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Abstract

The Workforce Scheduling and Routing Problem refers to the assignment of

personnel to visits, across various geographical locations. Solving this problem

demands tackling numerous scheduling and routing constraints while aiming

to minimise the operational cost. One of the main obstacles in designing a

genetic algorithm for this problem is selecting the best set of operators that

enable better performance in a Genetic Algorithm (GA). This paper presents

an adaptive multiple crossover genetic algorithm to tackle the combined setting

of scheduling and routing problems. A mix of problem-specific and traditional

crossovers are evaluated by using an online learning process to measure the

operator’s effectiveness. Best performing operators are given high application

rates and low rates are given to the worse performing ones. Application rates

are dynamically adjusted according to the learning outcomes in a non-stationary

environment. Experimental results show that the combined performances of all

the operators works better than using one operator in isolation. This study

makes a contribution to advance our understanding of how to make effective
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use of crossover operators on this highly-constrained optimisation problem.

Keywords: Genetic algorithms, Adaptive algorithms, Genetic Operators,

Routing, Scheduling, Workforce Planning.

1. Introduction

The Workforce Scheduling and Routing Problem (WSRP) is described as

the assignment of personnel to visits, requested by customers, across different

geographical locations. This problem combines scheduling and routing prob-

lems, both of which are known to be NP-Hard [1]. The scheduling aspect of the5

problem assigns personnel to visits in order to fulfil work demands and other

requirements. The routing aspect of the problem consists of generating routes

for the workers to service customers across various locations within given time-

windows. The objective is to minimise operational costs while attending the

additional requirements expressed by customers, workers and the business. A10

type of WSRP arises in home health care where nurses and care workers should

be assigned to visit patients in their homes in order to carry out some tasks,

e.g. administering medication, monitoring serious illness, etc.

Genetic Algorithms (GAs) have been shown to be effective approaches to

find solutions for problems combining scheduling and routing where exact meth-15

ods are less effective, e.g. [2, 3, 4]. A baseline GA was proposed by [5] that

identified the best set of operators and parameters for each instance of the same

WSRP tackled here. Despite its success in obtaining good solutions, the baseline

GA performance was limited by a computationally expensive parameter tuning

method. Thus, an adaptive parameter control approach was proposed by [6].20

The method maintained diversity in the population of solutions in order to en-

hance the performance of the GA. On the other hand, in the study by [5], there

was no evidence that the performance of one crossover operator was superior to

a group of operators during the run. Therefore, a random crossover exchange

was proposed by [6] in addition to the parameter tuning method. Further im-25

provements were suggested, especially on operators selection.
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This paper proposes an adaptive multiple crossover GA that uses a learning

process to enhance the overall performance. The idea is to use to use adaptive

allocation rules on a mix of problem-specific and traditional crossovers, which

are evaluated to measure the operator’s effectiveness. Best performing operators30

are given high application rates and low rates are given to the worse performing

ones. Application rates are dynamically adjusted, to reflect the crossovers beha-

viour in each iteration, according to the learning outcomes in a non-stationary

environment.

This study claims that actively adapting the application rates of a group of35

crossover operators, can enhance the GA efficiency when tackling WSRP scen-

arios. To the best of our knowledge, this type of adaptive multiple crossover GA

has not been investigated before for WSRP. To this end, the specific objectives

of this study are:

• To present an adaptive multiple crossover GA that sets the application40

rates of several crossovers in a dynamic way.

• To analyse the impact of a collaborative approach between various cros-

sover operators on the quality of solutions as well as on the algorithm

speed.

• To carry out illustrative computational tests to show the utility of the pro-45

posed GA approach by comparing the performance of the various genetic

operators considered. A total of 42 problem instances from six different

real-world home health care scenarios were used in the experimental study.

In what follows, Section 2 reviews related work. Section 3 describes the

WSRP, its formulation and the instances used in this paper. Section 4 outlines50

the proposed algorithm. Section 5 presents the experimental study and discusses

the obtained results. The paper is then concluded in Section 6.
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2. Related Work

Recent research on the WSRP considered here is reviewed next. A mixed in-

teger programming (MIP) with decomposition method [7] required considerable55

computation time (up to several hours) to solve larger problem instances with

hundreds of tasks, indicating the need for faster solution methods. A Variable

Neighbourhood Search (VNS) algorithm using problem-specific neighbourhood

heuristics was presented in [8]. The VNS obtained high-quality solutions and

in less computation time for the same set of problem instances used in [7]. A60

number of studies have applied GAs to real-world problems where scheduling

and routing are combined. Examples include [2, 3]. In those works, the focus

has been on algorithm design to obtain good solutions.

An investigation was presented by [4] comparing various genetic operators

within two simple GAs, to tackle the subject problem. A more efficient GA65

was proposed by [5] with tuned parameters and using a customised solution

representation to maintain feasibility of solutions. To enhance the GA efficiency,

adaptive concepts were used by [6] in addition to random crossover exchange.

Using a learning method, to adjust parameter values has proven to enhance

the baseline GA performance [6]. Nevertheless, selecting a random crossover,70

without any prior knowledge of its performance, was a straightforward proced-

ure. It is still not clear which operator was the best for each problem set,

during the run. Thus, this paper proposes a learning-based multiple crossover

framework to tackle WSRP.

According to [9], GAs using multiple operators have been used on real-world75

applications to benefit from the different performance of synchronised operators.

Most researchers have utilised a group of operators, crossovers [10] or mutations

[11], as part of the algorithm. For example, the study by [12] investigated mix-

ing eight crossover operators on routing problems. One crossover was selected

at random, with all the operators having the same probability. This operator is80

then applied at the current iteration. The study suggested multiple crossovers

method obtained better results than a traditional GA. Another study that pro-

4



posed a multiple operator algorithm for routing problems was presented by [13].

The aim was to test several combinations of operators. The proposed algorithm

proved to be more efficient than using one crossover with one mutation.85

Two main operations are applied when using multiple operators, selection

and evaluation. Adaptive operator selection (AOS) is identified as the online

adjustments of the crossover function [14], where all crossovers are used as one

operator. However, each crossover has an application rate, that is relative to

the crossover performance. The better the crossover’s performance, the higher90

the chances to be applied more often than a poor performing crossover. This

mixes a variety of operator performances in one iteration and the diverse set of

operators explore the search space differently and more widely.

Different AOS methods have been successfully used in the literature, includ-

ing random operator exchange presented in [15, 12, 13]. In later years, adaptive95

operator allocation rule was developed as a learning-based operator selection

function. Such as, probability matching [16], adaptive pursuit [17], multiple

armed bandit [18], and sliding multiple armed bandit [19, 20].

In order to measure the effectiveness (performance) of a crossover, an op-

erator evaluation process is used to analyse the impact of applying a given100

operator on the current search [20]. This method includes giving some reward

to an operator according to the operator impact on the search. The next cros-

sover is selected based on a reward value. The best operator is scored higher in

the credit registry and therefore this crossover is selected more often.

In general, fitness improvement was used to measure a crossover perform-105

ance, i.e. the better the new solutions generated by an operator, the more chance

of an operator to be applied again. However, more performance measurements

were explored and proven to provide good results, such as distance-based meas-

urement [10] and an operator execution-time [9].

Many considerations are taken into account when designing a multiple cros-110

sover GA, including the evaluation measurement used and the number of iter-

ations required to obtain sufficient information on the operators’ performance.

Existing research has focused on using a fixed number of iterations to determine
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”the best” operator. However, an AOS might converge to the best performing

operator early in the search. Not to mention that different operators provide115

different results at different stages of the search. Thus, using preliminary in-

formation can have limited flexibility and leads up to a loss of performance.

This observation was proved by [14], in which the use of a ”dynamic” approach

was shown to be better than using a ”static” one.

The GA proposed here uses allocation rules on a mix of problem-specific and120

traditional crossovers. Best performing operators are given higher application

rates, and lower rates are given to the worse performing operators. Application

rates are dynamically modified during the search using a roulette wheel [16, 17].

This paper shows that adaptive application rates enhance the GA efficiency

when tackling WSRP scenarios.125

3. Problem Description

A WSRP solution S is a daily plan of visits, i.e. a set of workers W assigned

to perform a set of tasks T for customers at different locations. The assignment

of a worker w to travel to a customer location in order to perform a task i ∈ T

is called a visit. Several features have been identified as important in solutions130

to WSRP scenarios, such as distance travelled and customers’ and workers’

requirements and preferences [21]. Thus, a good quality solution should have

low operational cost as well as all visits assigned while satisfying the existing

requirements. For example, an illustration of a plan for a WSRP instance is

presented in Fig. 1. In this example, 3 workers (w1, w2, w3) are assigned to 15135

different visits, located at different locations. A path is plotted as a dotted line

with a different colour for each worker. Each worker is assigned a set of visits,

note visits 5 and 9 require two workers.

3.1. Problem Constraints

Table 1 lists the objectives and constraints in the WSRP considered here as140

described in [7]. The binary decision variable xwi,j = 1 if worker w travels from

visit i to visit j, thus w is assigned to both visits as given by constraint (1).
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Fig. 1: Example of a WSRP solution with 3 workers and 15 visit assignments.

Table 1: Objectives and Constraints in the WSRP.

Objectives Hard constraints Soft constraints

Minimise the Travelling cost Assign all visits. eq.(2) Respect workers area availability. eq. (13)

Minimise the Payment cost Respect visit time (No time-conflicts). eq.(9) Respect workers time availability. eq.(10,11).

Minimise Penalty cost Respect max working time per week. eq.(12) Assign preferred workers to visits

Assign qualified workforce. eq.(7) Assign preferred workers with a specific skill

Assign workers to preferred areas

∑
i∈T

∑
j∈T

xwi,j =
∑
n∈T

xwj,n,∀w ∈W (1)

In WSRP scenarios, it is possible that some visits are left unassigned if

there is not enough workforce or no worker has the required qualifications/skills

for some visits. In such cases, an integer variable yj is used to indicate the145

number of unsatisfied assignments for visit j (the visit may require more than

one worker) [7, 22].

If visit j is fully assigned then yj = 0, otherwise yj takes a positive integer

value equal to the number of workers required to the visit. Constraint (2)

ensures this requirement is met even for visits that are unassigned, rj is the150

number of workers required for visit j.

∑
w∈W

∑
i∈T

∑
j∈T

xwi,j + yj = rj (2)

The path for each worker w should begin at a start location and terminate
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at an end location, e.g. their home or a central office. The start location and

the end location of worker w are Dw and D′w, respectively. The condition is

enforced by constraints (3) and (4). Workers may leave their start location and155

enter their end location at most once (although the start and end locations may

be different) as expressed by constraints (5) and (6), respectively.

∑
n∈T

xwn,j ≥
∑
j∈T

xwi,j ,∀w ∈W, ∀i ∈ T, ∃n ∈ D (3)

∑
n∈T

xwi,n ≥
∑
i∈T

xwi,j ,∀w ∈W, ∀j ∈ T, ∃n ∈ D′ (4)

∑
j∈T

xwi,j ≤ 1,∀w ∈W, ∀i ∈ D (5)

∑
j∈T

xwi,j ≤ 1,∀w ∈W, ∀j ∈ D′ (6)

Workers are required to have suitable skills for every assigned visit. Let qwj

be a binary parameter that represents some qualification parameter, where qwj

= 1 when a worker w has the skills to take visit j, and qwj = 0 otherwise. Only160

qualified workers can make the visit as indicated by constraint (7).

xwi,j ≤ qwj ,∀w ∈W, ∀i ∈ T, ∀j ∈ T (7)

Travelling between visit locations must be feasible in terms of travel time.

Decision variable awj takes a positive fractional value that gives the arrival time

of worker w to the location of visit j. Note that the maximum arrival time

value here is 1440 minutes, which is equivalent to the 24th hour of the day. Let165

awi , awj be the arrival times of worker w at the locations of visit i and visit j

respectively. The arrival time at visit j must consider the time duration δi spent

on performing visit i and the travelling time ti,j between visit i and visit j. This

is enforced by constraint (8) where M is a large constant number.

awj +M(1− xwi,j) ≥ awi + xwi,jti,j + δi,∀w ∈W, ∀i ∈ T, ∀j ∈ T (8)

8



A worker w must arrive at visit j within the given time-window. For visit j,170

the earliest arrival time is κLj and the latest arrival time is κUj . This requirement

is enforced by constraint (9).

κLj ≤ awj ≤ κUj ,∀j ∈ T, ∀w ∈W (9)

If a visit j assignment has time conflicts with the visit i assignment, τwj = 1.

A time-conflict occurs when a worker is assigned to visits overlapping in time.

Time availability can be different for each worker according to their indi-175

vidual contracts. The time availability period for each worker is as follows. The

shift start-time and shift-end time of the worker w are indicated by αwL and αwU

respectively. However, in the scenarios tackled in here, visits can be assigned

outside the worker’s shift but subject to a penalty cost. A binary decision vari-

able ωwj = 1 is introduced to indicate such penalisation. The time availability180

constraints for worker w are given by expressions (10) and (11).

αwL − awj ≤M(1− xwi,j + θwj ),∀w ∈W, ∀i ∈ D ∪ T, ∀j ∈ T (10)

awj + δj − αwU ≤M(1− xwi,j + θwj ),∀w ∈W, ∀i ∈ D ∪ T, ∀j ∈ T (11)

Another working regulation tackled here is not to exceed the maximum work-

ing hours for each worker. Each visit j requires δj minutes to be completed.

The maximum working hours for a worker w is given by hw. Constraint (12)

enforces this regulation.185

∑
i∈V S

∑
j∈T

xwi,jδj ≤ hw,∀w ∈W (12)

Each worker is associated to a set of geographical regions defined by the

service provider. A geographical region contains several visit locations and a

visit location may have several visits to be assigned. Ideally, a worker should

only be assigned to visits in those geographical regions. However, if necessary,

a worker can be asked to travel to locations outside their geographical regions190
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subject to some penalty cost. A binary parameter γwj = 1 is defined to indicate

that visit j is located in the worker’s regions and γwj = 0 otherwise. A binary

variable ψwj = 1 to indicate that visit j assigned to worker w is outside the

worker’s regions, and ψwj = 0 otherwise. Constraint (13) presents the relation

between these binary variables for the different possible cases.195

∑
i∈T

xwi,j − ψwj ≤ γwj ,∀w ∈W, ∀j ∈ T (13)

Some of the constraints expressed in the above MIP formulation are soft

constraints in WSRP scenarios, including constraints (10) and (11) (workers

may be asked to work outside their shift hours) and constraint (13) (workers

may be asked to work outside their geographical regions). Later, preferences

calculations are explained as they are used as part of the objective function.200

3.2. Objective Function

The objective function includes the operational cost and the penalty cost.

The operational cost includes wages plus journey costs for all workers and is

given by the accumulated cost di,j + pwj , where di,j is the distance travelled

between visit i to visit j and pwj is the cost of assigning worker w to visit j.205

These costs are set by the service provider in the HHC scenarios used here.

Since feasibility is not guaranteed in a WSRP solution, the penalty costs are

tackled as the accumulated penalty for violations of the constraints presented

in Table 1.

An assignment of worker w to visit j is made to a path connecting between210

two nodes and can be written as a tuple
(
xwi,j , yj , a

w
j , ψ

w
j , θ

w
j , τ

w
j

)
. This assign-

ment is composed of binary decision variables indicating violations occurrences

on area availability (ψwj ), time availability (θwj ) and conflicting assignments

(τwj ). If a visit j violates time availability, then θwj = 1. The same applies to

area availability violation where ψwj = 1, when violation occurs. Likewise, τwj215

= 1, if the assignment has time conflicts with the other assignment.

The non-satisfaction of preferences is also included in the penalty cost.

There are three types of preferences including preferred worker-customer pair-
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ing, worker’s preferred region and customer’s preferred skills. There is a degree

of satisfaction for these preferences when assigning a worker w to a visit j and220

is given by ρwj which has a value that ranges between
[
0, 3
]
, where 0 means no

penalty charged and 3 is full penalty.

For each assignment, the satisfaction value for each preference ranges between[
0, 1
]
, from not satisfied to satisfied. There are four-level preferences: low (0.2),

neutral (0.5), preferred (0.5), and most preferred (1.0). The satisfaction level is225

calculated by reverting it to a penalty, by subtracting it from the full satisfaction

score, which is 3rj for a visit j.

The best solution should have: the least operational cost and the least penalty

cost. A weighted sum is proposed to combine the objectives into a single scalar

value [8, 5]. The objective function is written as in equation (14), where weights230

λ1, . . . , λ5 are defined to establish priority between objectives (more about the

weights used here next).

f(S) = λ1
∑
w∈W

∑
i∈T

∑
j∈T

(di,j + pwj )xwi,j , operational cost

+ λ2
∑
w∈W

∑
i∈T

∑
j∈T

(3rj − ρwj )xwi,j

+ λ3
∑
w∈W

∑
j∈T

(ψwj + θwj ) + λ4
∑
j∈T

yj + λ5
∑
w∈W

∑
j∈T

τwj , penalty cost (14)

3.3. Weights Calculation

Table 2: Weights values for WSRP

Objective Operational costs Preferences penalty costs Soft constraints penalty Unassigned visits Time-conflicts

Weight λ1 λ2 λ3 λ4 λ5

Value mileage/k 1 |V |
2 λ3

2 λ3
3

The weights associated with each objective are set to values that reflect the

difference between the priority levels, as suggested by [22, 23]. The main goal235

is to maintain a balance of priorities for each instance based on each problem
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specifications. Thus, the weights calculations presented in Table 2 differ from

one instance to another 1.

Hard constraint violations are not allowed in the WSRP solution.However,

time conflicts constraint is more difficult to satisfy. Thus, the highest priority240

level is given to minimise the conflicting assignments τwj , where the associated

weight λ5 is set to the highest value. In this work, a solution with conflicting

assignments is an infeasible solution.

The second highest priority to be minimised is the unassigned visits yj where

λ4 is set to be very high, but still less than the value of λ5. This is due to245

the service provider requirements for completing as many visits as possible.

However, in this study, a chromosome representation ensures all visits to be

assigned to workers, hence no unassigned visits violations. This is explained

later in the next chapter.

In practice, the service provider may ask workers to undertake visits that250

are outside their time availability and/or geographical region. Thus, the next

objective priority is λ3, given to minimise the soft constraints penalty, i.e.,

the number of workers with time-availability violations ψwj and the number

of workers with area-availability violations θwj . As presented by Table 2, the

weight values for λ3, λ4 and λ5 are relative to the number of the assigned visits,255

therefore only assigned visits are violated. On the other hand, if the service

provider could not fulfil the highest preference level; the fourth priority is given

to minimise the preferences penalty through λ2.

Finally, the lowest priority is given to minimise the operational cost through

λ1. This weight value is presented in Table 2, where k is the operational cost.260

Hence, mileage is calculated for the assigned workers only.

Hard constraint violations are always penalised with a larger weight than

soft constraints. Accordingly, λ3 + λ4 + λ5 > 1 while λ1 < 1. Under those

conditions, the objective is shifted to minimise the constraint violations, by

1The weights used here are available as ”Evaluation Tool” (blue setting) at https://goo.

gl/1733qY
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Fig. 2: Box plots comparisons of WSRP scenarios dimensions, shown as the number of visit

assignments V and the number of workers W .

moving the f(S) cost-value closer to the feasible region.265

3.4. Problem Instances

Table 3: Main Features of the 42 Home Health Care Problem Instances.
A B

01 02 03 04 05 06 07 mean 01 02 03 04 05 06 07 mean

Number of Visits 31 31 38 28 13 28 13 26 36 12 69 30 61 57 61 46

Number of Workers 23 22 22 19 19 21 21 21 25 25 34 34 32 32 32 30

Number of Areas 6 4 5 4 4 8 4 5 6 5 7 5 8 8 7 7

C D

01 02 03 04 05 06 07 mean 01 02 03 04 05 06 07 mean

Number of Visits 177 7 150 32 29 158 6 80 483 454 585 520 538 610 611 543

Number of Workers 1037 618 1077 979 821 816 349 813 164 166 174 174 173 174 173 171

Number of Areas 8 4 7 8 6 11 6 7 13 12 15 15 15 15 15 14

E F

01 02 03 04 05 06 07 mean 01 02 03 04 05 06 07 mean

Number of Visits 418 425 462 351 461 301 498 416 1211 1243 1479 1448 1599 1582 1726 1470

Number of Workers 243 244 267 266 278 278 302 268 805 769 898 789 889 783 1011 901

Number of Areas 13 14 15 13 15 13 16 14 45 46 54 47 59 44 64 51

Problem instances from six UK real-world Home Health Care (HHC) scen-

arios are used as instances of WSRP in this study 2. There are 7 problem

instances in each scenario for a total of 42 instances. Table 3 shows the main

features of each problem instance. Scenario A instances are considered the270

smallest, while instances in scenario F are the largest. Problem instances in

scenario C are of disproportional nature as the number of workers is much lar-

ger than the number of visits.

2The instances used here (A, B, C, D, E and F) are available at https://goo.gl/1733qY
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Fig. 2 shows a group of box plots for each WSRP problem set comparing the

total number of visits |V | and the total number of workers |W |. The difference275

between the number of visits and the number of workers increases through

the problem sets. In some, the number of visits is larger than the number of

workers available. However, in problem set C, the number of visits is less than

the number of workers.

Table 4: Cost-values f(S) and computational-time Cpt (in seconds) for WSRP instances

produced by the MIP solver in [7].

Problem f(S) Cpt Problem f(S) Cpt Problem f(S) Cpt

A

1 3.49 7

C

1 n/a n/a

E

1 n/a n/a

2 2.49 8 2 3.15 6 2 n/a n/a

3 3 14 3 n/a n/a 3 n/a n/a

4 1.42 5 4 11.15 90 4 n/a n/a

5 2.42 1 5 12.34 55 5 n/a n/a

6 3.55 5 6 n/a n/a 6 n/a n/a

7 3.71 1 7 4.3 1 7 n/a n/a

B

1 1.7 21

D

1 n/a n/a

F

1 n/a n/a

2 1.75 2 2 n/a n/a 2 n/a n/a

3 1.72 6003 3 n/a n/a 3 n/a n/a

4 2.07 25 4 n/a n/a 4 n/a n/a

5 1.82 585 5 n/a n/a 5 n/a n/a

6 1.62 184 6 n/a n/a 6 n/a n/a

7 1.79 300 7 n/a n/a 7 n/a n/a

Table 4 presents optimal results by a mixed integer programming (MIP)280

solver in [7]. Researchers have reported that real-world instances of the WSRP

are difficult to solve [24, 23]. This was also observed [7] where the MIP solver

was unable to provide solutions for 24 instances, shown as n/a) in Table 4.

4. Adaptive Multiple-Crossover Genetic Algorithm (AMCAGA)

This section describes the proposed adaptive mechanisms of the AMCAGA285

as an extension of the GA approach in [5] and the diversity-based adaptive GA

(AGA) in [6] which was shown to provide best results in comparison to other

adaptive variations implemented for WSRPs. Algorithm 1 shows the steps of

this proposed algorithm.
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Algorithm 1 Adaptive Multiple-Crossover Genetic Algorithm (AMCAGA)

Require: A crossover rate Pc, a muta-

tion rate Pm, set of crossovers χ =

x1, x2 . . . xL, WSL for all visits.

1: Create a population P of M individu-

als using WSL

2: repeat

3: Evaluate each individual in P with

equation (14)

4: for 9M/20 times do

5: Select p1, p2 ← P

6: end for

7: Select xi ← χ with Pxi

8: (o1, o2)← xi(p1, p2) with Pc, for all

pairs of parents

9: Scorei ← Performance of xi

10: Update Pxi ← Scorei/ScoreSum

11: (o′1, o
′
2) ← FCF (o1, o2) with Pm,

for all pairs of offspring

12: (o′1, o
′
2) → P ′, for all pairs of off-

spring

13: P best M/10 individuals → P ′

14: if P has stagnated for a number of

generations then

15: if Pc > 0.45 AND Pc < 1.0 then

16: Update Pc according to equa-

tion (15)

17: else

18: Reset Pc

19: end if

20: if Pm > 0.1 AND Pm < 0.60

then

21: Update Pm according to equa-

tion (16)

22: else

23: Reset Pm

24: end if

25: end if

26: P ′ → P

27: until termination condition is met

The proposed AMCAGA works as follows. First, an initial population P290

of M individuals (one-day plans) is created based on an indirect chromosome

encoding (worker suitability list or WSL) to ensure solutions feasibility (line 1).

At the start of each generation, 9M/20 pairs of parent individuals are selected

using binary tournaments (lines 4–6). With some probability Pxi
, a crossover

xi is selected, using roulette wheel selection (line 7). This crossover, with some295

probability Pc, is applied to each pair of parents to generate two offspring (line

8). The operator’ performance is evaluated and recorded (lines 9–10). With

some probability Pm, each offspring goes through a flat-cost flip (FCF) muta-

tion operator (line 11). These offspring are added to the new population P ′

15



(line 12). An elitism strategy keeps the M/10 best individuals from the current300

population P . Along with the 9M/20 offspring individuals generated, the new

population P ′ of M solutions is formed (line 13). If there are no cost value

improvements on the best-so-far solutions for a number of generations, the GA

is considered to have stagnated. Thus, Pc and Pm are modified at every gen-

eration, depending on the results obtained in the previous one, to maintain a305

diverse population and therefore improve the effectiveness of the search (lines

14–25). The indirect chromosome encoding, genetic operators, adaptive para-

meter updates and multiple crossover mechanism are described next.

4.1. Indirect Chromosome Encoding

According to [13], the crossover process is not efficient for the optimisation310

capacity of the technique when it is applied to routing problems using path

encoding. Thus, an indirect chromosome encoding scheme was proposed in

our earlier study [5]. The aim is to construct feasible solutions by considering

suitable workers only. To do so, a worker suitability list (WSL) is created for

each visit vi. Suitable workers are ranked by a penalty score, the lower the score315

value, the better suited is a worker. The score estimates the impact of assigning

worker wj to visit vi, considering incurred operational cost and penalty cost due

to preferences and availability restrictions.

An solution is randomly created by generating a vector of |V | integers

between 0 and Lk − 1, where V is the number of visits and Lk is the length of320

WSL for a visit k. When a worker is being considered for a visit, the solution is

evaluated for time-conflicts. If such conflict occurs by the random assignment,

the next worker in the WSL for that visit is considered until a suitable worker

is found with no time-conflicts arising.

Fig. 3 illustrates an example of the indirect chromosome encoding for a day325

plan with seven visits. Each visit has a WSL of four suitable workers, with the

best worker for that visit at the top, followed by the next best worker and so on.

Below the chromosome, the decoded solution shows the actual worker assigned

to each visit. On the right, the encoded solution is shown with an index of the
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workers as in the WSL for each visit. Time-conflicts are indicated with *.330

For example, w2 is assigned to both v1 and v3 while w3 is assigned to v2. No

time-conflict arises because v1 and v3 do not overlap. However, w2 is assigned to

v4 and a time-conflict arise as v3 overlaps with v4. Then, the next most suitable

worker that does not provoke a time-conflict, in this case w5, is assigned to v4.

The WSL decoder in this indirect chromosome encoding scheme helps to assign335

suitable workers to visits while avoiding time-conflicts. The penalty scores are

shown in Fig. 3 are not used during the generation of initial solutions, they are

utilised for the tailored genetic operators described in [5]. Note that the indirect

chromosome representation is designed to include all assigned visits |V |, thus

the chromosome length varies according to the problem-size.340

Fig. 3: An example of indirect chromosome encoding scheme for illustration.

4.2. Genetic Operators

The AMCAGA incorporates various genetic operators including some problem-

specific ones that utilise heuristics to generate improved offspring [5]. All oper-

ators used are taken from [5]. A mix of general purpose and problem-specific

operators are used. The general purpose ones are one-point crossover (1PX) [25],345

two-point crossover (2PX) [25], uniform crossover (UX) [25] and half uniform

crossover (HX) [25]. Three problem-specific operators are considered, specially

designed for the solution representation considered here. These are flat-costs
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crossover (FCX) [5], partially-matched flat crossover (PMFCX) and flat-cost

flip mutation (FCF) [5]. These operators are described below.350

1. 1PX: A point between 1 and the chromosome length is selected at random.

To create one offspring, the genes before this point are copied from one

parent and the genes after are copied from the other parent. Another

offspring is created using the other half from each parent.

2. 2PX: Two points are selected at random, between one and the chromo-355

some length. Alternating segments are swapped to create the two off-

spring.

3. UX: The number of crossing points is not fixed. Instead, a mixing ratio

(50%) is used to choose a uniform random real number u from interval

< 0, 1 > when mixing the parents to create the offspring. Individual360

non-matching genes are swapped between the two parents with the given

mixed ratio to create the offspring [26].

4. HX: Similar to UX, a mixing ratio is used. However, exactly half of the

non-matching genes are swapped. Thus, the Hamming distance (number

of differing gens between the two parents) is calculated and divided by365

two.

5. FCX: Uses penalty scores that were initially calculated in the WSL at

the start of the GA. These values are denoted as ’flat-cost’, where each

worker wj has a penalty score according to their suitability to work in visit

i. FCX goes through each of the V positions in the parent’s chromosome.370

A gene-wise comparison is enforced, for each gene in ith position, with

respect to the WSL estimated penalty scores Mi,pi . The best suitable

worker is given to offspring (o1) and the other worker for offspring (o2).

6. PMFCX: This crossover selects a segment within two cutting points. Po-

sitions of genes are reversed between these points and the FCX is applied375

to fill the rest of the offspring.

7. FCF: Introduces new workers to the chromosome, even if the workers

are not suitable for the corresponding visits. A random position i of
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the chromosome is replaced. Hence, FCF increases the diversity by the

random process, even if the best worker for visit i is not selected. pi =380

(0, 1, 0, 0, 2, 1, 0). If positions 3 is selected at random, gene 0 is replaced by

a random number within the list of visit i in WSL, to generate the child

chromosome oj = (0, 1, 3, 0, 2, 1, 0).

4.3. Adaptive Parameter Rates

Initial parameter values, Pc and Pm, were selected after an offline tuning385

method [5]. Then, Pc and Pm are modified at every generation and to avoid

early convergence, a diversity-based scale is used to calculate the required change

in the adaptive features. Population diversity is measured in two ways as de-

scribed below. The two measurements accommodate different views of the loss

of diversity. Combining these methods can overcome those difficulties faced by390

one measurement used in isolation [27].

• The genotype space [28], denoted as Diversityg. It is the distribution of

pairwise differences between individuals in a population.

• The phenotype space, denoted as Diversityp. It is the population fitness

variance, i.e., how far each individual in the population is from the mean395

fitness value.

Population diversity has an effect on the setting of parameter values [6]. For

example, if instances are relatively small, a large population size M is required as

a result of the large degree of similarity between individuals in P . When similar

individuals are recombined, inbreeding occurs, and no additional diversity is400

added through crossover. For a large instance, there is less chance to have

similar solutions, thus, a small M is sufficient.

Whenever the best solution found by the technique has not been improved in

the last generation, rates are updated, according to the calculations in [6]. This

means that the search process did not evolve correctly and that it is necessary405

to diversify the population through adaptive parameter rates.
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Equation (15) calculates the updates on Pc value, where Q1= 45% and Q2=

100%. Equation (16) calculates the updates on Pm value, where Q1= 10%.

Pc =
[Diversityg
Diversityp

∗ (Q2 −Q1)
]

+Q1 (15)

Pm =

Diversityp−Diversityg
Diversityp

×Q1 + f(S)max−f(S)
f(S)max−f(S)min

×Q1

2
(16)

A resetting process is also used to reset Pc = 45% and Pm = 10% to forget

the rates history if the rates values are out of range. This means forgetting all410

the previous feedback process that led up to the inflation of the adapted values.

More details of the AGA framework is described in [6].

4.4. Adaptive Multiple Crossover Framework

The proposed AMCAGA uses a set of crossovers χ = x1, x2 . . . xL, which are

alternated during the execution, similar to [13]. However, the strategy used in415

this paper uses allocation rules rather than random replacement.

At the beginning, a number of the crossover functions are applied, until the

next generation is created. This number is indicated as the memory size σ.

One operator is assigned at random and then replaced by another crossover.

All crossovers are applied uniformly, to ensure all crossovers are used, while420

allowing repetitions. There is at least 1
L chance for each operator to be selected.

The operators’ performances are evaluated and recorded as scores for a num-

ber of iterations during the learning process (also denoted as a cycle of a size

υ). For each crossover, the accumulated scores are stored into the crossover

reward matrix (CRM), considered as a reward registry for that crossover425

in the current cycle. Scores are then transformed into application rates Pxi ,

giving the probability of applying crossover xi. The operators’ performances are

evaluated and recorded for each cycle, where application rates are dynamically

adjusted as the search progress.

Better performing operators have a higher score value, and therefore a higher430

probability to be utilised more often, but weak performing operators are not left
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without a chance. For example, given a set χ of six crossovers operators, with

application rates as follows: x1 = 23 %, x2 = 4 %, x3 = 11 %, x4 = 34 %,

x5 = 17 % and x6 = 12 %. Crossover x4 has the highest application rate at

this cycle, henceforth x4 has more chance to be implemented. At some point435

of the search, when x4 performance changes for the worse, its application rate

decreases. Application rates of other crossovers also vary accordingly, causing

a shift in the search.

4.4.1. Performance Measurements

Scores are considered as performance indicators that enforce the rewarding440

mechanism, ∀xi ∈ χ, a score is given at each iteration, where i = 1, 2 . . . , L.

Different types of measurements are used in the literature, such as fitness-based

measurement [29, 20], distance-based measurement [10] and combined measure-

ment and operator execution-time measurement [9]. In this study, the later can

be relative to the problem size for WSRPs. Hence, the time is not absolute in445

real-world settings, and therefore this measurement is excluded.

Parameter settings are affected by the population diversity [6]. Therefore,

distance-based measurement is considered here along with the fitness-based

measurement. Performance measurements used in this chapter are as follows.

• Fitness-Based. This method is selected to maximise the cumulative450

improvement, as a historical fitness record of the cost value of an offspring

(o) and its parent (p), where f(o) < f(p). When there is an improvement

on the overall cost value, the score increases by one. This value ensures

the convergence by selecting crossovers with better offspring quality, that

eventually improves the overall performance of the GA.455

• Distance-Based. This method is selected to ensure a level of diversity

among generated solutions, by calculating the distribution of the pair-

wise differences between an offspring and its parent. If the percentage is

60% or more, the score increases with respect to the hamming distance

H between two individuals. This value is selected to prevent inbreeding460

21



among generations. The value of H is calculated as the number of assign-

ments in which the corresponding genes are different. Fig. 4 illustrates an

example of the dissimilarities percentage calculations (presented in white

cells) between a parent and an offspring.

• Hybrid Approach. This method is selected to harness the power of the465

two above measurements. When there is an improvement in the fitness or

there exist differences between parents and offspring, the score increases.

This means that with every crossover evaluation, the score value increases

gradually. If only one measurement has proved an operator efficiency,

the score value increases by one. On the other hand, if both performance470

measurements have proved an operator efficiency simultaneously, the score

value increases by two.

Fig. 4: An illustration of the dissimilarities percentage (presented in white cells) between two

individuals (parent, offspring).

Each crossover is evaluated in isolation with a performance measurement

after each application. Details of the application rates calculations are given

next.475

4.4.2. Application Rates

At each iteration (cycle), one of three above mentioned performance meas-

urements (fitness, distance or hybrid) evaluate all crossovers, and then gives a

score value ∀xi ∈ χ, where i = 1, 2 . . . , L. For the next iteration, scores are

updated, until all cycles are completed. The accumulated score value over dif-480
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ferent cycles is then transformed to an application rate Pxi = Scorei
ScoreSum

, where

ScoreSum =
∑L
i=1 Scorei.

When recording the accumulated scores, a 2 × L matrix is used, noted as

crossover rewards matrix (CRM), i.e. the score value in (1, i) is added to the

value in (2, i). The 2×L CRM is used to allow faster computation. As a result485

of scores updates, a gradual change in the Pxi
value is recorded in CRM, with

no rapid increase or decrease in the overall application rates. This process is

repeated, for each cycle. Note that the application rates are always modified

before the next cycle (iteration).

Fig. 5: An example illustrating the calculations of the application rates.

Fig. 5 shows an example of the CRM construction process, for three cros-490

sovers x1 x2, and x3, with a cycle size υ = 3. For every cycle, two steps are

executed. First, scores are retrieved for each crossover. In this case, the first

cycle has Score1 = 3, Score2 = 4 and Score3 = 5. Next, the scores are shif-

ted to (2, i). Once a score is shifted to position (2, i), a value of 1 is stored

at position (1, i), to ensure the application of all crossover functions, regardless495

of a crossover performance. If a crossover application has resulted in no im-

provement or even worse solution, it is still applied. The accumulated scores

are then calculated by adding up the scores at the position (1, i) to the scores

at the position (2, i). The active calculation of the application rates maintains

a balance between the most effective operators, which provide good results, and500
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week crossovers, which provide poor results.

5. Experimental Study and Results

Since parameter settings and running times stated in [5] were successful in

providing good results, each run in the experiments here was executed with the

same settings as shown in Table 5. Note that the crossover rate Pc and the505

mutation rate Pm values stated in Table 5 are used as initial settings for the

AMCAGAs. However, these values are fixed when used with AMCGAs.

Similar to genetic operators rates, each WSRP problem set has different

memory size σ. This value indicates the number of crossovers required to obtain

enough information for the learning process, where Pc × σ = const. Thus, the510

crossover rate Pc affects the value of σ, to record the crossover performances

on at least M/2 of the population. For example, in smaller instances, Pc =

50%, therefore, less crossovers are applied. Hence, larger σ is required to obtain

sufficient information about the crossovers performances. In larger instances,

Pc = 100%, this means that more crossovers are applied, and a large memory515

size is not necessary.

Table 5: Parameter settings for AMCGAs and AMCAGA.

Parameter A B C D E F Fixed Initial Values

Mutation Rate Pm 50% 50% 30% 10% 10% 10% AMCGAs AMCAGAs

Crossover Rate Pc 50% 50% 50% 100% 100% 100% AMCGAs AMCAGAs

Population Size M 500 500 500 250 250 250 AMCGA, AMCAGA -

Memory Size σ 250 250 250 125 125 125 AMCGA, AMCAGA -

Different cycle settings were used here, where υ = {5, 10, 15, 25, 40, 50}.

These values were determined through preliminary experimentation. The test-

ing revealed that a cycle of a size less than 5, had a slow learning process. A

cycle of a size larger than 50 had a low accuracy of the learning factor, in which520

crucial information was lost. For example, a crossover operator might be the

best performer at the start of a cycle, yet it can get worse in the same cycle.

Experimental results were grouped by the performance measurement method

24



5 10 15 25 40 50

0

5

10

15

20

Cycle Size υ

N
u
m

b
er

of
B

es
t

S
ol

u
ti

on

AMCfGA AMCdGA AMChGA

Fig. 6: Total number of best solutions produced by different rewarding mechanisms

(AMCfGA, AMCdGA and AMChGA).

applied. Each measurement is noted as follows: fitness improvements (AMCfGA),

dissimilarities between individuals (AMCdGA) and the hybrid approach (AMChGA).525

The best performing method was selected to be included in AMCAGA and com-

bined with adaptive parameter control method AGA, presented in [6].

Each algorithm was executed 8 times (runs). This means that for each of

the 42 problems instances, there were 8 × 6 (cycles) × 3 (methods) = 144 runs,

seeded with the same initial population.530

5.1. Performance of AMCGAs with Different Cycle Sizes

This set of experiments was conducted to investigate the effectiveness of the

feedback mechanism in the AMCGAs, when using different cycle sizes. To do

so, different cycle sizes were examined with respect to the method applied.

Fig. 6 shows the total number of best solutions for all problem instances.535

Each bar in the X-axis represents a rewarding method applied with a cycle of

size υ. Methods shown in the plot are: AMCfGA (grey bars with striped lines),

AMCdGA (black solid bars) and AMChGA (blue bars with dots). The higher

the bar the better, i.e. the more ”best” values found.

It is clear that all methods provided relatively similar values with a slight540

increase on one of the methods over the others. Still, AMCfGA obtained the
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highest number of best solutions. For AMCfGA and AMCdGA, the highest

number of best solutions was the when υ = 10. For AMChGA, on the other

hand, the highest number of best solutions was when υ = 25.

This result is related to scores given to an operator throughout the search,545

in which the accumulated score increases or decreases gradually. An operator

performance at the start of the cycle might change drastically by the end of the

cycle, especially when a large υ value is used. Nevertheless, υ > 25 was proven

to be less effective for all methods. Interestingly, the highest number of best

solutions was obtained while using AMCfGA, with υ = 10. Hence, there is no550

need for larger υ value to keep long historical records.

With one performance measurement, i.e. AMCfGA and AMCdGA, small

changes in the score values occur. This provided enough time for updating the

application rate, for each crossover, and therefore these crossovers were used in

the current population. On the other hand, a large υ was required when the555

hybrid performance measurement was applied. This is because of a large change

in the score values that occurs as the outcome of combining both performance

measurements. Nevertheless, if the υ was small, there was not enough time to

reward all operators. Thus, one operator will dominate the algorithm, resulting

in an uneven distribution of the application rates. Henceforth, a larger cycle-560

size was required. In summary, the larger the υ, the larger the increase in the

score value.

Fig. 7 illustrates the overall average computational times in seconds, on

problem sets A to F, for all methods. Each sub-figure corresponds to a cycle

size υ and presents the average computational time used by AMCfGA (grey565

bars with striped lines), AMCdGA (black solid bars) and AMChGA (blue bars

with dots). The lower the bar the better, i.e. the less computational time. On

average, it was apparent from the plots that different methods provide solutions

in approximately similar computational times.

For AMCfGA, it was more computationally expensive to make large adjust-570

ments in the score values, especially when smaller υ was used. On the contrary,

more time existed when using larger υ values, providing a shift in the score
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Fig. 7: Average computation-time (in seconds) produced by AMC variations with different

cycle sizes υ.

values when AMCfGA was used. Thus, the largest computational times for

AMCfGA, among all methods, was recorded when υ = 40 or 50.

For AMCdGA, more time was spent on calculating the scores, that resulted575

in more computational time, especially when υ was equal 5 to 25. This was

the outcome of the diversity-based calculations, computed gene by gene, and

executed V times for each individual to calculate the scores accurately.

Fitness-based calculations were faster than the diversity-based calculations.

However, when υ was between 40 and 50, the sensitivity of the distance-based580

provided good solutions in less computational time. This is because that distance-

based measurement method was more sensitive to the change of performances

than fitness-based measurement. Note similar execution time to AMCdGA with

AMChGA was recorded, with υ = 15.

Contrary to AMCdGA, AMChGA was not affected by the convergence speed585

of the algorithm. The combinations between the diversity-based measurement

and the fitness-based measurement in AMChGA have obtained better compu-

tational times than the separate methods. This is because AMChGA averaged

the performances of both measurements by allowing the use of the calculations
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within the time limitations. The reason for this was the large increase in the590

score values due to both calculations. As a result, the scores were computed in

less time while using AMChGA.

The next set of experiments was designed to use one cycle-size per method,

selected according to the highest total number of best solutions (see Fig. 6).

Thus, υ = 10 was chosen for AMCfGA as well as for AMCdGA, and υ = 25595

was selected for AMChGA.

5.2. Overall Comparison Between AMCGAs methods

The second set of experiments was conducted to identify if there is a signi-

ficant difference between the proposed AMCGAs variations or not. The work

by [30] recommended the use of Friedman analysis as a non-parametric statist-600

ical test to establish statistical significance in EAs. Thus, a two-way Friedman

analysis was used to measure the significant difference between groups of data

when the dependent variable being measured was ordinal.

In this study, an IBM SPSS 22 two-way analysis was used to compare the

variances of seven related-samples, with a significant level of α = 0.05 and 95%605

as a confidence interval. Table 6 reports the results generated by the Friedman

analysis on the 42 problem instances including the mean value, the standard

deviation, the minimum cost-value, the maximum cost-value and the mean rank.

The results presented in the mean rank column show the methods ranking based

on the statistical analysis, where a low rank indicates the best method while a610

high rank indicates the worse method ranked overall. All problem instances were

used to set the sample size of one method as large as possible, this increases the

probability of accepting or rejecting the null hypothesis. Three additional values

were calculated and used to measure the performance of each algorithm. Dev

is the average percentage deviation from the best-known value (best solution of615

all the algorithms applied). Best is the fraction of instances in a set for which

an algorithm matches the best-known value (best solution of all the algorithms

applied). Score is the fraction of the instances for which a competing algorithm

‘wins’, i.e. produces better solutions than the configuration being scored. This
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score is calculated as ((q× (p− 1))− r)/(q× (p− 1)), where p is the number of620

methods compared, q is the number of problem instances, and r is the number

of instances in which the p − 1 competing configurations find a better result.

Hence, the best score value is 1, when r = 0, and the worst score value is 0,

when r = q × (p− 1). The best results are highlighted in bold.

Table 6: Non-parametric Friedman’s test results combined with performances metrics.

Method Mean Std. Deviation Min Max Mean Rank Dev % # Best Score

AMCfGA 287.07 699.78 1.18 3495.55 1.99 0.13% 0.50 0.65

AMCdGA 286.74 699.11 1.18 3496.73 1.82 0.05% 0.64 0.73

AMChGA 287.23 700.10 1.18 3496.36 2.19 0.16% 0.33 0.46

Bold text refers to the best result.

We applied the Friedmann non-parametric statistical to the data in Table625

6 and obtained a p-value of 0.02153 <0.05, degrees of freedom = 2 and χ2 =

7.677. This indicates the existence of significant performance differences among

the three methods.

In order to examine where the differences actually occur, an additional ana-

lysis was implemented. Holm’s test was chosen to detect the significance differ-630

ence among all variations. The Holm procedure is an example of a step-down

procedure. Step-up procedures start testing hypothesis Hm and step up through

the sequence while retaining the hypotheses. The procedure stops at the first

rejection (for example Hi), and H1, . . . ,Hi are all rejected.

In this case, Holm’s method obtains the p-values higher than the significance635

level, that is to be interpreted in the sense that we do not have enough evidence

to reject the null hypothesis.

However, the descriptive statistics and the measures explained above re-

vealed that AMCdGA method had the lowest mean value, standard deviation

value, mean rank value and Dev% value. This method had also the highest frac-640

tion of the number of best solutions and the score values. This finding suggests

that different methods applied to different datasets can obtain different results

and henceforth each problem set benefited from each method accordingly.
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Fig. 8: Average application rates values used under different rewarding mechanisms

(AMCfGA, AMCdGA, and AMChGA).

AMCdGA obtained the best values in the above table. Thus, it can be ar-

gued that all variations were suitable for WSRP while AMCdGA was slightly645

better than all the proposed multiple crossovers algorithms. Using the distance-

based measurement has provided more accurate scores adjustments in compar-

ison to other methods.

5.3. Crossovers Dominance Based on Application Rates Distribution

This section explores the change in the crossovers’ application rates (Pxi) to650

investigate the effectiveness of one crossover over the other, in each AMCGA.

Thus, this set of experiments aims to identify the most used operator in each

method applied, with respect to the performance measurement.

Each bar in the X-axis of Fig. 8 illustrates the average application rate

Pxi values, for all problem sets. All three methods were applied, with the set655

of crossovers, i.e. 1PX, 2PX, UX, HX, FCX and PMFCX. The AMCfGA is

plotted in grey bars with striped lines, the AMCdGA is plotted as black solid

bars and the AMChGA is plotted as blue bars with dots.

Among all crossovers applied with AMCfGA, the values for the average

Pxi
were relatively similar with a slight increase on FCX. This result further660

proves the observations stated in [5], that identified the FCX as one of the best
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Fig. 9: Box plots comparing the average application rates for crossovers 1PX (blue), 2PX

(red), UX (black), HX (green), FCX (grey) and PMFCX (brown).

crossovers for WSRP problem sets. Thus, this operator has been utilised more

when a fitness-based performance measurement was utilised.

Nevertheless, the highest average application rate Pxi
among all crossovers

was obtained by PMFCX, while using AMCdGA. Hence, PMFCX was utilised665

more often when distance-based performance measurement was applied.

Faster calculations were required when using AMCdGA and AMChGA.

Thus, FCX was used less under these methods. On the other hand, the PM-

FCX crossover was utilised more, due to its fast calculations as a result of mixing

heuristic approach with the traditional PMX crossover method.670

Traditional crossovers have provided poor quality solutions that were com-

paratively similar to their parents. Still, using them alongside the problem-

specific method can ensure various performances in the GA.

Fig. 9 shows a group of box plots to show overall patterns of response

of change in application rates (Pxi
), for each crossover operator. Crossovers675

distribution corresponds to the current environment state if there is change in

the Pxi values, i.e the bigger the box plot the more diverse is the Pxi values to

the correspondent crossover.

Each sub-figure corresponds to the method applied, AMCfGA, AMCdGA

and AMChGA. Each box-plot illustrates the average application rates (Pxi
)680

range, for each crossover and are shown in 1PX (blue), 2PX (red), UX (black),

HX (green), FCX (grey) a PMFCX (brown).

As it can be seen from the plots, PMFCX box plot is lower than all other

plots in AMCfGA, i.e. less change in Pxi
values. The opposite occurs for

AMCdGA and AMChGA, where Pxi values were more diverse. This indicates685
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that PMFCX was updated more frequently. This result further supports the

previous finding discussed in this section.

5.4. Effect of Using a Rewarding Process on AMCGA

The third set of experiments aims to compare AMCGA methods with an

existing GA that was tailored for WSRP. The detailed results shown in Table690

7 compares the indirect GA described in [5] (noted as GA) with the AMCGA

variations (AMCfGA, AMCdGA and AMChGA). Crossovers used with indir-

ect GA were specified for each problem set as follows. for A and B GCX, for C

PMGreedyX, for D, E and F FCX. The FCF mutation was also used.

In addition to the indirect GA, the AMCGAs were compared against a vari-695

ation of AMCGA that used a uniform choice of operators, noted as AMCrGA.

The goal is to investigate the performance of AMCGAs when excluding the re-

inforcement learning process. For each problem instance, the table shows the

solution quality, noted as f(S), and the computational time in seconds, noted

as Cpt, in which the best solution was found.700

Best values are highlighted in bold. If more than one method achieved the

same result, among cost-best equals, the time-best is highlighted in bold.

As it can be seen from Table 7, the proposed methods AMCfGA, AMCdGA

and AMChGA outperform the GA and AMCrGA in terms of computational

time, in particular AMCfGA and AMCdGA. This indicates that the rewarding705

process in the adaptive methods was more efficient time-wise. The percentage

of best cost-values overall solutions are as follows. The GA 14.29%, AMCrGA

30.95%, AMCfGA 40.48%, AMCdGA 47.48% and AMChGA 21.43%. Closer

inspection of the results is discussed next.

Using a variety of operators, in which they have different performances, have710

provided good quality solutions for each problem set, especially AMCfGA and

AMCdGA. Improvements have occurred due to the combined work of the op-

erators, which allowed an extensive search with a larger variance than using

one crossover. However, using two performance measurements, as the case in

AMChGA was proven to be inefficient in comparison to the other AMCGAs.715
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This is due to the large jumps in the score values in comparison to using one per-

formance measurement, i.e. AMCfGA and AMCdGA, where small movements

into various directions in the solution space has resulted in finding undiscovered

regions easier.

By contrast, in the indirect GA, the search was completed by one crossover720

involvement in a large proportion of the solution space. Using one crossover

throughout the search has less ability to extend the search in those regions,

which were most promising. This was the reason for the GA providing worse

results than the AMCGAs.

On the other hand, random crossover selection has utilised different crossov-725

ers at an arbitrary level, without prior knowledge of the current search space.

Still, the AMCrGA has obtained the best results on E5, E7, F3 and F5. This

was because of the lack of performance measurements calculations. Hence, res-

ults were computed faster under those instances.

In regard to computational time, AMCGAs proved to improve the efficiency730

of the algorithm by computing the results in less time. For GA, AMCrGA,

AMCfGA, AMCdGA and AMChGA, the average Cpt in seconds were 6069.04,

5756.7, 5797.7, 5873.8 and 5825.6 respectively. The reason for the rapid decrease

in the computational times is as discussed next.

In the traditional GA, one crossover was applied at each iteration. As a735

result, the algorithm required more time to improve the solution. On the other

hand, the AMCGAs enforce the performances of different crossovers onto one

population, which was made in a minimum time. Therefore, the proposed AM-

CGAs obtain solutions in fewer iterations than the indirect GA. In AMCrGA,

the average Cpt was the lowest among all compared methods, this was due740

to the exclusion of the feedback process. The average Cpt for AMCfGA was

less than the average Cpt for AMCdGA and AMChGA. This result was the

outcome of computing the dissimilarities between the parent and the offspring,

which resulted in a massive amount of calculations. Despite the fact that in

AMChGA the two performance measurements were applied, it obtained the745

results in less Cpt-time than AMCdGA. This outcome was due to the use of
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Fig. 10: Total number of best solutions while using AMCdAGA.

the rewarding process that resulted in better and faster convergence.

5.5. Using an AMCdGA as a Component of AMCAGA

A major advantage of AMCGAs was that they have a considerable influence

on improving the efficiency of the baseline GA, especially when the distance-750

based performance measurement was applied. Thus, the AMCdGA method

was selected to be integrated with the adaptive operator rates control method

AMCAGA (noted as AMCdAGA), that perform as a full adaptive GA. The

following experiments aimed to evaluate the validity of AMCdAGA by providing

further insights into its performance.755

5.5.1. Effect of Uing Different Cycle Sizes in AMCAGA

In this section, the aim was to investigate the effect of the using different

cycle sizes in AMCdAGA on solutions quality and computational times.

Fig. 10 shows the total number of best solutions generated by different cycle

sizes. Each bar at the X-axis represents an AMCdAGA method applied with a760

cycle size υ. The higher the bar the better, i.e. the more ”best” values. Using

different cycle sizes has resulted in relatively similar performance, with a high

number of best solutions in more than one cycle size. Thus, it can be claimed

that using adaptive operator rates (Pc and Pm) makes the performance of the

AMCGA more stable than using the AMCdGA separately, as seen on Fig. 6765

and Fig. 10.
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Fig. 11: Average computational-time (in seconds) produced by AMCdAGA used with differ-

ent cycle sizes υ.

The number of best solutions was the highest when υ = 15, 40 and 50 with

a value of 17 best solutions. Followed by υ = 10 with 16 solutions and υ =

25 with 15 solutions. The values for the number of best solutions when υ = 5

was the lowest. The time was insufficient to score all operators. Thus, a large770

cycle size, i.e. 50, provides better learning outcomes with the time to retrieve

the information needed in order to improve the results.

Another observation was made when recording the computational times for

AMCdAGA while using different cycle sizes. Each sub-figure in Fig. 11 corres-

ponds to a problem sets from A to F, and each bar illustrates the overall average775

of the computational time in seconds used by a cycle-size. The bars colour and

pattern indicate each cycle as follows: black solid bars when cycle size = 5, grey

bars with stripped lines when υ = 10, blue bars with dots when υ = 15, red

bars with right inclined lines when υ = 25, green bars with left inclined lines

when υ = 40 and yellow bars with a grid when υ = 50. The lower the bar the780

better, i.e. the less computational time.

On average, the lowest computational times for problem set A was when

υ = 25, however, all cycle sizes have obtained the same result in less than 50
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seconds which was acceptable. Followed by the υ = 50 that also obtained the

lowest average computational times for problem sets C, D and F. The results, as785

shown in Figures 11 and 10, indicate that combining the adaptive operator rates

(Pc and Pm) approach with AMCdGA of a cycle of size 50 provides the best

results in less time, especially for difficult problem sets. The larger the cycle

size, the more scores were calculated for an operator effectiveness in addition to

updating the operator rates. As a result, the population evolved over time into790

better, fitter solutions. The interchange between the two adaptive aspects was

vastly exploited in AMCdAGA. Note that the lowest average computational

times for problem sets B and E were when υ = 10 with a difference between 100

to 200 seconds to the other sizes. With reference to Fig. 10, this cycle size also

obtained the second highest number of best solutions. Therefore, the results for795

a υ = 10 and υ = 50 is investigated further in the next section.

5.5.2. Overall Results of AMCAGA vs. AMCGA and AGA

The aim of this experiments is to compare the performance of AMCdAGA

against AMCdGA and AGA to understand the effect of combining the adaptive

parameter mechanisms into the AMCs.800

Results for AMCdAGA are shown in Table 8 with the diversity-based adapt-

ive operators rate control GA (noted as AGA) and the AMCGA variations that

utilised diversity-based measurement (noted as AMCdGA). The AMCdAGA

method used in this comparison was when υ = 10 (noted as AMCdAGA10) and

a υ = 50 (noted as AMCdAGA50). These methods are selected based on the805

observations form Fig. 6 and Fig. 7.

Note that there are two types of adaptability in Table 8. The first adapt-

ive method used in AGA and AMCdAGA is the GA parameter control, Pc

and Pm, The second adaptive method used in AMCdGA and AMCdAGA is

multiple crossover adaptability. The baseline GA was excluded in this compar-810

ison because it was shown that AMCdGA and AGA provided better results as

discussed earlier.

From the table, it can be seen that AMCdAGA outperformed AGA and
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AMCdGA, especially AMCdAGA50. Closer inspection of the results shows the

percentage of best cost-values overall solutions are as follows. The AGA 21.43%,815

AMCdGA 35.71%, AMCdAGA10 42.86% and AMCdAGA50 59.52%. Hence,

AMCdAGA50 has provided the best results on 59.52% of all solutions. Followed

by AMCdAGA10 that provided the best results on 42.86% of all solutions.

These results indicate the power of combining two adaptive elements that work

together in order to improve the GA offspring productivity.820

Another advantage of this method was the rapid decrease in computational

time that was previously reduced by using the adaptive methods separately

in comparison to the baseline GA. The average computational times in seconds

were 5653.11, 5873.79, 5069.67 and 4962.10 for AGA, AMCdGA, AMCdAGA10

and AMCdAGA50 respectively. Thus, using the combined method was more825

cost-effective than using one method individually for WSRP.

5.6. Results of AMCAGA vs.WSRPs Solution Methods

This section provides a comparison of the best-performing methods pro-

posed in this study, i.e., AMCdAGA10 and AMCdAGA50, against three ex-

isting WSRP solution methods from the literature: MIP solver [7], MIP with830

decomposition [31] and VNS algorithm [8]. Table 9 shows the solution quality,

noted as f(S), and the computational time in seconds, noted as Cpt, in which

the best solution was found. The best values are highlighted in bold.

For smaller problem sets, the proposed methods were quite competitive,

matching the best-known results for many of those instances. The VNS seems835

to provide better overall results with 42.86% of all best solutions. However, the

AMCdAGA10 and AMCdAGA50 outperformed the MIP with decomposition

method with 21.43% and 42.86% of all best solutions respectively.

The average computational times were calculated for methods that provided

solutions for all instances. i.e. MIP with decomposition AMCdAGA10 and840

AMCdAGA50. The recorded times were 4964.26, 5069.67 and 4962.10 respect-

ively.

The AMCdAGA10 has the largest computational time among all methods.
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On the contrary, the AMCdAGA50 has the lowest computation time among all

methods. These findings indicate that the use of a large cycle size provided bet-845

ter GA performance, especially cost-wise. A noticeable effect of using adaptive

aspects was the reduction of the computation time, which was also enhanced

when using AMCAGA. On the other hand, the MIP with decomposition method

has obtained a low average computation time. However, the results obtained

were poor in comparison to the other methods.850

So far, the proposed methods were the only algorithms that provided results

for all instances. Hence, these adaptive GAs were able to solve this real-world

and highly constrained optimisation problem instances. Interestingly, the best

cost values were obtained by diversity-based methods. This further proves the

significance of maintaining a diverse population in enhancing the GA perform-855

ance when tackling WSRP. Even though VNS had obtained better results than

the proposed methods in this study, when results were available, this study helps

to better understand the applicability of GAs for WSRP.

6. Conclusion

Using synergies between genetic operators can provide better results than860

using one operator during the search [20]. This concept is used in this study by

proposing an Adaptive Multiple Crossover Genetic Algorithm (AMCAGA) to

tackle 42 instances of a Workforce Scheduling and Routing Problem (WSRP)

in Home Healthcare.

Six different crossover operators are used within the proposed AMCAGA865

method. An adaptive mechanism seeks to learn the best way to apply the

crossovers by rewarding their effectiveness in the current stage of the search.

Three performance measurements are used to evaluate a crossover. One based on

fitness, another one based on Hamming distance and the third one being a hybrid

of the first two. Variations of the algorithm (AMCfGA, AMCdGA, AMChGA)870

using these performance measurements were tested and experimental results

indicated that the Hamming distance variant (AMCdGA) produced the best
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results although it was also the most time consuming.

Experiments were executed to compare the performance of the proposed

AMCAGA with several other methods including MIP with decomposition [31],875

VNS algorithm [8], indirect GA (non-adaptive) [5], randomly uniform variant

AMCrGA (with no learning) and adaptive parameter control GA (AGA) [6].

Overall, the proposed method exhibited better performance particualrly in re-

spect of diversity. The adaptive learning scheme to manage the multiple cros-

sovers has effectively improved the GA’s performance on the WSRP considered880

here. The adaptive learning scheme includes mechanisms for controlling cros-

sover and mutation rates (Pc and Pm probabilities) of multiple crossovers res-

ulting in better quality solutions in less computational time. This paper has

contributed to better understanding of how to effectively apply GAs to this

difficult and highly-constrained optimisation problem that combines scheduling885

and routing.

Future work is required to investigate whether the proposed solution method

would also perform well on other WSRP scenarios like technician scheduling

and similar problems involving a mobile workforce performing tasks on different

locations. This type of problems incorporating scheduling and routing are fertile890

ground for investigating the effective design of evolutionary algorithms and this

paper has sought to make a contribution in this regard.
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