# Adaptive Multiple Crossover Genetic Algorithm to Solve Workforce Scheduling and Routing Problem 

Haneen Algethami*<br>College of Computers and Information Technology, Taif University, Saudi Arabia<br>ASAP Research Group, School of Computer Science, University of Nottingham, UK<br>Anna Martínez-Gavara*<br>Estadística y Investigación Operativa, Universidad de Valencia, Spain<br>Dario Landa-Silva*<br>ASAP Research Group, School of Computer Science, University of Nottingham, UK


#### Abstract

The Workforce Scheduling and Routing Problem refers to the assignment of personnel to visits, across various geographical locations. Solving this problem demands tackling numerous scheduling and routing constraints while aiming to minimise the operational cost. One of the main obstacles in designing a genetic algorithm for this problem is selecting the best set of operators that enable better performance in a Genetic Algorithm (GA). This paper presents an adaptive multiple crossover genetic algorithm to tackle the combined setting of scheduling and routing problems. A mix of problem-specific and traditional crossovers are evaluated by using an online learning process to measure the operator's effectiveness. Best performing operators are given high application rates and low rates are given to the worse performing ones. Application rates are dynamically adjusted according to the learning outcomes in a non-stationary environment. Experimental results show that the combined performances of all the operators works better than using one operator in isolation. This study makes a contribution to advance our understanding of how to make effective


[^0]use of crossover operators on this highly-constrained optimisation problem. Keywords: Genetic algorithms, Adaptive algorithms, Genetic Operators, Routing, Scheduling, Workforce Planning.

## 1. Introduction

The Workforce Scheduling and Routing Problem (WSRP) is described as the assignment of personnel to visits, requested by customers, across different geographical locations. This problem combines scheduling and routing problems, both of which are known to be NP-Hard [1]. The scheduling aspect of the problem assigns personnel to visits in order to fulfil work demands and other requirements. The routing aspect of the problem consists of generating routes for the workers to service customers across various locations within given timewindows. The objective is to minimise operational costs while attending the additional requirements expressed by customers, workers and the business. A type of WSRP arises in home health care where nurses and care workers should be assigned to visit patients in their homes in order to carry out some tasks, e.g. administering medication, monitoring serious illness, etc.

Genetic Algorithms (GAs) have been shown to be effective approaches to ods are less effective, e.g. [2, 3, 4]. A baseline GA was proposed by [5] that identified the best set of operators and parameters for each instance of the same WSRP tackled here. Despite its success in obtaining good solutions, the baseline GA performance was limited by a computationally expensive parameter tuning method. Thus, an adaptive parameter control approach was proposed by [6]. The method maintained diversity in the population of solutions in order to enhance the performance of the GA. On the other hand, in the study by [5], there was no evidence that the performance of one crossover operator was superior to a group of operators during the run. Therefore, a random crossover exchange ${ }_{5}$ was proposed by [6] in addition to the parameter tuning method. Further improvements were suggested, especially on operators selection.

This paper proposes an adaptive multiple crossover GA that uses a learning process to enhance the overall performance. The idea is to use to use adaptive allocation rules on a mix of problem-specific and traditional crossovers, which are given high application rates and low rates are given to the worse performing ones. Application rates are dynamically adjusted, to reflect the crossovers behaviour in each iteration, according to the learning outcomes in a non-stationary environment.

This study claims that actively adapting the application rates of a group of crossover operators, can enhance the GA efficiency when tackling WSRP scenarios. To the best of our knowledge, this type of adaptive multiple crossover GA has not been investigated before for WSRP. To this end, the specific objectives of this study are:

- To present an adaptive multiple crossover GA that sets the application rates of several crossovers in a dynamic way.
- To analyse the impact of a collaborative approach between various crossover operators on the quality of solutions as well as on the algorithm speed.
- To carry out illustrative computational tests to show the utility of the proposed GA approach by comparing the performance of the various genetic operators considered. A total of 42 problem instances from six different real-world home health care scenarios were used in the experimental study.

In what follows, Section 2 reviews related work. Section 3 describes the WSRP, its formulation and the instances used in this paper. Section 4 outlines the proposed algorithm. Section5presents the experimental study and discusses the obtained results. The paper is then concluded in Section 6

## 2. Related Work

Recent research on the WSRP considered here is reviewed next. A mixed in- teger programming (MIP) with decomposition method [7] required considerable computation time (up to several hours) to solve larger problem instances with hundreds of tasks, indicating the need for faster solution methods. A Variable Neighbourhood Search (VNS) algorithm using problem-specific neighbourhood heuristics was presented in [8]. The VNS obtained high-quality solutions and in less computation time for the same set of problem instances used in [7]. A number of studies have applied GAs to real-world problems where scheduling and routing are combined. Examples include [2, 3]. In those works, the focus has been on algorithm design to obtain good solutions.

An investigation was presented by [4] comparing various genetic operators within two simple GAs, to tackle the subject problem. A more efficient GA was proposed by [5] with tuned parameters and using a customised solution representation to maintain feasibility of solutions. To enhance the GA efficiency, adaptive concepts were used by [6] in addition to random crossover exchange.

Using a learning method, to adjust parameter values has proven to enhance the baseline GA performance [6]. Nevertheless, selecting a random crossover, without any prior knowledge of its performance, was a straightforward procedure. It is still not clear which operator was the best for each problem set, during the run. Thus, this paper proposes a learning-based multiple crossover framework to tackle WSRP.

According to [9], GAs using multiple operators have been used on real-world applications to benefit from the different performance of synchronised operators. Most researchers have utilised a group of operators, crossovers [10] or mutations [11], as part of the algorithm. For example, the study by [12] investigated mixing eight crossover operators on routing problems. One crossover was selected at random, with all the operators having the same probability. This operator is then applied at the current iteration. The study suggested multiple crossovers method obtained better results than a traditional GA. Another study that pro-
posed a multiple operator algorithm for routing problems was presented by [13]. The aim was to test several combinations of operators. The proposed algorithm proved to be more efficient than using one crossover with one mutation.

Two main operations are applied when using multiple operators, selection and evaluation. Adaptive operator selection (AOS) is identified as the online adjustments of the crossover function [14], where all crossovers are used as one operator. However, each crossover has an application rate, that is relative to the chances to be applied more often than a poor performing crossover. This mixes a variety of operator performances in one iteration and the diverse set of operators explore the search space differently and more widely.

Different AOS methods have been successfully used in the literature, including random operator exchange presented in [15, 12, 13]. In later years, adaptive operator allocation rule was developed as a learning-based operator selection function. Such as, probability matching [16], adaptive pursuit [17, multiple armed bandit [18, and sliding multiple armed bandit [19, 20].

In order to measure the effectiveness (performance) of a crossover, an operator evaluation process is used to analyse the impact of applying a given operator on the current search [20]. This method includes giving some reward to an operator according to the operator impact on the search. The next crossover is selected based on a reward value. The best operator is scored higher in the credit registry and therefore this crossover is selected more often.

In general, fitness improvement was used to measure a crossover performance, i.e. the better the new solutions generated by an operator, the more chance of an operator to be applied again. However, more performance measurements were explored and proven to provide good results, such as distance-based measurement 10 and an operator execution-time 69.

Many considerations are taken into account when designing a multiple crossover GA, including the evaluation measurement used and the number of iterations required to obtain sufficient information on the operators' performance. Existing research has focused on using a fixed number of iterations to determine
"the best" operator. However, an AOS might converge to the best performing operator early in the search. Not to mention that different operators provide different results at different stages of the search. Thus, using preliminary information can have limited flexibility and leads up to a loss of performance. This observation was proved by [14], in which the use of a "dynamic" approach was shown to be better than using a "static" one.

The GA proposed here uses allocation rules on a mix of problem-specific and traditional crossovers. Best performing operators are given higher application rates, and lower rates are given to the worse performing operators. Application rates are dynamically modified during the search using a roulette wheel [16, 17]. This paper shows that adaptive application rates enhance the GA efficiency when tackling WSRP scenarios.

## 3. Problem Description

A WSRP solution $S$ is a daily plan of visits, i.e. a set of workers $W$ assigned to perform a set of tasks $T$ for customers at different locations. The assignment of a worker $w$ to travel to a customer location in order to perform a task $i \in T$ is called a visit. Several features have been identified as important in solutions to WSRP scenarios, such as distance travelled and customers' and workers' requirements and preferences [21. Thus, a good quality solution should have low operational cost as well as all visits assigned while satisfying the existing requirements. For example, an illustration of a plan for a WSRP instance is presented in Fig. 1. In this example, 3 workers $\left(w_{1}, w_{2}, w_{3}\right)$ are assigned to 15 different visits, located at different locations. A path is plotted as a dotted line with a different colour for each worker. Each worker is assigned a set of visits, note visits 5 and 9 require two workers.

### 3.1. Problem Constraints

Table 1 lists the objectives and constraints in the WSRP considered here as described in [7]. The binary decision variable $x_{i, j}^{w}=1$ if worker $w$ travels from visit $i$ to visit $j$, thus $w$ is assigned to both visits as given by constraint (1).


Fig. 1: Example of a WSRP solution with 3 workers and 15 visit assignments.

Table 1: Objectives and Constraints in the WSRP.

| Objectives | Hard constraints | Soft constraints |
| :--- | :--- | :--- |
| Minimise the Travelling cost | Assign all visits. eq. 2 |  |
| Minimise the Payment cost | Respect visit time (No time-conflicts). eq. 9. | Respect workers time availability. eq. |
| Minimise Penalty cost | Respect max working time per week. eq. | 12. |
|  | Assign qualified workforce. eq. 7. |  |
|  |  | Assign preferred workers to visits |
|  |  | Assign preferred workers with a specific skill |
|  |  |  |

$$
\begin{equation*}
\sum_{i \in T} \sum_{j \in T} x_{i, j}^{w}=\sum_{n \in T} x_{j, n}^{w}, \forall w \in W \tag{1}
\end{equation*}
$$

In WSRP scenarios, it is possible that some visits are left unassigned if there is not enough workforce or no worker has the required qualifications/skills for some visits. In such cases, an integer variable $y_{j}$ is used to indicate the number of unsatisfied assignments for visit $j$ (the visit may require more than one worker) [7, 22].

If visit $j$ is fully assigned then $y_{j}=0$, otherwise $y_{j}$ takes a positive integer value equal to the number of workers required to the visit. Constraint 2 ) ensures this requirement is met even for visits that are unassigned, $r_{j}$ is the number of workers required for visit $j$.

$$
\begin{equation*}
\sum_{w \in W} \sum_{i \in T} \sum_{j \in T} x_{i, j}^{w}+y_{j}=r_{j} \tag{2}
\end{equation*}
$$

The path for each worker $w$ should begin at a start location and terminate
at an end location, e.g. their home or a central office. The start location and the end location of worker $w$ are $D_{w}$ and $D_{w}^{\prime}$, respectively. The condition is enforced by constraints (3) and (4). Workers may leave their start location and enter their end location at most once (although the start and end locations may be different) as expressed by constraints (5) and (6), respectively.

$$
\begin{gather*}
\sum_{n \in T} x_{n, j}^{w} \geq \sum_{j \in T} x_{i, j}^{w}, \forall w \in W, \forall i \in T, \exists n \in D  \tag{3}\\
\sum_{n \in T} x_{i, n}^{w} \geq \sum_{i \in T} x_{i, j}^{w}, \forall w \in W, \forall j \in T, \exists n \in D^{\prime}  \tag{4}\\
\sum_{j \in T} x_{i, j}^{w} \leq 1, \forall w \in W, \forall i \in D  \tag{5}\\
\sum_{j \in T} x_{i, j}^{w} \leq 1, \forall w \in W, \forall j \in D^{\prime} \tag{6}
\end{gather*}
$$

Workers are required to have suitable skills for every assigned visit. Let $q_{j}^{w}$ be a binary parameter that represents some qualification parameter, where $q_{j}^{w}$ so $=1$ when a worker $w$ has the skills to take visit $j$, and $q_{j}^{w}=0$ otherwise. Only qualified workers can make the visit as indicated by constraint (7).

$$
\begin{equation*}
x_{i, j}^{w} \leq q_{j}^{w}, \forall w \in W, \forall i \in T, \forall j \in T \tag{7}
\end{equation*}
$$

Travelling between visit locations must be feasible in terms of travel time. Decision variable $a_{j}^{w}$ takes a positive fractional value that gives the arrival time of worker $w$ to the location of visit $j$. Note that the maximum arrival time value here is 1440 minutes, which is equivalent to the $24^{\text {th }}$ hour of the day. Let $a_{i}^{w}, a_{j}^{w}$ be the arrival times of worker $w$ at the locations of visit $i$ and visit $j$ respectively. The arrival time at visit $j$ must consider the time duration $\delta_{i}$ spent on performing visit $i$ and the travelling time $t_{i, j}$ between visit $i$ and visit $j$. This is enforced by constraint (8) where $M$ is a large constant number.

$$
\begin{equation*}
a_{j}^{w}+M\left(1-x_{i, j}^{w}\right) \geq a_{i}^{w}+x_{i, j}^{w} t_{i, j}+\delta_{i}, \forall w \in W, \forall i \in T, \forall j \in T \tag{8}
\end{equation*}
$$ the earliest arrival time is $\kappa_{j}^{L}$ and the latest arrival time is $\kappa_{j}^{U}$. This requirement is enforced by constraint (9).

$$
\begin{equation*}
\kappa_{j}^{L} \leq a_{j}^{w} \leq \kappa_{j}^{U}, \forall j \in T, \forall w \in W \tag{9}
\end{equation*}
$$

If a visit $j$ assignment has time conflicts with the visit $i$ assignment, $\tau_{j}^{w}=1$. A time-conflict occurs when a worker is assigned to visits overlapping in time.

Time availability can be different for each worker according to their individual contracts. The time availability period for each worker is as follows. The shift start-time and shift-end time of the worker $w$ are indicated by $\alpha_{L}^{w}$ and $\alpha_{U}^{w}$ respectively. However, in the scenarios tackled in here, visits can be assigned outside the worker's shift but subject to a penalty cost. A binary decision variable $\omega_{j}^{w}=1$ is introduced to indicate such penalisation. The time availability constraints for worker $w$ are given by expressions 10 and 11 .

$$
\begin{gather*}
\alpha_{L}^{w}-a_{j}^{w} \leq M\left(1-x_{i, j}^{w}+\theta_{j}^{w}\right), \forall w \in W, \forall i \in D \cup T, \forall j \in T  \tag{10}\\
a_{j}^{w}+\delta_{j}-\alpha_{U}^{w} \leq M\left(1-x_{i, j}^{w}+\theta_{j}^{w}\right), \forall w \in W, \forall i \in D \cup T, \forall j \in T \tag{11}
\end{gather*}
$$

Another working regulation tackled here is not to exceed the maximum working hours for each worker. Each visit $j$ requires $\delta_{j}$ minutes to be completed. The maximum working hours for a worker $w$ is given by $h^{w}$. Constraint 12 ) 5 enforces this regulation.

$$
\begin{equation*}
\sum_{i \in V^{S}} \sum_{j \in T} x_{i, j}^{w} \delta_{j} \leq h^{w}, \forall w \in W \tag{12}
\end{equation*}
$$

Each worker is associated to a set of geographical regions defined by the service provider. A geographical region contains several visit locations and a visit location may have several visits to be assigned. Ideally, a worker should only be assigned to visits in those geographical regions. However, if necessary, a worker can be asked to travel to locations outside their geographical regions
subject to some penalty cost. A binary parameter $\gamma_{j}^{w}=1$ is defined to indicate that visit $j$ is located in the worker's regions and $\gamma_{j}^{w}=0$ otherwise. A binary variable $\psi_{j}^{w}=1$ to indicate that visit $j$ assigned to worker $w$ is outside the worker's regions, and $\psi_{j}^{w}=0$ otherwise. Constraint 13 presents the relation between these binary variables for the different possible cases.

$$
\begin{equation*}
\sum_{i \in T} x_{i, j}^{w}-\psi_{j}^{w} \leq \gamma_{j}^{w}, \forall w \in W, \forall j \in T \tag{13}
\end{equation*}
$$

Some of the constraints expressed in the above MIP formulation are soft constraints in WSRP scenarios, including constraints 10) and (workers may be asked to work outside their shift hours) and constraint (workers may be asked to work outside their geographical regions). Later, preferences calculations are explained as they are used as part of the objective function.

### 3.2. Objective Function

The objective function includes the operational cost and the penalty cost. The operational cost includes wages plus journey costs for all workers and is given by the accumulated cost $d_{i, j}+p_{j}^{w}$, where $d_{i, j}$ is the distance travelled between visit $i$ to visit $j$ and $p_{j}^{w}$ is the cost of assigning worker $w$ to visit $j$. These costs are set by the service provider in the HHC scenarios used here.

Since feasibility is not guaranteed in a WSRP solution, the penalty costs are tackled as the accumulated penalty for violations of the constraints presented in Table 1.

An assignment of worker $w$ to visit $j$ is made to a path connecting between two nodes and can be written as a tuple $\left(x_{i, j}^{w}, y_{j}, a_{j}^{w}, \psi_{j}^{w}, \theta_{j}^{w}, \tau_{j}^{w}\right)$. This assignment is composed of binary decision variables indicating violations occurrences on area availability $\left(\psi_{j}^{w}\right)$, time availability $\left(\theta_{j}^{w}\right)$ and conflicting assignments $\left(\tau_{j}^{w}\right)$. If a visit $j$ violates time availability, then $\theta_{j}^{w}=1$. The same applies to area availability violation where $\psi_{j}^{w}=1$, when violation occurs. Likewise, $\tau_{j}^{w}$ $=1$, if the assignment has time conflicts with the other assignment.

The non-satisfaction of preferences is also included in the penalty cost. There are three types of preferences including preferred worker-customer pair-
ing, worker's preferred region and customer's preferred skills. There is a degree

$$
\begin{align*}
& f(S)=\lambda_{1} \sum_{w \in W} \sum_{i \in T} \sum_{j \in T}\left(d_{i, j}+p_{j}^{w}\right) x_{i, j}^{w}, \quad \text { operational cost } \\
& \quad+\lambda_{2} \sum_{w \in W} \sum_{i \in T} \sum_{j \in T}\left(3 r_{j}-\rho_{j}^{w}\right) x_{i, j}^{w} \\
& +\lambda_{3} \sum_{w \in W} \sum_{j \in T}\left(\psi_{j}^{w}+\theta_{j}^{w}\right)+\lambda_{4} \sum_{j \in T} y_{j}+\lambda_{5} \sum_{w \in W} \sum_{j \in T} \tau_{j}^{w}, \quad \text { penalty cost } \tag{14}
\end{align*}
$$

### 3.3. Weights Calculation

Table 2: Weights values for WSRP

| Table 2: Weights values for WSRP |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
| Objective | Operational costs | Preferences penalty costs | Soft constraints penalty | Unassigned visits | Time-conflicts |
| Weight | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\lambda_{5}$ |
| Value | mileage $/ k$ | 1 | $\frac{\|V\|}{2}$ | $\lambda_{3}{ }^{2}$ | $\lambda_{3}{ }^{3}$ |

The weights associated with each objective are set to values that reflect the of satisfaction for these preferences when assigning a worker $w$ to a visit $j$ and is given by $\rho_{j}^{w}$ which has a value that ranges between $[0,3]$, where 0 means no penalty charged and 3 is full penalty.

For each assignment, the satisfaction value for each preference ranges between $[0,1]$, from not satisfied to satisfied. There are four-level preferences: low (0.2), neutral (0.5), preferred (0.5), and most preferred (1.0). The satisfaction level is calculated by reverting it to a penalty, by subtracting it from the full satisfaction score, which is $3 r_{j}$ for a visit $j$.

The best solution should have: the least operational cost and the least penalty cost. A weighted sum is proposed to combine the objectives into a single scalar value [8, 5]. The objective function is written as in equation (14), where weights $\lambda_{1}, \ldots, \lambda_{5}$ are defined to establish priority between objectives (more about the weights used here next). difference between the priority levels, as suggested by [22, 23]. The main goal is to maintain a balance of priorities for each instance based on each problem
specifications. Thus, the weights calculations presented in Table 2 differ from one instance to another ${ }^{1}$

Hard constraint violations are not allowed in the WSRP solution.However, time conflicts constraint is more difficult to satisfy. Thus, the highest priority level is given to minimise the conflicting assignments $\tau_{j}^{w}$, where the associated weight $\lambda_{5}$ is set to the highest value. In this work, a solution with conflicting assignments is an infeasible solution.

The second highest priority to be minimised is the unassigned visits $y_{j}$ where $\lambda_{4}$ is set to be very high, but still less than the value of $\lambda_{5}$. This is due to the service provider requirements for completing as many visits as possible. However, in this study, a chromosome representation ensures all visits to be assigned to workers, hence no unassigned visits violations. This is explained later in the next chapter.

In practice, the service provider may ask workers to undertake visits that are outside their time availability and/or geographical region. Thus, the next objective priority is $\lambda_{3}$, given to minimise the soft constraints penalty, i.e., the number of workers with time-availability violations $\psi_{j}^{w}$ and the number of workers with area-availability violations $\theta_{j}^{w}$. As presented by Table 2 , the weight values for $\lambda_{3}, \lambda_{4}$ and $\lambda_{5}$ are relative to the number of the assigned visits, therefore only assigned visits are violated. On the other hand, if the service provider could not fulfil the highest preference level; the fourth priority is given to minimise the preferences penalty through $\lambda_{2}$.

Finally, the lowest priority is given to minimise the operational cost through $\lambda_{1}$. This weight value is presented in Table 2, where $k$ is the operational cost. Hence, mileage is calculated for the assigned workers only.

Hard constraint violations are always penalised with a larger weight than soft constraints. Accordingly, $\lambda_{3}+\lambda_{4}+\lambda_{5}>1$ while $\lambda_{1}<1$. Under those conditions, the objective is shifted to minimise the constraint violations, by

[^1]

Fig. 2: Box plots comparisons of WSRP scenarios dimensions, shown as the number of visit assignments $V$ and the number of workers $W$.

### 3.4. Problem Instances

Table 3: Main Features of the 42 Home Health Care Problem Instances.

|  | A |  |  |  |  |  |  |  | B |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 01 | 02 | 03 | 04 | 05 | 06 | 07 | mean | 01 | 02 | 03 | 04 | 05 | 06 | 07 | mean |
| Number of Visits | 31 | 31 | 38 | 28 | 13 | 28 | 13 | 26 | 36 | 12 | 69 | 30 | 61 | 57 | 61 | 46 |
| Number of Workers | 23 | 22 | 22 | 19 | 19 | 21 | 21 | 21 | 25 | 25 | 34 | 34 | 32 | 32 | 32 | 30 |
| Number of Areas | 6 | 4 | 5 | 4 | 4 | 8 | 4 | 5 | 6 | 5 | 7 | 5 | 8 | 8 | 7 | 7 |

$$
\begin{aligned}
& \text { C }
\end{aligned}
$$

Problem instances from six UK real-world Home Health Care (HHC) scenarios are used as instances of WSRP in this study ${ }^{2}$. There are 7 problem instances in each scenario for a total of 42 instances. Table 3 shows the main features of each problem instance. Scenario A instances are considered the smallest, while instances in scenario F are the largest. Problem instances in scenario C are of disproportional nature as the number of workers is much larger than the number of visits.

[^2]Fig. 2 shows a group of box plots for each WSRP problem set comparing the
between the number of visits and the number of workers increases through the problem sets. In some, the number of visits is larger than the number of workers available. However, in problem set C, the number of visits is less than the number of workers.

Table 4: Cost-values $f(S)$ and computational-time $C p t$ (in seconds) for WSRP instances produced by the MIP solver in 7.

| Problem | $f(S)$ | Cpt | Problem | $f(S)$ | Cpt | Problem | $f(S)$ | $C p t$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 3.49 | 7 | 1 | n/a | n/a | 1 | n/a | n/a |
|  | 2.49 | 8 | 2 | 3.15 | 6 | 2 | n/a | n/a |
|  | 3 | 14 | 3 | n/a | n/a | 3 | n/a | n/a |
|  | 1.42 | 5 | C 4 | 11.15 | 90 | E 4 | n/a | n/a |
|  | 2.42 | 1 | 5 | 12.34 | 55 | 5 | n/a | n/a |
|  | 3.55 | 5 | 6 | n/a | n/a | 6 | n/a | n/a |
| 7 | 3.71 | 1 | 7 | 4.3 | 1 | 7 | n/a | n/a |
| B | 1.7 | 21 | 1 | $\mathrm{n} / \mathrm{a}$ | n/a | 1 | n/a | $\mathrm{n} / \mathrm{a}$ |
|  | 1.75 | 2 | 2 | n/a | n/a | 2 | n/a | n/a |
|  | 1.72 | 6003 | 3 | n/a | n/a | 3 | n/a | n/a |
|  | 2.07 | 25 | D 4 | n/a | n/a | F 4 | n/a | n/a |
|  | 1.82 | 585 | 5 | n/a | n/a | 5 | n/a | n/a |
|  | 1.62 | 184 | 6 | n/a | n/a | 6 | n/a | n/a |
|  | 1.79 | 300 | 7 | n/a | n/a | 7 | n/a | n/a |

Table 4 presents optimal results by a mixed integer programming (MIP) solver in [7. Researchers have reported that real-world instances of the WSRP are difficult to solve [24, 23]. This was also observed [7] where the MIP solver was unable to provide solutions for 24 instances, shown as $n / a$ ) in Table 4 .

## 4. Adaptive Multiple-Crossover Genetic Algorithm (AMCAGA)

This section describes the proposed adaptive mechanisms of the AMCAGA as an extension of the GA approach in [5] and the diversity-based adaptive GA (AGA) in [6] which was shown to provide best results in comparison to other adaptive variations implemented for WSRPs. Algorithm 1 shows the steps of this proposed algorithm.

```
Algorithm 1 Adaptive Multiple-Crossover Genetic Algorithm (AMCAGA)
Require: A crossover rate \(P_{c}\), a muta- 13: \(\quad P\) best \(M / 10\) individuals \(\rightarrow P^{\prime}\)
    tion rate \(P_{m}\), set of crossovers \(\chi=14\) : if \(P\) has stagnated for a number of
    \(x_{1}, x_{2} \ldots x_{L}\), WSL for all visits.
    Create a population \(P\) of \(M\) individu-
    als using \(W S L\)
    repeat
        Evaluate each individual in \(P\) with
        equation 14
        for \(9 M / 20\) times do
            Select \(p_{1}, p_{2} \leftarrow P\)
        end for
        Select \(x_{i} \leftarrow \chi\) with \(P_{x_{i}}\)
        \(\left(o_{1}, o_{2}\right) \leftarrow x_{i}\left(p_{1}, p_{2}\right)\) with \(P_{c}\), for all
        pairs of parents
        Score \(_{i} \leftarrow\) Performance of \(x_{i}\)
        Update \(P_{x_{i}} \leftarrow\) Score \(_{i} /\) Score \(_{\text {Sum }}\)
        \(\left(o_{1}^{\prime}, o_{2}^{\prime}\right) \leftarrow F C F\left(o_{1}, o_{2}\right)\) with \(P_{m}\),
        for all pairs of offspring
        \(\left(o_{1}^{\prime}, o_{2}^{\prime}\right) \rightarrow P^{\prime}\), for all pairs of off- 27: until termination condition is met
        spring
```

The proposed AMCAGA works as follows. First, an initial population $P$ of $M$ individuals (one-day plans) is created based on an indirect chromosome encoding (worker suitability list or WSL) to ensure solutions feasibility (line 1 ). At the start of each generation, $9 M / 20$ pairs of parent individuals are selected using binary tournaments (lines 4-6). With some probability $P_{x_{i}}$, a crossover $295 x_{i}$ is selected, using roulette wheel selection (line 7). This crossover, with some probability $P_{c}$, is applied to each pair of parents to generate two offspring (line 8). The operator' performance is evaluated and recorded (lines $9-10$ ). With some probability $P_{m}$, each offspring goes through a flat-cost flip (FCF) mutation operator (line 11). These offspring are added to the new population $P^{\prime}$

WSL for a visit $k$. When a worker is being considered for a visit, the solution evaluated for time-conflicts. If such conflict occurs by the random assignment, the next worker in the WSL for that visit is considered until a suitable worker is found with no time-conflicts arising.

Fig. 3 illustrates an example of the indirect chromosome encoding for a day plan with seven visits. Each visit has a WSL of four suitable workers, with the best worker for that visit at the top, followed by the next best worker and so on. Below the chromosome, the decoded solution shows the actual worker assigned to each visit. On the right, the encoded solution is shown with an index of the

|  | $v_{1}$ | $v_{1}$ | $\nu_{2}$ | $v_{3}$ | $v_{3}$ | $v_{3}$ | $v_{4}$ | Chromosome |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 8: 00 \\ & 8: 30 \end{aligned}$ | $\begin{gathered} 8: 15 \\ 10: 00 \end{gathered}$ | $\begin{gathered} 8: 35 \\ 12: 00 \end{gathered}$ | $\begin{aligned} & 8: 55 \\ & 11: 00 \end{aligned}$ | $\begin{gathered} 8: 40 \\ 12: 00 \end{gathered}$ | $\begin{aligned} & 8: 55 \\ & 9: 30 \end{aligned}$ | $\begin{aligned} & \text { 9:35 } \\ & \text { 13:00 } \end{aligned}$ | $v_{1}$ | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{3}$ | $v 3$ | $v_{4}$ |
| 0 | $\begin{gathered} \mathrm{W}_{2} \\ 1.1 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{W}_{1} \\ & 1.2 \end{aligned}$ | $\begin{gathered} \mathrm{W}_{2}{ }^{*} \\ 1.0 \end{gathered}$ | $\begin{gathered} \mathrm{W}_{2}{ }^{*} \\ 1.1 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{W}_{1} \\ & 2.0 \end{aligned}$ | $\begin{aligned} & \mathrm{W}_{2} \\ & 1.5 \end{aligned}$ | $\begin{gathered} \text { W7 } \\ 1.0 \end{gathered}$ | 0 | 1 | 0 | 0 | 2 | 1 | 0 |
| 1 | $\begin{array}{\|c\|} \hline \mathrm{W}_{3} \\ 1.4 \\ \hline \end{array}$ | $\begin{aligned} & \text { W3 } \\ & 1.4 \\ & \hline \end{aligned}$ | $\begin{gathered} \text { W6 } \\ 1.2 \\ \hline \end{gathered}$ | $\begin{aligned} & \text { W5 } \\ & 2.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { W6 } \\ & 2.2 \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{W}_{7} \\ 1.9 \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{W}_{1} \\ 1.1 \\ \hline \end{gathered}$ |  |  |  | lutio |  |  |  |
| 2 | $\begin{aligned} & \text { W5 } \\ & 2.3 \end{aligned}$ | $\mathrm{W}_{1}$ | $\begin{aligned} & \mathrm{W}_{4} \\ & 1.3 \end{aligned}$ | $\begin{aligned} & \mathrm{W}_{3} \\ & 3.0 \end{aligned}$ | $\mathrm{W}_{4}$ | $\begin{aligned} & \text { W5 } \\ & 1.9 \end{aligned}$ | $\mathrm{W}_{2}$ | $v_{1}$ | $v_{1}$ | $\nu_{2}$ | $v_{3}$ | $v 3$ | $v_{3}$ | $v_{4}$ |
| 3 | $\begin{aligned} & \mathrm{W}_{1} \\ & 2.3 \end{aligned}$ | $\begin{aligned} & \mathrm{W}_{4} \\ & 2 . \end{aligned}$ | $\begin{aligned} & \text { W66 } \\ & 1.8 \end{aligned}$ | $\begin{aligned} & \mathrm{W}_{1} \\ & 3.7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{W}_{7} \\ & 2.9 \end{aligned}$ | $\begin{aligned} & \text { W3 } \\ & 2.0 \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{W}_{3} \\ 1.7 \end{gathered}$ | $\mathrm{W}_{2}$ | W3 | W2 | Ws | W4 | W7 | W7 |

Fig. 3: An example of indirect chromosome encoding scheme for illustration.

### 4.2. Genetic Operators

The AMCAGA incorporates various genetic operators including some problemspecific ones that utilise heuristics to generate improved offspring [5]. All operators used are taken from [5]. A mix of general purpose and problem-specific operators are used. The general purpose ones are one-point crossover (1PX) [25], two-point crossover (2PX) [25], uniform crossover (UX) [25] and half uniform crossover (HX) [25]. Three problem-specific operators are considered, specially designed for the solution representation considered here. These are flat-costs
crossover (FCX) [5], partially-matched flat crossover (PMFCX) and flat-cost
flip mutation (FCF) [5]. These operators are described below.

1. 1PX: A point between 1 and the chromosome length is selected at random.

To create one offspring, the genes before this point are copied from one parent and the genes after are copied from the other parent. Another offspring is created using the other half from each parent.
2. 2PX: Two points are selected at random, between one and the chromosome length. Alternating segments are swapped to create the two offspring.
3. UX: The number of crossing points is not fixed. Instead, a mixing ratio (50\%) is used to choose a uniform random real number $u$ from interval $<0,1>$ when mixing the parents to create the offspring. Individual non-matching genes are swapped between the two parents with the given mixed ratio to create the offspring [26].
4. HX: Similar to UX, a mixing ratio is used. However, exactly half of the non-matching genes are swapped. Thus, the Hamming distance (number of differing gens between the two parents) is calculated and divided by two.
5. FCX: Uses penalty scores that were initially calculated in the WSL at the start of the GA. These values are denoted as 'flat-cost', where each worker $w_{j}$ has a penalty score according to their suitability to work in visit $i$. FCX goes through each of the $V$ positions in the parent's chromosome. A gene-wise comparison is enforced, for each gene in $i^{t h}$ position, with respect to the WSL estimated penalty scores $M_{i, p^{i}}$. The best suitable worker is given to offspring $\left(o_{1}\right)$ and the other worker for offspring $\left(o_{2}\right)$.
6. PMFCX: This crossover selects a segment within two cutting points. Positions of genes are reversed between these points and the FCX is applied to fill the rest of the offspring.
7. FCF: Introduces new workers to the chromosome, even if the workers are not suitable for the corresponding visits. A random position $i$ of
the chromosome is replaced. Hence, FCF increases the diversity by the random process, even if the best worker for visit $i$ is not selected. $p_{i}=$ $(0,1,0,0,2,1,0)$. If positions 3 is selected at random, gene 0 is replaced by a random number within the list of visit $i$ in WSL, to generate the child chromosome $o_{j}=(0,1,3,0,2,1,0)$.

### 4.3. Adaptive Parameter Rates

Initial parameter values, $P_{c}$ and $P_{m}$, were selected after an offline tuning method [5]. Then, $P_{c}$ and $P_{m}$ are modified at every generation and to avoid early convergence, a diversity-based scale is used to calculate the required change in the adaptive features. Population diversity is measured in two ways as described below. The two measurements accommodate different views of the loss of diversity. Combining these methods can overcome those difficulties faced by one measurement used in isolation [27].

- The genotype space [28], denoted as Diversityg. It is the distribution of pairwise differences between individuals in a population.
- The phenotype space, denoted as Diversity. It is the population fitness variance, i.e., how far each individual in the population is from the mean fitness value.

Population diversity has an effect on the setting of parameter values 6]. For example, if instances are relatively small, a large population size $M$ is required as a result of the large degree of similarity between individuals in $P$. When similar individuals are recombined, inbreeding occurs, and no additional diversity is added through crossover. For a large instance, there is less chance to have similar solutions, thus, a small $M$ is sufficient.

Whenever the best solution found by the technique has not been improved in the last generation, rates are updated, according to the calculations in [6]. This means that the search process did not evolve correctly and that it is necessary to diversify the population through adaptive parameter rates.

Equation (15) calculates the updates on $P_{c}$ value, where $Q_{1}=45 \%$ and $Q_{2}=$ $100 \%$. Equation (16) calculates the updates on $P_{m}$ value, where $Q_{1}=10 \%$.

$$
\begin{gather*}
P_{c}=\left[\frac{\text { Diversity }_{g}}{\text { Diversity }_{p}} *\left(Q_{2}-Q_{1}\right)\right]+Q_{1}  \tag{15}\\
P_{m}=\frac{\frac{\text { Diversity }_{p}-\text { Diversity }_{g}}{\text { Diversity }_{p}} \times Q_{1}+\frac{f(S)_{\max }-f(S)}{f(S)_{\max }-f(S)_{\min }} \times Q_{1}}{2} \tag{16}
\end{gather*}
$$

A resetting process is also used to reset $P_{c}=45 \%$ and $P_{m}=10 \%$ to forget the rates history if the rates values are out of range. This means forgetting all the previous feedback process that led up to the inflation of the adapted values. More details of the AGA framework is described in [6].

### 4.4. Adaptive Multiple Crossover Framework

The proposed AMCAGA uses a set of crossovers $\chi=x_{1}, x_{2} \ldots x_{L}$, which are alternated during the execution, similar to [13]. However, the strategy used in this paper uses allocation rules rather than random replacement.

At the beginning, a number of the crossover functions are applied, until the next generation is created. This number is indicated as the memory size $\sigma$. One operator is assigned at random and then replaced by another crossover. All crossovers are applied uniformly, to ensure all crossovers are used, while allowing repetitions. There is at least $\frac{1}{L}$ chance for each operator to be selected.

The operators' performances are evaluated and recorded as scores for a number of iterations during the learning process (also denoted as a cycle of a size $v)$. For each crossover, the accumulated scores are stored into the crossover reward matrix (CRM), considered as a reward registry for that crossover in the current cycle. Scores are then transformed into application rates $P_{x_{i}}$, giving the probability of applying crossover $x_{i}$. The operators' performances are evaluated and recorded for each cycle, where application rates are dynamically adjusted as the search progress.

Better performing operators have a higher score value, and therefore a higher probability to be utilised more often, but weak performing operators are not left
without a chance. For example, given a set $\chi$ of six crossovers operators, with application rates as follows: $x_{1}=23 \%, x_{2}=4 \%, x_{3}=11 \%, x_{4}=34 \%$, $x_{5}=17 \%$ and $x_{6}=12 \%$. Crossover $x_{4}$ has the highest application rate at this cycle, henceforth $x_{4}$ has more chance to be implemented. At some point of the search, when $x_{4}$ performance changes for the worse, its application rate decreases. Application rates of other crossovers also vary accordingly, causing a shift in the search.

### 4.4.1. Performance Measurements

Scores are considered as performance indicators that enforce the rewarding mechanism, $\forall x_{i} \in \chi$, a score is given at each iteration, where $i=1,2 \ldots, L$. Different types of measurements are used in the literature, such as fitness-based measurement [29, 20], distance-based measurement [10] and combined measurement and operator execution-time measurement [9]. In this study, the later can be relative to the problem size for WSRPs. Hence, the time is not absolute in real-world settings, and therefore this measurement is excluded.

Parameter settings are affected by the population diversity [6]. Therefore, distance-based measurement is considered here along with the fitness-based measurement. Performance measurements used in this chapter are as follows.

- Fitness-Based. This method is selected to maximise the cumulative improvement, as a historical fitness record of the cost value of an offspring $(o)$ and its parent $(p)$, where $f(o)<f(p)$. When there is an improvement on the overall cost value, the score increases by one. This value ensures the convergence by selecting crossovers with better offspring quality, that eventually improves the overall performance of the GA.
- Distance-Based. This method is selected to ensure a level of diversity among generated solutions, by calculating the distribution of the pairwise differences between an offspring and its parent. If the percentage is $60 \%$ or more, the score increases with respect to the hamming distance $H$ between two individuals. This value is selected to prevent inbreeding
among generations. The value of $H$ is calculated as the number of assignments in which the corresponding genes are different. Fig. 4 illustrates an example of the dissimilarities percentage calculations (presented in white cells) between a parent and an offspring.
- Hybrid Approach. This method is selected to harness the power of the two above measurements. When there is an improvement in the fitness or there exist differences between parents and offspring, the score increases. This means that with every crossover evaluation, the score value increases gradually. If only one measurement has proved an operator efficiency, the score value increases by one. On the other hand, if both performance measurements have proved an operator efficiency simultaneously, the score value increases by two.


Fig. 4: An illustration of the dissimilarities percentage (presented in white cells) between two individuals (parent, offspring).

Each crossover is evaluated in isolation with a performance measurement after each application. Details of the application rates calculations are given next.

### 4.4.2. Application Rates

At each iteration (cycle), one of three above mentioned performance measurements (fitness, distance or hybrid) evaluate all crossovers, and then gives a score value $\forall x_{i} \in \chi$, where $i=1,2 \ldots, L$. For the next iteration, scores are updated, until all cycles are completed. The accumulated score value over dif-
ferent cycles is then transformed to an application rate $P_{x_{i}}=\frac{\text { Score }_{i}}{\text { Score }_{S u m}}$, where Score $_{\text {Sum }}=\sum_{i=1}^{L}$ Score $_{i}$.

When recording the accumulated scores, a $2 \times L$ matrix is used, noted as crossover rewards matrix (CRM), i.e. the score value in $(1, i)$ is added to the value in $(2, i)$. The $2 \times L$ CRM is used to allow faster computation. As a result of scores updates, a gradual change in the $P_{x_{i}}$ value is recorded in CRM, with no rapid increase or decrease in the overall application rates. This process is repeated, for each cycle. Note that the application rates are always modified before the next cycle (iteration).


Fig. 5: An example illustrating the calculations of the application rates. of a crossover performance. If a crossover application has resulted in no improvement or even worse solution, it is still applied. The accumulated scores are then calculated by adding up the scores at the position $(1, i)$ to the scores at the position $(2, i)$. The active calculation of the application rates maintains a balance between the most effective operators, which provide good results, and
week crossovers, which provide poor results.

## 5. Experimental Study and Results

Since parameter settings and running times stated in [5] were successful in providing good results, each run in the experiments here was executed with the

Table 5: Parameter settings for AMCGAs and AMCAGA.

| Parameter | A | B | C | D | E | F | Fixed | Initial Values |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mutation Rate $P_{m}$ | $50 \%$ | $50 \%$ | $30 \%$ | $10 \%$ | $10 \%$ | $10 \%$ | AMCGAs | AMCAGAs |
| Crossover Rate $P_{c}$ | $50 \%$ | $50 \%$ | $50 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | AMCGAs | AMCAGAs |
| Population Size $M$ | 500 | 500 | 500 | 250 | 250 | 250 | AMCGA, AMCAGA | - |
| Memory Size $\sigma$ | 250 | 250 | 250 | 125 | 125 | 125 | AMCGA, AMCAGA | - |

Different cycle settings were used here, where $v=\{5,10,15,25,40,50\}$. These values were determined through preliminary experimentation. The testing revealed that a cycle of a size less than 5, had a slow learning process. A cycle of a size larger than 50 had a low accuracy of the learning factor, in which crucial information was lost. For example, a crossover operator might be the best performer at the start of a cycle, yet it can get worse in the same cycle.

Experimental results were grouped by the performance measurement method


Fig. 6: Total number of best solutions produced by different rewarding mechanisms $\left(A M C_{f} G A, A M C_{d} G A\right.$ and $\left.A M C_{h} G A\right)$.
applied. Each measurement is noted as follows: fitness improvements $\left(A M C_{f} G A\right)$,

The best performing method was selected to be included in AMCAGA and combined with adaptive parameter control method $A G A$, presented in [6].

Each algorithm was executed 8 times (runs). This means that for each of the 42 problems instances, there were $8 \times 6($ cycles $) \times 3($ methods $)=144$ runs, seeded with the same initial population.

### 5.1. Performance of AMCGAs with Different Cycle Sizes

This set of experiments was conducted to investigate the effectiveness of the feedback mechanism in the AMCGAs, when using different cycle sizes. To do so, different cycle sizes were examined with respect to the method applied.

Fig. 6 shows the total number of best solutions for all problem instances. Each bar in the X-axis represents a rewarding method applied with a cycle of size $v$. Methods shown in the plot are: $A M C_{f} G A$ (grey bars with striped lines), $A M C_{d} G A$ (black solid bars) and $A M C_{h} G A$ (blue bars with dots). The higher the bar the better, i.e. the more "best" values found.

It is clear that all methods provided relatively similar values with a slight increase on one of the methods over the others. Still, $A M C_{f} G A$ obtained the
highest number of best solutions. For $A M C_{f} G A$ and $A M C_{d} G A$, the highest number of best solutions was the when $v=10$. For $A M C_{h} G A$, on the other hand, the highest number of best solutions was when $v=25$.

This result is related to scores given to an operator throughout the search, in which the accumulated score increases or decreases gradually. An operator performance at the start of the cycle might change drastically by the end of the cycle, especially when a large $v$ value is used. Nevertheless, $v>25$ was proven to be less effective for all methods. Interestingly, the highest number of best solutions was obtained while using $A M C_{f} G A$, with $v=10$. Hence, there is no need for larger $v$ value to keep long historical records.

With one performance measurement, i.e. $A M C_{f} G A$ and $A M C_{d} G A$, small changes in the score values occur. This provided enough time for updating the application rate, for each crossover, and therefore these crossovers were used in the current population. On the other hand, a large $v$ was required when the hybrid performance measurement was applied. This is because of a large change in the score values that occurs as the outcome of combining both performance measurements. Nevertheless, if the $v$ was small, there was not enough time to reward all operators. Thus, one operator will dominate the algorithm, resulting in an uneven distribution of the application rates. Henceforth, a larger cyclesize was required. In summary, the larger the $v$, the larger the increase in the score value.

Fig. 7 illustrates the overall average computational times in seconds, on problem sets A to F, for all methods. Each sub-figure corresponds to a cycle size $v$ and presents the average computational time used by $A M C_{f} G A$ (grey bars with striped lines), $A M C_{d} G A$ (black solid bars) and $A M C_{h} G A$ (blue bars with dots). The lower the bar the better, i.e. the less computational time. On average, it was apparent from the plots that different methods provide solutions in approximately similar computational times.

For $A M C_{f} G A$, it was more computationally expensive to make large adjustments in the score values, especially when smaller $v$ was used. On the contrary, more time existed when using larger $v$ values, providing a shift in the score


Fig. 7: Average computation-time (in seconds) produced by AMC variations with different cycle sizes $v$.
values when $A M C_{f} G A$ was used. Thus, the largest computational times for $A M C_{f} G A$, among all methods, was recorded when $v=40$ or 50 .

For $A M C_{d} G A$, more time was spent on calculating the scores, that resulted in more computational time, especially when $v$ was equal 5 to 25 . This was the outcome of the diversity-based calculations, computed gene by gene, and executed $V$ times for each individual to calculate the scores accurately.

Fitness-based calculations were faster than the diversity-based calculations. However, when $v$ was between 40 and 50 , the sensitivity of the distance-based provided good solutions in less computational time. This is because that distancebased measurement method was more sensitive to the change of performances than fitness-based measurement. Note similar execution time to $A M C_{d} G A$ with $A M C_{h} G A$ was recorded, with $v=15$.

Contrary to $A M C_{d} G A, A M C_{h} G A$ was not affected by the convergence speed of the algorithm. The combinations between the diversity-based measurement and the fitness-based measurement in $A M C_{h} G A$ have obtained better computational times than the separate methods. This is because $A M C_{h} G A$ averaged the performances of both measurements by allowing the use of the calculations
within the time limitations. The reason for this was the large increase in the score values due to both calculations. As a result, the scores were computed in less time while using $A M C_{h} G A$.

The next set of experiments was designed to use one cycle-size per method, selected according to the highest total number of best solutions (see Fig. 6). Thus, $v=10$ was chosen for $A M C_{f} G A$ as well as for $A M C_{d} G A$, and $v=25$ was selected for $A M C_{h} G A$.

### 5.2. Overall Comparison Between AMCGAs methods

The second set of experiments was conducted to identify if there is a significant difference between the proposed AMCGAs variations or not. The work by 30 recommended the use of Friedman analysis as a non-parametric statistical test to establish statistical significance in EAs. Thus, a two-way Friedman analysis was used to measure the significant difference between groups of data when the dependent variable being measured was ordinal.

In this study, an IBM SPSS 22 two-way analysis was used to compare the variances of seven related-samples, with a significant level of $\alpha=0.05$ and $95 \%$ as a confidence interval. Table 6 reports the results generated by the Friedman analysis on the 42 problem instances including the mean value, the standard deviation, the minimum cost-value, the maximum cost-value and the mean rank. The results presented in the mean rank column show the methods ranking based on the statistical analysis, where a low rank indicates the best method while a high rank indicates the worse method ranked overall. All problem instances were used to set the sample size of one method as large as possible, this increases the probability of accepting or rejecting the null hypothesis. Three additional values were calculated and used to measure the performance of each algorithm. Dev is the average percentage deviation from the best-known value (best solution of all the algorithms applied). Best is the fraction of instances in a set for which an algorithm matches the best-known value (best solution of all the algorithms applied). Score is the fraction of the instances for which a competing algorithm 'wins', i.e. produces better solutions than the configuration being scored. This methods compared, $q$ is the number of problem instances, and $r$ is the number of instances in which the $p-1$ competing configurations find a better result. Hence, the best score value is 1 , when $r=0$, and the worst score value is 0 , when $r=q \times(p-1)$. The best results are highlighted in bold.

| Method | Mean | Std. Deviation | Min | Max | Mean Rank | Dev \% | \# Best | Score |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A M C_{f} G A$ | 287.07 | 699.78 | 1.18 | 3495.55 | 1.99 | 0.13\% | 0.50 | 0.65 |
| $A M C_{d} G A$ | 286.74 | 699.11 | 1.18 | 3496.73 | 1.82 | 0.05\% | 0.64 | 0.73 |
| $A M C_{h} G A$ | 287.23 | 700.10 | 1.18 | 3496.36 | 2.19 | 0.16\% | 0.33 | 0.46 |

Bold text refers to the best result.
score is calculated as $((q \times(p-1))-r) /(q \times(p-1))$, where $p$ is the number of

We applied the Friedmann non-parametric statistical to the data in Table 6 and obtained a p-value of $0.02153<0.05$, degrees of freedom $=2$ and $\chi^{2}=$ 7.677. This indicates the existence of significant performance differences among the three methods.

In order to examine where the differences actually occur, an additional analysis was implemented. Holm's test was chosen to detect the significance difference among all variations. The Holm procedure is an example of a step-down procedure. Step-up procedures start testing hypothesis $H_{m}$ and step up through the sequence while retaining the hypotheses. The procedure stops at the first rejection (for example $H_{i}$ ), and $H_{1}, \ldots, H_{i}$ are all rejected.

In this case, Holm's method obtains the p-values higher than the significance level, that is to be interpreted in the sense that we do not have enough evidence to reject the null hypothesis.

However, the descriptive statistics and the measures explained above revealed that $A M C_{d} G A$ method had the lowest mean value, standard deviation value, mean rank value and $\operatorname{Dev} \%$ value. This method had also the highest fraction of the number of best solutions and the score values. This finding suggests that different methods applied to different datasets can obtain different results and henceforth each problem set benefited from each method accordingly.


Fig. 8: Average application rates values used under different rewarding mechanisms $\left(A M C_{f} G A, A M C_{d} G A\right.$, and $\left.A M C_{h} G A\right)$.
$A M C_{d} G A$ obtained the best values in the above table. Thus, it can be ar- gued that all variations were suitable for WSRP while $A M C_{d} G A$ was slightly better than all the proposed multiple crossovers algorithms. Using the distancebased measurement has provided more accurate scores adjustments in comparison to other methods.

### 5.3. Crossovers Dominance Based on Application Rates Distribution

This section explores the change in the crossovers' application rates $\left(P_{x_{i}}\right)$ to investigate the effectiveness of one crossover over the other, in each AMCGA. Thus, this set of experiments aims to identify the most used operator in each method applied, with respect to the performance measurement.

Each bar in the X-axis of Fig. 8 illustrates the average application rate $P_{x_{i}}$ values, for all problem sets. All three methods were applied, with the set of crossovers, i.e. $1 \mathrm{PX}, 2 \mathrm{PX}, \mathrm{UX}, \mathrm{HX}, \mathrm{FCX}$ and PMFCX . The $A M C_{f} G A$ is plotted in grey bars with striped lines, the $A M C_{d} G A$ is plotted as black solid bars and the $A M C_{h} G A$ is plotted as blue bars with dots.

Among all crossovers applied with $A M C_{f} G A$, the values for the average $P_{x_{i}}$ were relatively similar with a slight increase on FCX. This result further proves the observations stated in [5], that identified the FCX as one of the best


Fig. 9: Box plots comparing the average application rates for crossovers 1PX (blue), 2PX (red), UX (black), HX (green), FCX (grey) and PMFCX (brown).
crossovers for WSRP problem sets. Thus, this operator has been utilised more when a fitness-based performance measurement was utilised.

Nevertheless, the highest average application rate $P_{x_{i}}$ among all crossovers was obtained by PMFCX, while using $A M C_{d} G A$. Hence, PMFCX was utilised more often when distance-based performance measurement was applied.

Faster calculations were required when using $A M C_{d} G A$ and $A M C_{h} G A$. Thus, FCX was used less under these methods. On the other hand, the PMFCX crossover was utilised more, due to its fast calculations as a result of mixing heuristic approach with the traditional PMX crossover method.

Traditional crossovers have provided poor quality solutions that were comparatively similar to their parents. Still, using them alongside the problemspecific method can ensure various performances in the GA.

Fig. 9 shows a group of box plots to show overall patterns of response of change in application rates $\left(P_{x_{i}}\right)$, for each crossover operator. Crossovers distribution corresponds to the current environment state if there is change in the $P_{x_{i}}$ values, i.e the bigger the box plot the more diverse is the $P_{x_{i}}$ values to the correspondent crossover.

Each sub-figure corresponds to the method applied, $A M C_{f} G A, A M C_{d} G A$ and $A M C_{h} G A$. Each box-plot illustrates the average application rates $\left(P_{x_{i}}\right)$ range, for each crossover and are shown in 1PX (blue), 2PX (red), UX (black), HX (green), FCX (grey) a PMFCX (brown).

As it can be seen from the plots, PMFCX box plot is lower than all other plots in $A M C_{f} G A$, i.e. less change in $P_{x_{i}}$ values. The opposite occurs for $A M C_{d} G A$ and $A M C_{h} G A$, where $P_{x_{i}}$ values were more diverse. This indicates
that PMFCX was updated more frequently. This result further supports the previous finding discussed in this section.

### 5.4. Effect of Using a Rewarding Process on AMCGA

The third set of experiments aims to compare AMCGA methods with an existing GA that was tailored for WSRP. The detailed results shown in Table 7 compares the indirect GA described in [5] (noted as GA) with the AMCGA variations $\left(A M C_{f} G A, A M C_{d} G A\right.$ and $\left.A M C_{h} G A\right)$. Crossovers used with indirect GA were specified for each problem set as follows. for A and B GCX, for C PMGreedyX, for D, E and F FCX. The FCF mutation was also used.

In addition to the indirect GA, the AMCGAs were compared against a variation of AMCGA that used a uniform choice of operators, noted as $A M C_{r} G A$. The goal is to investigate the performance of AMCGAs when excluding the reinforcement learning process. For each problem instance, the table shows the solution quality, noted as $f(S)$, and the computational time in seconds, noted as $C p t$, in which the best solution was found.

Best values are highlighted in bold. If more than one method achieved the same result, among cost-best equals, the time-best is highlighted in bold.

As it can be seen from Table 7 the proposed methods $A M C_{f} G A, A M C_{d} G A$ and $A M C_{h} G A$ outperform the GA and $A M C_{r} G A$ in terms of computational time, in particular $A M C_{f} G A$ and $A M C_{d} G A$. This indicates that the rewarding process in the adaptive methods was more efficient time-wise. The percentage of best cost-values overall solutions are as follows. The GA $14.29 \%, A M C_{r} G A$ $30.95 \%, A M C_{f} G A 40.48 \%, A M C_{d} G A 47.48 \%$ and $A M C_{h} G A 21.43 \%$. Closer inspection of the results is discussed next.

Using a variety of operators, in which they have different performances, have provided good quality solutions for each problem set, especially $A M C_{f} G A$ and $A M C_{d} G A$. Improvements have occurred due to the combined work of the operators, which allowed an extensive search with a larger variance than using one crossover. However, using two performance measurements, as the case in $A M C_{h} G A$ was proven to be inefficient in comparison to the other AMCGAs.
Table 7: Results of the cost values $f(S)$ and computational time $C p t$ (in seconds) produced by the proposed methods GA, $A M C_{r} G A, A M C_{f} G A$, $A M C_{d} G A$ and $A M C_{h} G A$ for 42 WSRP instances

|  |  | GA |  | $A M C_{r} G A$ |  | $A_{\text {d }}{ }_{f} G A$ |  | $A M C_{d} G A$ |  | $A M C_{h} G A$ |  |  |  | GA |  | $A M C_{r} G A$ |  | $A_{M C} G A$ |  | $A M C_{d} G A$ |  | $A M C_{h} G A$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $f(S)$ | Cpt |  |  | $f(S)$ | Cpt |
|  | 1 | 3.49 | 34.08 | 3.49 | 3.90 | 3.49 | 2.27 | 3.49 | 1.85 | 3.49 | 1.65 |  | 1 | 173.15 | 2989.34 | 171.39 | 3140.40 | 171.08 | 3408.46 | 170.71 | 3334.63 | 171.08 | 3255.77 |
|  | 2 | 2.96 | 396.77 | 2.49 | 5.07 | 2.54 | 2.34 | 2.49 | 2.62 | 2.49 | 1.42 |  | 2 | 169.56 | 3502.67 | 167.50 | 3448.17 | 168.11 | 3046.96 | 167.31 | 3405.58 | 168.31 | 3450.06 |
|  | 3 | 3.65 | 436.92 | 3.01 | 153.54 | 3.02 | 14.83 | 3.02 | 58.57 | 3.02 | 115.48 |  | 3 | 184.49 | 3502.43 | 180.93 | 3211.17 | 180.86 | 3361.38 | 180.86 | 3102.37 | 181.55 | 3390.17 |
| A | 4 | 1.42 | 229.01 | 1.42 | 41.76 | 1.42 | 41.54 | 1.42 | 67.69 | 1.42 | 66.38 | D | 4 | 171.83 | 3484.81 | 168.68 | 3338.98 | 168.42 | 3323.28 | 168.37 | 3476.31 | 167.86 | 3412.84 |
|  | 5 | 2.42 | 0.98 | 2.42 | 1.07 | 2.42 | 0.81 | 2.42 | 1.26 | 2.42 | 0.42 |  | 5 | 162.32 | 3589.68 | 161.93 | 3382.11 | 161.99 | 3266.39 | 161.86 | 3276.84 | 161.92 | 3113.17 |
|  | 6 | 3.61 | 159.83 | 3.55 | 4.64 | 3.55 | 3.21 | 3.55 | 8.30 | 3.55 | 8.93 |  | 6 | 178.80 | 3446.80 | 178.16 | 3268.95 | 178.35 | 3209.79 | 178.16 | 3353.26 | 178.28 | 3278.63 |
|  | 7 | 3.71 | 0.83 | 3.71 | 1.02 | 3.71 | 0.81 | 3.71 | 1.42 | 3.71 | 0.32 |  | 7 | 178.85 | 3423.81 | 178.65 | 3263.43 | 178.71 | 3367.56 | 178.65 | 3347.14 | 178.59 | 3271.47 |
|  | 1 | 1.76 | 422.62 | 1.72 | 146.60 | 1.72 | 141.90 | 1.72 | 276.01 | 1.72 | 262.21 |  | 1 | 3.75 | 3314.33 | 1.18 | 3420.64 | 1.18 | 3366.72 | 1.18 | 3404.99 | 1.18 | 3206.71 |
|  | 2 | 1.75 | 78.57 | 1.75 | 0.64 | 1.75 | 0.71 | 1.75 | 1.22 | 1.75 | 0.34 |  | 2 | 3.86 | 3570.60 | 1.21 | 3394.69 | 1.21 | 3311.93 | 1.21 | 3399.96 | 1.21 | 3431.21 |
|  | 3 | 1.90 | 629.30 | 1.79 | 329.10 | 1.78 | 555.93 | 1.78 | 570.47 | 1.78 | 435.03 |  | 3 | 5.18 | 3371.76 | 1.22 | 3345.45 | 1.21 | 3428.17 | 1.22 | 3460.71 | 1.22 | 3395.24 |
| B | 4 | 2.08 | 29.51 | 2.08 | 4.77 | 2.08 | 4.06 | 2.08 | 21.25 | 2.08 | 7.28 | E | 4 | 3.27 | 3584.67 | 1.30 | 3419.12 | 1.29 | 3512.18 | 1.29 | 3493.56 | 1.30 | 3432.41 |
|  | 5 | 1.96 | 434.63 | 1.91 | 417.83 | 1.90 | 490.40 | 1.91 | 483.60 | 1.92 | 558.09 |  | 5 | 5.15 | 3585.41 | 2.24 | 3287.96 | 2.24 | 3469.36 | 2.25 | 3424.19 | 2.25 | 3450.09 |
|  | 6 | 1.71 | 343.74 | 1.64 | 105.39 | 1.65 | 80.54 | 1.64 | 72.75 | 1.65 | 137.81 |  | 6 | 3.56 | 3559.72 | 1.30 | 3406.16 | 1.30 | 3233.54 | 1.30 | 3356.92 | 1.30 | 3377.66 |
|  | 7 | 1.87 | 502.96 | 1.80 | 248.04 | 1.79 | 57.24 | 1.80 | 244.68 | 1.79 | 144.08 |  | 7 | 3.92 | 3574.02 | 1.73 | 3339.36 | 1.73 | 3486.11 | 1.73 | 3452.58 | 1.73 | 3375.31 |
|  | 1 | 115.13 | 846.87 | 115.01 | 597.34 | 114.81 | 513.89 | 114.75 | 566.20 | 114.88 | 641.68 |  | 1 | 2257.51 | 28710.28 | 2034.37 | 27834.65 | 2035.17 | 27760.40 | 2022.40 | 28294.63 | 2039.30 | 27768.47 |
|  | 2 | 3.15 | 0.46 | 3.15 | 0.98 | 3.15 | 0.67 | 3.15 | 0.86 | 3.15 | 0.20 |  | 2 | 2306.05 | 28672.43 | 2084.22 | 27286.12 | 2084.84 | 27671.16 | 2083.97 | 27978.79 | 2084.47 | 27944.11 |
|  | 3 | 104.83 | 657.11 | 105.02 | 659.60 | 104.65 | 675.85 | 104.89 | 434.64 | 104.82 | 535.76 |  | 3 | 850.24 | 28700.42 | 608.07 | 27635.80 | 608.32 | 27767.11 | 608.13 | 27867.36 | 608.63 | 27280.61 |
| c | 4 | 11.15 | 2.41 | 11.15 | 2.65 | 11.15 | 1.84 | 11.15 | 1.79 | 11.15 | 2.25 | F | 4 | 1546.96 | 28733.22 | 1329.08 | 26819.62 | 1328.77 | 27863.52 | 1329.58 | 28029.66 | 1328.33 | 27308.04 |
|  | 5 | 12.34 | 3.38 | 12.34 | 16.09 | 12.34 | 2.94 | 12.34 | 68.90 | 12.34 | 2.58 |  | 5 | 453.99 | 28415.05 | 196.57 | 26846.99 | 197.57 | 26783.72 | 197.20 | 28222.74 | 198.51 | 28380.85 |
|  | 6 | 180.98 | 591.22 | 180.98 | 367.50 | 180.80 | 301.95 | 180.80 | 431.25 | 180.86 | 377.21 |  | 6 | 855.31 | 28707.11 | 625.58 | 27613.17 | 624.96 | 27835.21 | 624.96 | 27996.64 | 625.77 | 27519.31 |
|  | 7 | 4.30 | 0.00 | 4.30 | 0.00 | 4.30 | 0.00 | 4.30 | 0.00 | 4.30 | 0.00 |  | 7 | 3980.44 | 28660.10 | 3495.86 | 27970.66 | 3495.55 | 28138.01 | 3496.73 | 27705.17 | 3496.36 | 28333.90 |

This is due to the large jumps in the score values in comparison to using one performance measurement, i.e. $A M C_{f} G A$ and $A M C_{d} G A$, where small movements into various directions in the solution space has resulted in finding undiscovered regions easier.

By contrast, in the indirect GA, the search was completed by one crossover involvement in a large proportion of the solution space. Using one crossover throughout the search has less ability to extend the search in those regions, which were most promising. This was the reason for the GA providing worse results than the AMCGAs.

On the other hand, random crossover selection has utilised different crossovers at an arbitrary level, without prior knowledge of the current search space. Still, the $A M C_{r} G A$ has obtained the best results on $E_{5}, E_{7}, F_{3}$ and $F_{5}$. This was because of the lack of performance measurements calculations. Hence, results were computed faster under those instances.

In regard to computational time, AMCGAs proved to improve the efficiency of the algorithm by computing the results in less time. For GA, $A M C_{r} G A$, $A M C_{f} G A, A M C_{d} G A$ and $A M C_{h} G A$, the average $C p t$ in seconds were 6069.04, $5756.7,5797.7,5873.8$ and 5825.6 respectively. The reason for the rapid decrease in the computational times is as discussed next.

In the traditional GA, one crossover was applied at each iteration. As a result, the algorithm required more time to improve the solution. On the other hand, the AMCGAs enforce the performances of different crossovers onto one population, which was made in a minimum time. Therefore, the proposed AMCGAs obtain solutions in fewer iterations than the indirect GA. In $A M C_{r} G A$, the average $C p t$ was the lowest among all compared methods, this was due to the exclusion of the feedback process. The average $C p t$ for $A M C_{f} G A$ was less than the average $C p t$ for $A M C_{d} G A$ and $A M C_{h} G A$. This result was the outcome of computing the dissimilarities between the parent and the offspring, which resulted in a massive amount of calculations. Despite the fact that in $A M C_{h} G A$ the two performance measurements were applied, it obtained the results in less $C p t$-time than $A M C_{d} G A$. This outcome was due to the use of


Fig. 10: Total number of best solutions while using $A M C_{d} A G A$.
the rewarding process that resulted in better and faster convergence.

### 5.5. Using an $A M C_{d} G A$ as a Component of $A M C A G A$

A major advantage of AMCGAs was that they have a considerable influence on improving the efficiency of the baseline GA, especially when the distancebased performance measurement was applied. Thus, the $A M C_{d} G A$ method was selected to be integrated with the adaptive operator rates control method AMCAGA (noted as $A M C_{d} A G A$ ), that perform as a full adaptive GA. The following experiments aimed to evaluate the validity of $A M C_{d} A G A$ by providing further insights into its performance.

### 5.5.1. Effect of Uing Different Cycle Sizes in AMCAGA

In this section, the aim was to investigate the effect of the using different cycle sizes in $A M C_{d} A G A$ on solutions quality and computational times.

Fig. 10 shows the total number of best solutions generated by different cycle sizes. Each bar at the X-axis represents an $A M C_{d} A G A$ method applied with a cycle size $v$. The higher the bar the better, i.e. the more "best" values. Using different cycle sizes has resulted in relatively similar performance, with a high number of best solutions in more than one cycle size. Thus, it can be claimed that using adaptive operator rates $\left(P_{c}\right.$ and $\left.P_{m}\right)$ makes the performance of the AMCGA more stable than using the $A M C_{d} G A$ separately, as seen on Fig. 6 and Fig. 10 .






Fig. 11: Average computational-time (in seconds) produced by $A M C_{d} A G A$ used with different cycle sizes $v$.

The number of best solutions was the highest when $v=15,40$ and 50 with a value of 17 best solutions. Followed by $v=10$ with 16 solutions and $v=$ 25 with 15 solutions. The values for the number of best solutions when $v=5$ was the lowest. The time was insufficient to score all operators. Thus, a large cycle size, i.e. 50 , provides better learning outcomes with the time to retrieve the information needed in order to improve the results.

Another observation was made when recording the computational times for $A M C_{d} A G A$ while using different cycle sizes. Each sub-figure in Fig. 11 corres${ }_{75}$ ponds to a problem sets from A to F, and each bar illustrates the overall average of the computational time in seconds used by a cycle-size. The bars colour and pattern indicate each cycle as follows: black solid bars when cycle size $=5$, grey bars with stripped lines when $v=10$, blue bars with dots when $v=15$, red bars with right inclined lines when $v=25$, green bars with left inclined lines when $v=40$ and yellow bars with a grid when $v=50$. The lower the bar the better, i.e. the less computational time.

On average, the lowest computational times for problem set A was when $v=25$, however, all cycle sizes have obtained the same result in less than 50
seconds which was acceptable. Followed by the $v=50$ that also obtained the lowest average computational times for problem sets C, D and F. The results, as shown in Figures 11 and 10, indicate that combining the adaptive operator rates ( $P_{c}$ and $P_{m}$ ) approach with $A M C_{d} G A$ of a cycle of size 50 provides the best results in less time, especially for difficult problem sets. The larger the cycle size, the more scores were calculated for an operator effectiveness in addition to updating the operator rates. As a result, the population evolved over time into better, fitter solutions. The interchange between the two adaptive aspects was vastly exploited in $A M C_{d} A G A$. Note that the lowest average computational times for problem sets B and E were when $v=10$ with a difference between 100 to 200 seconds to the other sizes. With reference to Fig. 10, this cycle size also obtained the second highest number of best solutions. Therefore, the results for a $v=10$ and $v=50$ is investigated further in the next section.

### 5.5.2. Overall Results of AMCAGA vs. AMCGA and AGA

The aim of this experiments is to compare the performance of $A M C_{d} A G A$ against $A M C_{d} G A$ and $A G A$ to understand the effect of combining the adaptive parameter mechanisms into the AMCs.

Results for $A M C_{d} A G A$ are shown in Table 8 with the diversity-based adaptive operators rate control GA (noted as $A G A$ ) and the AMCGA variations that utilised diversity-based measurement (noted as $A M C_{d} G A$ ). The $A M C_{d} A G A$ method used in this comparison was when $v=10$ (noted as $A M C_{d} A G A_{10}$ ) and a $v=50$ (noted as $A M C_{d} A G A_{50}$ ). These methods are selected based on the observations form Fig. 6 and Fig. 7.

Note that there are two types of adaptability in Table 8 . The first adaptive method used in AGA and $A M C_{d} A G A$ is the GA parameter control, $P_{c}$ and $P_{m}$, The second adaptive method used in $A M C_{d} G A$ and $A M C_{d} A G A$ is multiple crossover adaptability. The baseline GA was excluded in this comparison because it was shown that $A M C_{d} G A$ and $A G A$ provided better results as discussed earlier.

From the table, it can be seen that $A M C_{d} A G A$ outperformed $A G A$ and
Table 8: Results comparison between cost values $f(S)$ and computational time $C p t$ (in seconds) produced by the adaptive methods $A G A, A M C_{d} G A$, $A M C_{d} A G A_{10}$ and $A M C_{d} A G A_{50}$ for 42 WSRP instances.

|  |  | AGA |  | $A M C_{d} G A$ |  | $A M C_{d} A G A_{10}$ |  | $A M C_{d} A G A_{50}$ |  |  |  | AGA |  | $A M C_{d} G A$ |  | $A M C_{d} A G A_{10}$ |  | $A M C_{d} A G A_{50}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cpt |  |  | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cpt |
| A | 1 | 3.49 | 14.45 | 3.49 | 1.85 | 3.49 | 2.81 | 3.49 | 1.78 |  | 1 | 170.77 | 2978.51 | 170.71 | 3334.63 | 170.23 | 2533.55 | 170.29 | 2545.39 |
|  | 2 | 2.49 | 100.69 | 2.49 | 2.62 | 2.49 | 4.49 | 2.49 | 1.27 |  | 2 | 166.87 | 3228.52 | 167.31 | 3405.58 | 166.58 | 2109.05 | 166.26 | 2512.36 |
|  | 3 | 3.08 | 11.50 | 3.02 | 58.57 | 3.02 | 221.92 | 3.02 | 27.63 |  | 3 | 180.60 | 3258.30 | 180.86 | 3102.37 | 179.81 | 2490.46 | 179.75 | 2370.22 |
|  | 4 | 1.42 | 247.07 | 1.42 | 67.69 | 1.42 | 51.27 | 1.42 | 42.71 | D | 4 | 167.93 | 3465.12 | 168.37 | 3476.31 | 166.64 | 2382.08 | 166.39 | 2511.47 |
|  | 5 | 2.42 | 1.11 | 2.42 | 1.26 | 2.42 | 0.87 | 2.42 | 0.38 |  | 5 | 161.73 | 3367.04 | 161.86 | 3276.84 | 161.50 | 2503.26 | 161.37 | 2532.9 |
|  | 6 | 3.56 | 130.22 | 3.55 | 8.30 | 3.55 | 26.59 | 3.55 | 7.05 |  | 6 | 178.28 | 3200.96 | 178.16 | 3353.26 | 178.11 | 2765.96 | 177.99 | 2368.7 |
|  | 7 | 3.71 | 0.72 | 3.71 | 1.42 | 3.71 | 1.03 | 3.71 | 0.51 |  | 7 | 178.40 | 2489.11 | 178.65 | 3347.14 | 178.41 | 3054.21 | 178.41 | 2217.13 |
| B | 1 | 1.75 | 84.00 | 1.72 | 276.01 | 1.72 | 160.06 | 1.73 | 146.45 |  | 1 | 1.18 | 3322.13 | 1.18 | 3404.99 | 1.17 | 3390.71 | 1.17 | 3285.83 |
|  | 2 | 1.75 | 0.56 | 1.75 | 1.22 | 1.75 | 1.03 | 1.75 | 0.29 |  | 2 | 1.21 | 3368.60 | 1.21 | 3399.96 | 1.20 | 3303.48 | 1.20 | 3311.01 |
|  | 3 | 1.82 | 280.35 | 1.78 | 570.47 | 1.77 | 327.03 | 1.79 | 468.52 |  | 3 | 1.21 | 3246.99 | 1.22 | 3460.71 | 1.21 | 3181.93 | 1.21 | 3137.97 |
|  | 4 | 2.08 | 46.19 | 2.08 | 21.25 | 2.08 | 5.12 | 2.08 | 3.17 | E | 4 | 1.29 | 3492.21 | 1.29 | 3493.56 | 1.29 | 2932.00 | 1.29 | 3123.67 |
|  | 5 | 1.93 | 98.85 | 1.91 | 483.60 | 1.92 | 459.26 | 1.91 | 396.11 |  | 5 | 2.24 | 3442.02 | 2.25 | 3424.19 | 2.24 | 2921.37 | 2.24 | 3378.24 |
|  | 6 | 1.66 | 190.74 | 1.64 | 72.75 | 1.65 | 97.23 | 1.64 | 146.05 |  | 6 | 1.30 | 3283.59 | 1.30 | 3356.92 | 1.30 | 2539.72 | 1.30 | 2975.27 |
|  | 7 | 1.81 | 154.78 | 1.80 | 244.68 | 1.80 | 87.54 | 1.80 | 78.43 |  | 7 | 1.73 | 3473.85 | 1.73 | 3452.58 | 1.72 | 3314.44 | 1.72 | 3278.99 |
| C | 1 | 115.07 | 703.71 | 114.75 | 566.20 | 114.87 | 644.23 | 114.94 | 640.35 |  | 1 | 2122.60 | 27647.63 | 2022.40 | 28294.63 | 2036.82 | 23117.21 | 2019.72 | 22709.3 |
|  | 2 | 3.15 | 0.46 | 3.15 | 0.86 | 3.15 | 0.71 | 3.15 | 0.30 |  | 2 | 2082.79 | 26318.27 | 2083.97 | 27978.79 | 2081.99 | 23765.59 | 2081.74 | 22516.9 |
|  | 3 | 105.08 | 677.45 | 104.89 | 434.64 | 104.75 | 804.69 | 104.82 | 681.10 |  | 3 | 607.26 | 27722.40 | 608.13 | 27867.36 | 605.14 | 22220.34 | 604.71 | 22658.5 |
|  | 4 | 11.15 | 2.40 | 11.15 | 1.79 | 11.15 | 3.14 | 11.15 | 2.64 | F | 4 | 1328.51 | 27229.31 | 1329.58 | 28029.66 | 1326.28 | 24782.11 | 1325.90 | 23459 |
|  | 5 | 12.60 | 33.70 | 12.34 | 68.90 | 12.34 | 2.40 | 12.34 | 2.35 |  | 5 | 196.08 | 26934.63 | 197.20 | 28222.74 | 193.59 | 25631.57 | 192.78 | 25895.8 |
|  | 6 | 180.99 | 589.30 | 180.80 | 431.25 | 180.92 | 586.95 | 180.99 | 446.39 |  | 6 | 624.77 | 25367.39 | 624.96 | 27996.64 | 622.41 | 26415.45 | 622.34 | 23680 |
|  | 7 | 4.30 | 0.00 | 4.30 | 0.00 | 4.30 | 0.00 | 4.30 | 0.00 |  | 7 | 3495.99 | 27225.77 | 3496.73 | 27705.17 | 3492.87 | 24083.07 | 3493.18 | 24846.2 |

$A M C_{d} G A$, especially $A M C_{d} A G A_{50}$. Closer inspection of the results shows the percentage of best cost-values overall solutions are as follows. The AGA 21.43\%, $A M C_{d} G A 35.71 \%, A M C_{d} A G A_{10} 42.86 \%$ and $A M C_{d} A G A_{50} 59.52 \%$. Hence, $A M C_{d} A G A_{50}$ has provided the best results on $59.52 \%$ of all solutions. Followed by $A M C_{d} A G A_{10}$ that provided the best results on $42.86 \%$ of all solutions. These results indicate the power of combining two adaptive elements that work ${ }_{820}$ together in order to improve the GA offspring productivity.

Another advantage of this method was the rapid decrease in computational time that was previously reduced by using the adaptive methods separately in comparison to the baseline GA. The average computational times in seconds were $5653.11,5873.79,5069.67$ and 4962.10 for $A G A, A M C_{d} G A, A M C_{d} A G A_{10}$ and $A M C_{d} A G A_{50}$ respectively. Thus, using the combined method was more cost-effective than using one method individually for WSRP.

### 5.6. Results of AMCAGA vs.WSRPs Solution Methods

This section provides a comparison of the best-performing methods proposed in this study, i.e., $A M C_{d} A G A_{10}$ and $A M C_{d} A G A_{50}$, against three existing WSRP solution methods from the literature: MIP solver [7, MIP with decomposition 31 and VNS algorithm [8. Table 9 shows the solution quality, noted as $f(S)$, and the computational time in seconds, noted as $C p t$, in which the best solution was found. The best values are highlighted in bold.

For smaller problem sets, the proposed methods were quite competitive, matching the best-known results for many of those instances. The VNS seems to provide better overall results with $42.86 \%$ of all best solutions. However, the $A M C_{d} A G A_{10}$ and $A M C_{d} A G A_{50}$ outperformed the MIP with decomposition method with $21.43 \%$ and $42.86 \%$ of all best solutions respectively.

The average computational times were calculated for methods that provided solutions for all instances. i.e. MIP with decomposition $A M C_{d} A G A_{1} 0$ and $A M C_{d} A G A_{5} 0$. The recorded times were $4964.26,5069.67$ and 4962.10 respectively.

The $A M C_{d} A G A_{10}$ has the largest computational time among all methods.
Table 9: Cost-values $f(S)$ and computational-time $C p t$ (in seconds) for WSRP instances, produced by all WSRP solution methods on 42 instances.

|  |  | Optimal |  | MIP DECOMP. |  | VNS |  | $A M C_{d} A G A_{10}$ |  | $A M C_{d} A G A_{50}$ |  |  |  | Optimal |  | MIP DECOMP. |  | VNS |  | $A M C_{d} A G A_{10}$ |  | $A M C_{d} A G A_{50}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cptn |  |  | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cpt | $f(S)$ | Cptn |
| A | 01 | 3.49 | 7.00 | 5.65 | 3.71 | 3.49 | 2.99 | 3.49 | 2.81 | 3.49 | 1.78 |  | 01 | n/a | n/a | 496.4 | 1060.0 | 170.3 | 3036.2 | 170.23 | 2533.55 | 170.29 | 2545.39 |
|  | 02 | 2.49 | 8.00 | 4.53 | 3.58 | 2.49 | 0.33 | 2.49 | 4.49 | 2.49 | 1.27 |  | 02 | n/a | n/a | 372.9 | 1192.1 | 163.9 | 2840.8 | 166.58 | 2109.05 | 166.26 | 2512.36 |
|  | 03 | 3.00 | 14.00 | 10.65 | 3.70 | 3.00 | 29.30 | 3.02 | 221.92 | 3.02 | 27.63 |  | 03 | n/a | n/a | 3213.3 | 1209.0 | 178.2 | 3172.8 | 179.81 | 2490.46 | 179.75 | 2370.22 |
|  | 04 | 1.42 | 5.00 | 3.09 | 2.88 | 1.42 | 6.87 | 1.42 | 51.27 | 1.42 | 42.71 | D | 4 | n/a | n/a | 418.9 | 3005.1 | 167.1 | 3313.8 | 166.64 | 2382.08 | 166.39 | 2511.47 |
|  | 05 | 2.42 | 1.00 | 3.54 | 1.77 | 2.42 | 0.11 | 2.42 | 0.87 | 2.42 | 0.38 |  | 05 | n/a | n/a | 243.9 | 1306.7 | 161.1 | 2818.5 | 161.50 | 2503.26 | 161.37 | 2532.90 |
|  | 06 | 3.55 | 5.00 | 3.74 | 2.42 | 3.55 | 29.47 | 3.55 | 26.59 | 3.55 | 7.05 |  | 06 | n/a | n/a | 1411.3 | 1222.0 | 177.4 | 2996.0 | 178.11 | 2765.96 | 177.99 | 2368.70 |
|  | 07 | 3.71 | 1.00 | 4.81 | 1.64 | 3.71 | 0.07 | 3.71 | 1.03 | 3.71 | 0.51 |  | 07 | n/a | n/a | 753.3 | 1361.9 | 177.9 | 2930.4 | 178.41 | 3054.21 | 178.41 | 2217.13 |
| B | 01 | 1.70 | 21.00 | 1.79 | 8.07 | 1.70 | 156.45 | 1.72 | 160.06 | 1.73 | 146.45 |  | 01 | n/a | n/a | 33.0 | 8408.0 | n/a | n/a | 1.17 | 3390.71 | 1.17 | 3285.834 |
|  | 02 | 1.75 | 2.00 | 1.89 | 4.29 | 1.75 | 0.00 | 1.75 | 1.03 | 1.75 | 0.29 |  | 02 | n/a | n/a | 26.0 | 12448.4 | n/a | n/a | 1.20 | 3303.48 | 1.20 | 3311.008 |
|  | 03 | 1.72 | 6003.00 | 2.06 | 32.86 | 1.72 | 473.21 | 1.77 | 327.03 | 1.79 | 468.52 |  | 03 | n/a | n/a | 29.0 | 20746.6 | n/a | n/a | 1.21 | 3181.93 | 1.21 | 3137.972 |
|  | 04 | 2.07 | 25.00 | 2.21 | 15.25 | 2.07 | 9.03 | 2.08 | 5.12 | 2.08 | 3.17 | E | 04 | n/a | n/a | 28.5 | 15190.5 | n/a | n/a | 1.29 | 2932.00 | 1.29 | 3123.67 |
|  | 05 | 1.82 | 585.00 | 4.74 | 25.35 | 1.83 | 135.33 | 1.92 | 459.26 | 1.91 | 396.11 |  | 05 | n/a | n/a | 270.1 | 32619.2 | n/a | n/a | 2.24 | 2921.37 | 2.24 | 3378.24 |
|  | 06 | 1.62 | 184.00 | 2.52 | 24.11 | 1.62 | 194.29 | 1.65 | 97.23 | 1.64 | 146.05 |  | 06 | n/a | n/a | 24.6 | 24212.1 | n/a | n/a | 1.30 | 2539.72 | 1.30 | 2975.266 |
|  | 07 | 1.79 | 300.00 | 4.06 | 23.64 | 1.79 | 304.96 | 1.80 | 87.54 | 1.80 | 78.43 |  | 07 | n/a | n/a | 427.8 | 51057.3 | n/a | n/a | 1.72 | 3314.44 | 1.72 | 3278.994 |
|  | 01 | n/a | n/a | 904.98 | 211.64 | 114.21 | 301.32 | 114.87 | 644.23 | 114.94 | 640.35 |  | 01 | n/a | n/a | 64305.1 | 3446.4 | n/a | n/a | 2036.82 | 23117.21 | 2019.72 | 22709.26 |
|  | 02 | 3.15 | 6.00 | 3.61 | 0.57 | 3.15 | 0.00 | 3.15 | 0.71 | 3.15 | 0.30 |  | 02 | n/a | n/a | 73291.2 | 1111.0 | n/a | n/a | 2081.99 | 23765.59 | 2081.74 | 22516.85 |
|  | 03 | n/a | n/a | 1186.27 | 26.33 | 103.52 | 550.29 | 104.75 | 804.69 | 104.82 | 681.10 |  | 03 | n/a | n/a | 115235.2 | 4555.1 | n/a | n/a | 605.14 | 22220.34 | 604.71 | 22658.5 |
|  | 04 | 11.15 | 90.00 | 81.25 | 3.09 | 11.15 | 0.91 | 11.15 | 3.14 | 11.15 | 2.64 | F | 04 | n/a | n/a | 102994.2 | 4219.2 | n/a | n/a | 1326.28 | 24782.11 | 1325.90 | 23458.95 |
|  | 05 | 12.34 | 55.00 | 68.94 | 1.05 | 12.34 | 0.34 | 12.34 | 2.40 | 12.34 | 2.35 |  | 05 | n/a | n/a | 101438.2 | 6156.5 | n/a | n/a | 193.59 | 25631.57 | 192.78 | 25895.77 |
|  | 06 | n/a | n/a | 3102.26 | 47.05 | 140.44 | 323.52 | 180.92 | 586.95 | 180.99 | 446.39 |  | 06 | n/a | n/a | 76007.1 | 9695.6 | n/a | n/a | 622.41 | 26415.45 | 622.34 | 23680.04 |
|  | 07 | 4.30 | 1.00 | 5.29 | 0.24 | 4.30 | 0.02 | 4.30 | 0.00 | 4.30 | 0.00 |  | 07 | n/a | n/a | 176540.6 | 3832.8 | n/a | n/a | 3492.87 | 24083.07 | 3493.18 | 24846.23 |

[^3]On the contrary, the $A M C_{d} A G A_{50}$ has the lowest computation time among all methods. These findings indicate that the use of a large cycle size provided better GA performance, especially cost-wise. A noticeable effect of using adaptive aspects was the reduction of the computation time, which was also enhanced when using AMCAGA. On the other hand, the MIP with decomposition method has obtained a low average computation time. However, the results obtained were poor in comparison to the other methods.

So far, the proposed methods were the only algorithms that provided results for all instances. Hence, these adaptive GAs were able to solve this real-world and highly constrained optimisation problem instances. Interestingly, the best cost values were obtained by diversity-based methods. This further proves the significance of maintaining a diverse population in enhancing the GA performance when tackling WSRP. Even though VNS had obtained better results than the proposed methods in this study, when results were available, this study helps to better understand the applicability of GAs for WSRP.

## 6. Conclusion

Using synergies between genetic operators can provide better results than using one operator during the search [20]. This concept is used in this study by proposing an Adaptive Multiple Crossover Genetic Algorithm (AMCAGA) to tackle 42 instances of a Workforce Scheduling and Routing Problem (WSRP) in Home Healthcare.

Six different crossover operators are used within the proposed AMCAGA method. An adaptive mechanism seeks to learn the best way to apply the crossovers by rewarding their effectiveness in the current stage of the search. Three performance measurements are used to evaluate a crossover. One based on fitness, another one based on Hamming distance and the third one being a hybrid of the first two. Variations of the algorithm $\left(A M C_{f} G A, A M C_{d} G A, A M C_{h} G A\right)$ using these performance measurements were tested and experimental results indicated that the Hamming distance variant $\left(A M C_{d} G A\right)$ produced the best
results although it was also the most time consuming.
Experiments were executed to compare the performance of the proposed AMCAGA with several other methods including MIP with decomposition 31, VNS algorithm [8, indirect GA (non-adaptive) [5], randomly uniform variant $A M C_{r} G A$ (with no learning) and adaptive parameter control GA (AGA) [6]. Overall, the proposed method exhibited better performance particualrly in respect of diversity. The adaptive learning scheme to manage the multiple cros$\approx$ sovers has effectively improved the GA's performance on the WSRP considered here. The adaptive learning scheme includes mechanisms for controlling crossover and mutation rates ( $P_{c}$ and $P_{m}$ probabilities) of multiple crossovers resulting in better quality solutions in less computational time. This paper has contributed to better understanding of how to effectively apply GAs to this difficult and highly-constrained optimisation problem that combines scheduling and routing.

Future work is required to investigate whether the proposed solution method would also perform well on other WSRP scenarios like technician scheduling and similar problems involving a mobile workforce performing tasks on different locations. This type of problems incorporating scheduling and routing are fertile ground for investigating the effective design of evolutionary algorithms and this paper has sought to make a contribution in this regard.

## References

[1] R. Lassaigne, M. De Rougemont, Logic and complexity, Springer Science \& Business Media, 2012.
[2] P. Cowling, N. Colledge, K. Dahal, S. Remde, The trade-off between diversity and quality for multi-objective workforce scheduling, in: Proceedings of the 6th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP’06, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 13-24.
[3] M. Mutingi, C. Mbohwa, Health-care staff scheduling in a fuzzy environment: A fuzzy genetic algorithm approach, in: Conference Proceedings (DFC Quality and Operations Management), International Conference on Industrial Engineering and Operations Management, 2014, pp. 303-312.
[4] H. ALgethami, D. Landa-Silva, A. Martinez-Gavara, Selecting genetic operators to maximise preference satisfaction in workforce scheduling and routing problem, in: Proceedings of the 6th International Conference on Operations Research and Enterprise Systems (ICORES)., Porto, Portugal, 2017, pp. 416-423.
[5] H. Algethami, R. L. Pinheiro, D. Landa-Silva, A genetic algorithm for a workforce scheduling and routing problem, in: 2016 IEEE Congress on Evolutionary Computation (CEC), 2016, pp. 927-934.
[6] H. Algethami, D. Landa-Silva, Diversity-based adaptive genetic algorithm for a workforce scheduling and routing problem, in: 2017 IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 1771-1778.
[7] W. Laesanklang, D. Landa-Silva, Decomposition techniques with mixed integer programming and heuristics for home healthcare planning, Annals of Operations Research (2016) 1-35.
[8] R. L. Pinheiro, D. Landa-Silva, J. Atkin, A variable neighbourhood search for the workforce scheduling and routing problem, in: Advances in Nature and Biologically Inspired Computing, Springer, Pietermaritzburg, South Africa, 2016, pp. 247-259.
[9] J. Maturana, F. Saubion, A compass to guide genetic algorithms, in: G. Rudolph, T. Jansen, N. Beume, S. Lucas, C. Poloni (Eds.), Parallel Problem Solving from Nature - PPSN X: 10th International Conference, Dortmund, Germany, September 13-17, 2008. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 256-265.
[10] P. Consoli, X. Yao, Diversity-driven selection of multiple crossover operators for the capacitated arc routing problem, in: C. Blum, G. Ochoa (Eds.), Evolutionary Computation in Combinatorial Optimisation: 14th European Conference, EvoCOP 2014, Granada, Spain, April 23-25, Revised Selected Papers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 97-108.
[11] C. Contreras-Bolton, G. Gatica, C. R. Barra, V. Parada, A multi-operator genetic algorithm for the generalized minimum spanning tree problem, Expert Systems with Applications 50 (2016) 1 - 8 .
[12] K. Puljić, R. Manger, Comparison of eight evolutionary crossover operators for the vehicle routing problem, Mathematical Communications 18 (2) (2013) 359-375.
[13] E. Osaba, E. Onieva, R. Carballedo, F. Diaz, A. Perallos, An adaptive multi-crossover population algorithm for solving routing problems, in: Nature Inspired Cooperative Strategies for Optimization (NICSO 2013), Springer, 2014, pp. 113-124.
[14] J. Belluz, M. Gaudesi, G. Squillero, A. Tonda, Operator selection using improved dynamic multi-armed bandit, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO '15, ACM, New York, NY, USA, 2015, pp. 1311-1317.
[15] W. M. Spears, Adapting crossover in evolutionary algorithms, in: Proceedings of the Fourth Annual Conference on Evolutionary Programming, MIT Press, 1995, pp. 367-384.
[16] A. L. Tuson, Adapting operator probabilities in genetic algorithms, Tech. rep., Master's thesis, Evolutionary Computation Group, Dept. of Artificial Intelligence, Edinburgh University (1995).
[17] D. Thierens, An adaptive pursuit strategy for allocating operator probabilities, in: Proceedings of the 7th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO '05, ACM, New York, NY, USA, 2005, pp. 1539-1546.
[18] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning 47 (2) (2002) 235-256.
[19] Á. Fialho, L. Da Costa, M. Schoenauer, M. Sebag, Analyzing bandit-based adaptive operator selection mechanisms, Annals of Mathematics and Artificial Intelligence 60 (1) (2010) 25-64.
[20] K. Li, . Fialho, S. Kwong, Q. Zhang, Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation 18 (1) (2014) 114-130.
[21] D. Mankowska, F. Meisel, C. Bierwirth, The home health care routing and scheduling problem with interdependent services, Health Care Management Science 17 (1) (2014) 15-30.
[22] M. S. Rasmussen, T. Justesen, A. Dohn, J. Larsen, The home care crew scheduling problem: Preference-based visit clustering and temporal dependencies, European Journal of Operational Research 219 (3) (2012) 598 -610 .
[23] J. A. Castillo-Salazar, D. Landa-Silva, R. Qu, Workforce scheduling and routing problems: literature survey and computational study, Annals of Operations Research 239 (1) (2016) 39-67.
[24] M. Misir, P. Smet, K. Verbeeck, G. Vanden Berghe, Security personnel routing and rostering: A hyper-heuristic approach, in: Proceedings of the 3rd International Conference on Applied Operational Research, Vol. 3, Tadbir, 2011, pp. 193-205.
[25] S. Hartmann, A competitive genetic algorithm for resource-constrained project scheduling, Naval Research Logistics (NRL) 45 (7) (1998) 733-750.
[26] P. C. Chu, J. E. Beasley, A genetic algorithm for the multidimensional knapsack problem, Journal of heuristics 42 (1) (1998) 63-86.
[27] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey, ACM Comput. Surv. 45 (3) (2013) 35:1- 35:33.
[28] R. W. Morrison, K. A. De Jong, Measurement of population diversity, in: Artificial Evolution: 5th International Conference, Evolution Artificielle, EA 2001 Le Creusot, France, October 29-31, 2001 Selected Papers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 31-41.
[29] J. M. Whitacre, T. Q. Pham, R. A. Sarker, Use of statistical outlier detection method in adaptive evolutionary algorithms, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO '06, ACM, New York, NY, USA, 2006, pp. 1345-1352.
[30] S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of nonparametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the cec'2005 special session on real parameter optimization, Journal of Heuristics 15 (6) (2008) 617.
[31] W. Laesanklang, R. Lankaites-Pinheiro, H. Algethami, D. Landa-Silva, Extended decomposition for mixed integer programming to solve a workforce scheduling and routing problem, in: D. de Werra, G. H. Parlier, B. Vitoriano (Eds.), Operations Research and Enterprise Systems: 4th International Conference, ICORES 2015: revised selected papers, Vol. 577 of Communications in Computer and Information Science, Springer International Publishing, Lisbon, Portugal, 2015, pp. 191-211.


[^0]:    * Corresponding author

    Email address: hmgethami@tu.edu.sa (Haneen Algethami)

[^1]:    ${ }^{1}$ The weights used here are available as "Evaluation Tool" (blue setting) at https://goo. gl/1733qY

[^2]:    ${ }^{2}$ The instances used here (A, B, C, D, E and F) are available at https://goo.gl/1733qY

[^3]:    Bold text refers to the best result.

