for the CCP, and then proposed several 

algorithms for this problem, including a new 2-1 exchange neighborhood within the GRASP 

framework. Additionally, we propose an IG algorithm, and a hybrid of these two methods, called IG-

GRASP with a wider consideration of the neighborhoods structures. Finally, we tested the efficiency 

of a filtering mechanism in the GRASP methodology. The results of our experiments using 60 

benchmark instances and the associated statistical tests indicate that the hybridization IG-GRASP 

compares favorably to the other existing and newly proposed procedures. The investigation presented 

here provides an important lesson about the way in which greediness and randomization interact 

within the different methods considered here.  It turns out that the IG1 methodology provides a more 
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effective framework than the GRASP methodology to solve the CCP instances. Hence, we argue that 

this work demonstrates that memory-based construction is an effective mechanism within multi-start 

heuristic search techniques. 
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