
Solving a Large Real-world Bus Driver Scheduling

Problem with a Multi-assignment based Heuristic

Algorithm

Ademir Aparecido Constantino

(Universidade Estadual de Maringá, Maringá, Brazil

ademir@din.uem.br)

Candido Ferreira Xavier de Mendonça Neto

(Universidade Estadual de São Paulo, São Paulo, Brazil

cfxavier@usp.br)

Silvio Alexandre de Araujo

(Universidade Estadual Paulista, São José do Rio Preto, Brazil

saraujo@ibilce.unesp.br)

Dario Landa-Silva

(University of Nottingham, Nottingham, UK

dario.landasilva@nottingham.ac.uk)

Rogério Calvi

(Universidade Estadual def Maringá, Maringá, Brazil

rcalvi.uem@gmail.com)

Allainclair Flausino dos Santos

(Universidade Estadual de Maringá, Maringá, Brazil

allainclair@gmail.com)

Abstract: The bus driver scheduling problem (BDSP) under study consists in find-
ing a set of duties that covers the bus schedule from a Brazilian public transportation
bus company with the objective of minimizing the total cost. A deterministic 2-phase
heuristic algorithm is proposed using multiple assignment problems that arise from a
model based on a weighted multipartite graph. In the first phase, the algorithm con-
structs an initial feasible solution by solving a number of assignment problems. In the
second phase, the algorithm attempts to improve the solution by two different proce-
dures. One procedure takes the whole set of duties and divides them in a set of partial
duties which are recombined. The other procedure seeks to improve single long duties
by eliminating the overtime time and inserting it into another duty. Computational
tests are performed using large-scale real-world data with more than 2,300 tasks and
random instances extracted from real data. Three different objective functions are an-
alyzed. The overall results indicate that the proposed approach is competitive to solve
large BDSP.

Key Words: bus driver scheduling, crew management, heuristic, transportation, large
real-world instances.

Category: F.2.1, G.1, I.1.2, I.2.8, I.6

Journal of Universal Computer Science, vol. 23, no. 5 (2017), 479-504
submitted: 14/7/15, accepted: 23/4/17, appeared: 28/5/17 © J.UCS

1 Introduction

The Bus Driver Scheduling Problem (BDSP), or more generally named as the

Crew Scheduling Problem (CSP) in transportation context, consists basically in

generating a work schedule for a crew subject to a number of constraints and

aiming to optimize a given objective function. This problem is known to be NP-

hard and it has been extensively investigated as reported in the operational re-

search literature since 1960’s. Several approaches were revised (e.g. [Bodin et al.,

1983, Wren and Rousseau, 1995, Wren and Wren, 1995, Beasley and Chu, 1996])

and the progress of new developments have being reported in a series of spe-

cialized workshops [Daduna and Wren, 1988]. A good summary of this devel-

opment has been presented in the international workshops on Computer-Aided

Scheduling of Public Transport (in 2009 this title was changed to “Conference

of Advanced Systems of Public Transport” - CASPT) [CASPT2015, 2015].

The Crew Rostering Problem (CRP) and the Crew Scheduling Problem

(CSP) are related problems that arise in crew management of large transporta-

tion companies [Vera Valdes, 2010, Ernst et al., 2004]. Although the problems

are related, usually CRP and CSP are solved separately and sequentially. Where

the Crew scheduling is related to construct of shifts for a short period of time,

e.g. for a day. In this phase the shifts are not yet assigned to individual crews.

The crew rostering is a second phase in crew management in which the shifts

generated during the crew scheduling phase are sequenced in order to form a

roster for each crew for a larger planning horizon (typically a week or a month).

The main focus of crew scheduling is the cost reduction, whilst the main focus

of crew rostering is more related to aspects such as quality of life, rather than

related to costs [Vera Valdes, 2010].

Among the most commonly approaches using mathematical programming

for solving the BDSP are the classical set covering problem (SCP) and the set

partition problem (SPP) [Fores, 2001, Portugal et al., 2009], both problems are

well-known to be NP-hard [Borndörfers, 2010] and it investigations have been

extensively reported in the Operational Research literature. The basic idea of

this approach is to use (create) a large set of feasible duties (called “duties super-

set” or “shift-pool”) [Shijun Chen, 2013] according to labour agreement rules. It

uses a matrix that each row corresponds to a task and each column corresponds

to a pre-compiled potential duty and a decision variable. The total number

of possible duties (columns) is usually very high [Li et al., 2015, Shijun Chen,

2013], taking a long computacional time to be built. Thus, it is usual to apply

some heuristic techniques to reduce the number of the columns or to divide the

problem into various sub-problems, solving each sub-problem separately (e.g.

heuristic techniques to solve the SCP [Beasley and Chu, 1996, Caprara et al.,

1999, Wren and Wren, 1995, Ohlsson et al., 2001, Mauri and Lorena, 2007, Li

and Kwan, 2003]).

480 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

Despite these heuristic techniques, we found exact approaches based on the

column generation (CG) technique to solve two real-world instances, both with

up to 246 tasks [Yunes et al., 2005]. Their objective is to minimize the number of

bus drivers instead of minimizing the total cost. Thus, they consider the unicost

set covering (all columns have the same cost equal to one). Others researchers

have investigated the CG technique (e.g., [Fores, 2001, Santos and Mateus, 2007,

Shijun Chen, 2013, Li et al., 2015]). Recently [Shijun Chen, 2013] presented an

improved CG algorithm which was applied to a set of real problem instances

with up to 701 trips1.

A few papers have reported the use of a combination of CG with other

approaches to solve the BDSP, e.g., [Santos and Mateus, 2007] reports the use

of CG combined with Genetic Algorithm to solve instances with up to 138 tasks

and [Li et al., 2015] reports the use of a CG based hyper-heuristic to solve real

instances with 500 tasks.

Differently of the SCP or the SPP, a new mathematical formulation of the

BDSP under special constraints imposed by Italian transportation rules was

presented by [De Leone et al., 2011a]. Unfortunately, this formulation could

only be useful when applied to small or medium-sized instances (up to 136

tasks). [De Leone et al., 2011a, De Leone et al., 2011b] report the use of a Greedy

Randomized Adaptive Search Procedure (GRASP) that may be applied to larger

instances. However, it can be applied to instances with at most 161 tasks.

Although most papers found in the literature report methods that use the

SCP or the SPP to solve the BDSP, some studies use heuristics/meta-heuristics

without using the SCP or the SPP. For example: the HACS algorithm that

uses a tabu search [Shen and Kwan, 2001]; an evolutionary algorithm combined

with fuzzy logic [Li and Kwan, 2003], a heuristic method, namely ZEST, derived

from the process of manual scheduling [Liping Zhao, 2006]; a hybrid heuristic

that combines GRASP and Rollout meta-heuristics to solve instances with 250

tasks [D’Annibale et al., 2007]; an algorithm based on Variable Neighborhood

Search (VNS) to solve instances with 501 tasks [Ma et al., 2016]; an algorithm

based on Iterated Local Search (ILS) [Silva and Reis, 2014] which is similar with

VNS and Very Large-scale Neighborhood Search (VLNS); and a Self-Adjusting

algorithm, based on evolutionary approach [Li, 2005].

Some papers report approaches that consider the scheduling of crews and

the scheduling of vehicles simultaneously (or integratedly), trying to solve both

problems at the same time. However, the computational time has been a criti-

cal issue. For example: a combination of CG and Lagrangian relaxation which

solves instances randomly generated as well as real-world data instances in which

the number of tasks varies between 194 and 653 trips [Huisman et al., 2005]; a

1 The number of tasks is not informed, but usually it is much smaller than the number
of trips.

481Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

GRASP based algorithm were applied to real-world instances with up to 249

tasks [Laurent and Hao, 2008], a set partition/covering-based approaches were

applied to instances with up to 400 tasks [Mesquita and Paias, 2008]; and an

integrated approach to solve real-world instances with up to 653 trips [De Groot

and Huisman, 2008].

Table 1: Summary of the literature review comparing different features

Reference Objective Function Approach #tasks3 #duties3

[Santos and Mateus, 2007] MinCost1 CG+Genetic 138 -

[De Leone et al., 2011a] MinCost,MinDrivers2 GRASP, VNS 161 44

[Yunes et al., 2005] MinDrivers Unicost SCP+CG 246 ≤ 50

[Portugal et al., 2009] MinCost, others SCP/SPP 347 -

[Li et al., 2015] MinCost+MinDrivers Hiper-heuristic 500 145

[Mauri and Lorena, 2007] MinCost Heuristic+CG 500a 153

[Ma et al., 2016] MinCost VNS Meta-heuristic 501 44

[Li and Kwan, 2003] MinCost+MinDrivers Fuzzy Genetic 613 75

[Huisman et al., 2005] MinCost CG �653a,c 117

[Shijun Chen, 2013] MinDrivers SC+CG �701c 100

Our case MinCostb Deterministic heuristic 2,313 340

1 MinCost means minimizing the total cost.
2 MinDrivers means minimizing the number of drivers.
3 #tasks e #duties means the number of tasks and duties respectively.
a set of artificial benchmark instances.
b including vehicle changes and others functions are investigated.
c number of trips (the number of tasks is not provided).

Some approaches focus on the bus lines, i.e. the set of tasks is divided accord-

ing to each bus line. Thus, the problem instance size is clearly reduced and solved

separately (e.g. [Yunes et al., 2005]). However, [Portugal et al., 2009] reports an

approach that focus on the network, i.e. the set of tasks is not divided according

to each bus line and each task can be assigned to any driver despite the bus

line it belongs to. In the work reported here we follow this approach. The set of

tasks arises from 55 different bus lines and, due to the planning strategy of the

company, are not separated. This means that a driver can drive in different bus

lines during his/her daily duty. The company desires to minimize the number of

bus line changes during a daily duty. Thus, this information is incorporated in

our objective function as detailed in Section 3.

In this paper we propose a new heuristic algorithm (named GraphBDSP)

based on solution of successive linear assignment problems that uses a weighted

multipartite graph which represents the problem data. This approach tries to find

disjoint paths in this graph minimizing the total cost (paid time) where each path

means a duty (for a driver). The algorithm has two phases, a constructive phase

482 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

and an improvement phase. To the best of our knowledge this is the first time this

approach is applied to solve a BDSP. We applied GraphBDSP with real-world

problem instances from a Brazilian transportation bus company with 55 bus

lines and more than 2,300 tasks, with about 340 duties and with two depots.

In order to compare our results against the results reported in the literature

we summarize our bibliography review in terms of instance sizes, features and

approaches (see Table 1). According to our review, our problem instance is four

times larger than the largest problem instance reported in the literature. Since

we are dealing with a NP-hard problem spending a high computational effort to

solve smaller instances, as reported, we belive that a heuristic technique can be

justified to obtain good quality feasible solutions. The main advantages of the

GraphBDSP are its effectiveness, its efficiency (low asymptotic complexity) and

its facility in terms of parameter tuning.

In this context, this paper makes three contributions. The first contribution

is the proposition of a new heuristic approach to solve a huge BDSP instance.

Further, to the best of our knowledge, no paper considers this same set of labor

rules (constraints and objective function). Also, it is worth noticing that this

algorithm requires only one parameter to tune due to the simplicity of the crite-

rion defined by [Cordeau et al., 2002]. The second contribution in this paper is to

make available those new problem instances in order to promote new researches

around this subject, including a large real-word problem instance. To the best

of our knowledge, no paper deals with more than 500 tasks by exact approach.

The third contribution is the application of three different objective functions

which are compared, concluding that is more important to focus on idle time

and overtime time instead of focusing on paid time only.

This paper is organized as follows. Section 2 gives the problem description.

Section 3 presents the GraphBDSP in detail. Section 5 reports the computational

results of GraphBDSP compared with set covering methods, giving lower bounds.

Finally, Section 6 presents the conclusion remarks.

2 The Bus Driver Scheduling Problem

This paper considers a specific case of the bus driver scheduling problem from a

Brazilian company where the work schedule is a set of disjoint duties in which

a whole set of pre-defined bus tasks must be covered. In this case the total

cost (paid time) and the size of the crew must be minimized. A feasible duty

must meet the company regulations and the specific Brazilian legal restrictions

established by both law and contracts with labor unions which further increases

the complexity of the problem.

483Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

Terminology

Below we report some terminology used in this paper:

– A block represents a sequence of trips to be operated in a day by a vehicle

from the time it leaves the depot (garage or the place were it is parked)

until it returns to the same depot. These blocks are results from the vehicle

scheduling2.

– A relief opportunity is a pair of place and time, into a block, in which a

driver is allowed to leave or assume a vehicle.

– A task is a work defined by two consecutive relief opportunity and represents

the minimum portion of work that can be assigned to a driver. Thus a task

may involve one or more trips, usually two trips, or a deadhead3.

– A bus line is a route (itinerary) over which a bus regularly travels, although

it is possible to use a bus in different lines.

– A running table is part of a block when the bus is used over the same line.

Each row of a running table containing four entries which represents a task

t. These entries are defined by t = (sl, st, el, et), the first two entries indicate

where and when the task starts the next two entries indicate where and when

it ends, respectively. The information of which bus line a task t belongs is

given by bl(t) and the values of each entry of the task t is given by sl(t),

st(t), el(t) and et(t), respectively.

– A crew is a team of a driver and a conductor, but in some cases it may

consists of a driver only. When we assign a crew to a task t, that means that

the crew is running the corresponding bus line from the place sl and time st

to the place el and time et.

– A piece of work (POW) is a sequence of consecutive tasks ti, ti+1, ..., tj , in

the same bus line, assigned to the same crew where et(tk) ≤ st(tk+1).

– A stretch is a sequence of consecutive pieces of work (not necessarily in the

same bus line) without an intervening meal-break (rest time). Note that, by

definition, a POW is a stretch and a single task is a POW. A POW (or a

stretch) P = (ti, ti+1, ..., tj) starts at the same location (resp. time) where

(resp. when) its first task starts. Thus, sl(P) = sl(ti) and st(P) = st(ti).

Also, it ends at the same location (resp. time) where (resp when) its last

task ends. Thus, el(P) = el(tj) and et(P) = et(tj).

2 We assume that the vehicle blocks is determined a priori by solving the vehicle
scheduling. In this case we used the solutions provided by the public transport com-
pany.

3 Trip without passengers.

484 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

– There are two types of breaks:

• a rest time (rest break, meal-break) which is an unpaid time between

two task assigned consecutively to the same driver; and

• a idle time (idle break) which is also a time between two tasks assigned

consecutively to the same crew, however, idle time is a paid time used

to complete a duty.

– A duty D is an ordered sequence of tasks t1, t2, ..., tk (composed of one or

more stretches) that can be assigned to a crew in a single day work.

– A spreadover time (given by sot) of a duty D is the time between the start of

the first task of D and the end of the last task of D, sot(D) = et(tk)−st(t1).

In this work, when we assign a task t to the end of a duty D, the task is

always assigned to the same crew of duty D forming a new sequence where the

task t will be in the last position. Therefore, for simplicity we say that we assign

task t to the end of duty D.

Figure 1 shows two bus lines A and B. Each bus line consists of a set of four

entry columns where each row indicates all the tasks a bus must perform in a

day (bus 1 and bus 2 for line A and bus 4, bus 5 and bus 6 for line B). This

figure also shows two duties:

The DutyX where the first 3 tasks of the duty are Task1, Task2 and Task5.

Note that, the first two tasks of the duty forms a POW and there is a rest

time between Task2 and Task5; and

The DutyY where the first 3 tasks of the duty are Task6, Task3 and Task4.

The whole duty consists of these 3 tasks, therefore, the crew will have a 367

minutes of idle time to complete their day work. Note that the crew assigned

to this duty must change the bus line between Task6 Task3. Thus these 3

tasks forms a stretch .

2.1 Problem Specification

A feasible duty must meet the company regulations and the specific Brazilian

legal restrictions established by both law and contracts with labor unions as

follows.

Rule 1: The stretch time on a duty may not exceed 360 minutes, and if it

exceeds this time, a rest time of at least 90 minutes must be applied. Rest

time on a duty (unpaid time) may not exceed 300 minutes, otherwise the

break time over that is considered idle time (paid time).

Rule 2: The overtime per duty may not exceed 120 minutes.

485Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

piece of work

Stretch

5Task
Task 4

3Task
Task 2

1Task

Bus line B

bus 2
Orig Dep Dest Arriv

GAR 05:05 05:15

05:15 05:45

05:45

TERM

Task 7

6Task

STP4

TERM STP4

bus 1

Bus line A

Orig Dep Dest Arriv

GAR 05:00 STP1 05:10

STP1 05:10 05:15TERM

TERM 05:15 STP2

STP2 TERM 06:1005:45

05:45

TERM 06:10 STP3

STP3

06:45
06:45

running table

Stretch

6 3

GAR 05:05 TERM 05:15 TERM 05:15 STP2 05:45

Duty ends here

Task Task Task 4

change of bus line Y

STP2 05:45 TERM 06:10

1 52

GAR 05:00 STP1 05:10Duty

TaskTask

Duty

Task

Y

X
TERM 06:10 STP3 06:45 STP1 05:10 TERM 05:15

of 55 min
break time

Figure 1: Two bus lines showing a lists of tasks and two duties.

Rule 3: If a duty includes night working, between 10pm and 5am, a period of

52 minutes is considered to be 60 minutes of work (called night time) and an

additional payment of 20% of ordinary wage must be applied over such night

working time. For overtime (extra working time) an additional payment of

50% of ordinary wage must be applied.

Rule 4: The total paid time per duty must be at least 432 minutes.

Rule 5: The spreadover time of a duty may not exceed 780 minutes.

Table 2 summarizes a set of parameters related to these rules. In Section 3.3

we given a mathematical formulation of this rules which are used by our objective

function. As solution to this problem means a set of duties covering all tasks of

a working day in such way that the total cost based on the paid time (worked

time) and the number of vehicle change are minimized, consequently, minimizing

the total number of duties. According to our literature review, there is not linear

programming formulation that satisfies this set of rules and this formulation is

still a challenge. In addition, taking into account our main problem instance is

large, thus a need for heuristic solution approaches is justified.

486 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

Table 2: Parameter notation from the problem.

Parameter/Value Meaning Reference

stmax = 360 min Maximum stretch time duration Rule 1

rtmin = 90 min Minimum time for a rest Rule 1

rtmax = 300 min Maximum time for a rest Rule 1

ptmin = 432 min Minimum paid time for a duty Rule 4

otmax = 120 min Maximum overtime for a duty Rule 2

sotmax = 780 min Maximum spreadover time duration Rule 5

fnt = 60/52 Correction factor for night time worked Rule 3

pnt% = 20% Percentage of additional payment for night time Rule 3

pot% = 50% Percentage of additional payment for overtime Rule 4

3 Proposed Algorithms

The proposed algorithm GraphBDSP is based on sucessive solution of (linear)

assignment problems in order to construct and to improve diferent paths (duties)

in a multipartite graph. The assignment problem [Pentico, 2007] is a well-known

problem in operation research and it can be solved in polynomial time. The

assignment problem has been quite used due to its low computational complex-

ity to get optimal solution, e.g. recently it was sucessely used to takle a nurse

scheduling problem [Constantino et al., 2014]. Given a cost matrix [cij] of di-

mension n × n, the assignment problem consists in associating each row to a

column in such a way that the total cost of the assignment is minimized. Using

a binary variable xij = 1 if row i is associated with column j, the assignment

problem can be formulated as follows:

min

n∑

i=1

n∑

j=1

cijxij (1)

Subject to:

n∑

i=1

xij = 1, j = 1, . . . , n (2)

n∑

j=1

xij = 1, i = 1, . . . , n (3)

xij ∈ {0, 1}, i, j = 1, . . . , n (4)

Our GraphBDSP algorithm is decomposed into two phases (algorithms) which

are run in sequence. 1) construction of an initial solution; and 2) solution im-

provement. In both phases the assignment problem (1)-(4) is intensely used,

487Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

where the number n and the cost matrix [cij] have different meaning (values)

for each phase of the algorithm, which are explained in detail in the following

sections.

3.1 Data and Solution Representation

First of all our algorithm starts with a weighted multipartite directed graph

G = (T,E) (or simply a graph) where T is the set of vertices representing the

tasks the whose crews must be allocated and E is the set of edges eij = (ti, tj)

indicating that the same crew can perform the task tj after the task ti. In this

case we say that ti is adjacent with tj and that eij leaves vertex ti and enters

vertex tj .

It is possible to place the set of vertices into layers T1, T2, ..., Tk (T =

∪km=1Tm) such that all edges are “forward”, i.e. for each edge eij = (ti, tj),

vertex ti is placed on layer Tl and vertex tj is placed on layer Tm where m > l.

The vertices are arranged into layers in such way that each layers is made up of

vertices representing tasks, if two tasks can be scheduled one after other, then

they are not in the same layer, i.e. if task tj can be scheduled after the task ti,

then ti ∈ Tl and tj ∈ Tm, l < m. A simple greedy algorithm can build such

partition. Let sm denote the size of the layer Tm (1 ≤ m ≤ k).

Let a path D = (T ′, A′) be a sequence (v1, v2, ..., vu) of vertices of G such

that vp is adjacent with vp+1 (1 ≤ p ≤ u − 1). Its easy to show that a path

meets each layer at most once. Two paths Dr and Ds are disjoint if and only

if Dr ∩ Ds = ∅. In the reminder of this work, we will refer to the vertices of

G as tasks and refer to the paths constructed by the algorithm as duties. Thus

our algorithm try to find a set of disjoint paths (duties) that meets all vertices

(tasks) of the graph (a partition of T) minimizing the total cost. A solution is

this set of disjoint paths.

Let a partial duty be an incomplete duty, this means that it is possible to

include more task to obtain a complete duty. A partial duty is always referred

with two indexes were the second index indicates the context of that part. Thus,

a complete duty (or simply a duty) is referred with a single index. For example,

we use Di to refer to a duty i to be carried out by a crew in a single day which

can be split into two partial duties Dl
i,m−1 (called left partial duty) and Dr

i,m

(called right partial duty), where Dl
i,m−1 contain the tasks ti,1, ti,2, ..., ti,m−1

and Dr
i,m contain the tasks ti,m, ti,m+1, ..., ti,k.

Our graph is edge-weighted graphs but the weight of each edge is computed

dynamically. Since the additional cost of adding a task to a partial duty, or

joining two partial duties, may not depend only on the last task of the partial

duty Dl
i,m−1, but it may depend on the cost of the whole duty. Next section we

give more detail how compute this weight using a cost function.

488 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

3.2 Cost Function

Let λ-cost be a function that receives two parameters: a partial duty Dl
i,m−1

and a partial duty Dr
j,m and returns the cost (related to paid time in minutes)

of assigning the duty Dr
j,m at the end of duty Dl

i,m−1 forming the duty Di. If

Di is feasible the λ-cost function returns the paid time in minutes; otherwise it

returns ∞ (if it is unfeasible). The λ-cost function is defined in equation 5.

λ(Dl
i,m−1, D

r
j,m) =

5∑

r=1

λr (5)

where λr is defined according to the set of rules stated in Section 2.1:

Rule 1: Let bt(Di) = maxk−1
u=1{(st(ti,u+1) − et(ti,u)) | ((et(ti,u) − st(Di)) ≤

stmax) ∧ ((et(Di) − st(ti,u+1)) ≤ stmax)} be the longest break time of the

duty Di which is candidate to be a rest time. If sot(Di) ≤ stmax we set

α = 0; otherwise we set α =∞. Let rt(Di) be the rest time of the duty Di,

i.e. rt(Di) = min{bt(Di), rtmax, α}. If rt(Di) = 0 or rt(Di) ≥ rtmim we set

λ1 = 0, otherwise we set λ1 =∞.

Rule 2: Let otday(Di) and otnight(Di) be the overtime worked during the day

and night (between 10pm and 5pm), respectively. Thus, ot(Di) = otday(Di)+

otday(Di) · fnt%. If ot(Di) ≤ otmax we set λ2 = 0, otherwise we set λ2 =∞.

Rule 3: Let wt(Di) be the amount of working time of the duty Di, i.e. wt(Di) =

min{sot(Di)−rt(Di), ptmin}. Let nt(Di) be the amount of night time worked

and let pt(Di) be the amount of paid time of the duty Di, i.e. pt(Di) =

(wt(Di) − nt(Di)) + (nt(Di) · (1 + pnt%)) + (ot(Di) · pot%). Thus we set

λ3 = pt(Di).

Rule 4: If pt(Di) ≥ ptmin we set λ4 = 0, otherwise we set λ4 =∞.

Rule 5: If ot(Di) ≤ otmax we set λ5 = 0, otherwise we set λ5 =∞.

A δ-penalty function is defined as the value of a quantified penalty to reflect

the bus line change and the feasibility of join Dl
i,m−1 to Dr

j,m. The δ-penalty

function is defined in equation 6.

δ(Dl
i,m−1, D

r
j,m) = δ1 + δ2 (6)

where δ1 and δ2 are computed as follows:

a)Let vc(Di) be the number of bus line change in Di, thus we set δ1 = (pblc ·

vc(Di)), where pblc is a penalty for a bus line change.

b)δ2 = 0 is (et(Dl
i,m−1) ≤ st(Dr

j,m)) or (el(Dl
i,m−1) = sl(Dr

j,m)), otherwise

δ2 =∞ .

489Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

We define a cost function f which receives as parameter a pair of partial

duties Dl
i,m−1 and Dr

j,m and returns the cost of assigning all tasks of the partial

duty Dl
i,m−1 at the end of the partial duty Dr

j,m. In this work, we investigate

three versions as follows:

f1(D
l
i,m−1, D

r
j,m) = λ(Dl

i,m−1, D
r
j,m) + δ(Dl

i,m−1, D
r
j,m), i.e. the in function f1

only considers the paid time of assigning the partial duty Dl
i,m−1 at the end

of the partial duty Dr
j,m.

f2(D
l
i,m−1,D

r
j,m) = (λ(Dl

i,m−1, D
r
j,m)−λ3)+δ(Dl

i,m−1,D
r
j,m)+it(Dl

i,m−1, D
r
j,m),

where it(Dl
i,m−1, D

r
j,m) returns the total idle time of the duty. This function

focuses on idle time (paid break time) of the duty.

f3(D
l
i,m−1,D

r
j,m) = (λ(Dl

i,m−1, D
r
j,m)−λ3)+δ(Dl

i,m−1,D
r
j,m)+it(Dl

i,m−1, D
r
j,m)

+ (ot(Di) · pot%). This function focuses on idle time (paid break time) and

overtime.

Let D be the set of duties kept by the algorithm in a given time (the current

solution). The cost f associated with D is given by f(D) =
∑|D|

i=1 f(Di), where

f can be f1,f2 or f3. These functions return ∞ if D is unfeasible.

3.3 Construction Phase

In the construction phase a feasible schedule is built, i.e., a set of feasible du-

ties, adding one task at a time according to a assignment problem, until all

tasks have been assigned. Starting with an empty duties, iteratively each duty

is constructed.

Let d be the number of estimated duties needed to assign all tasks, thus,

it must be enough to assign the tasks to one of the d partial duties. We used

d = 2.5nv, where nv is the number of vehicles obtained by the vehicle scheduling.

We define dummy task t′ as a not real task and there is no restriction to assign

it to any partial duty at any release opportunity without changing any cost or

property. In addition, sl(t′) = el(t′) = NULL, st(t′) = et(t′) = 0. But since

it is assigned to any partial duty, then sl(t′) and st(t′) (el(t′) and et(t′)) give

information of its first real right (left, respectively) neighbor task in that duty.

Note that a dummy task may be assigned to any partial duty, but in case of join

two partial duty, a dummy task assumes the properties of its first real neighbor

task, i.e. if a dummy task t′i,m−1 ∈ Dl
i,m−1 then it assumes the properties of its

first real left neighbor task in Dl
i,m−1, similarly, if a dummy task t′i,m ∈ Dr

i,m

then it assumes the properties of its first real right neighbor task in Dr
i,m.

Dummy duty is introduced in order to simplify our duty notation, keeping

the same size and starting and ending at the same layer for all duties. But in a

computational implementation, all dummy duties may be eliminated by using of

490 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

pointers linking all sequence of real tasks in a duty, i.e. a duty may be represented

by dynamic list.

During this construction phase a duty Di is constructed incrementally by

assigning a task by iteration. Some of these tasks may be dummy tasks. Initially,

we start with Di,0 = ∅ and Di,m is the partial duty obtained by assigning the

task t at the end of the partial duty Di,m−1. In this step the task t becomes

the task tm of the duty Di,m, i.e. tm ← t, thus in this construction phase we

considers Dr
i,m containing the task tm only, i.e. Dr

i,m = {tm} in order to use our

cost function f .

sm sm sm sm + d

Spare
duties

d

d +1

+2

d

2

1

1 2 +1 +2

Duties

Tasks

d + sm

8 0

(of layer)m

i,m−1f(D l ,D r
j,m)

dummy tasks

Figure 2: The cost matrix C for each iteration m.

We construct a cost (weight) matrix C of order d + sm at the beginning of

each iteration m as shown in Figure 2. The figure also shows the meaning of the

entries of the cost matrix C, i.e. the tasks of the layer m correspond to the tasks

of columns 1, 2, ..., sm, the next d columns correspond to dummy tasks, the lines

1, 2, ..., d corresponds to the d duties and the remaining sm lines correspond to

the spare duties which cannot be used for assigning real tasks.

Summarily, the procedure to construct the initial solution can be described

by Algorithm 1. It start with d empty duties. Solving the assignment problem

with this cost matrix C we find how to assign each task t from Tm to each partial

duties Dl
i,m−1, i = 1, · · · , d.

491Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

t9

t1

t5

T 1

t

t

T 2

2

6

3

7

T 3

t

t t8

t4

T 4 T 5

1C

120

8
8

0
0

0
0

0
0

0
0

120

8
8

8
8

2C

8
8

0
0

0
0

240

8
8

8
8300 120

120 120

120
t1

t5

T 1

t

t

T 2

2

6

D1,2

2,2D

T 1

t1

t5

D1,1

2,1D

3C

8
8

0
0

0
0

243

8
8

303 300
240 240

300323
263 t1

t5

T 1

t

t

T 2

2

6

3

7

T 3

t

t

D

2,3D

1,3

4C

8
8

0
0

0
0

246

8
8

8
8504 303

243 243

303 t1

t5

T 1

t

t

T 2

2

6

D1,5 3

7

T 3

t

t
2,5D t8

t4

T 4 T 5

t9

5

8 0 0

504
246 246

504

432

8

C

t1

t5

T 1

t

t

T 2

2

6

D1,4 3

7

T 3

t

t
2,4D t8

t4

T 4

Orig Dep Dest Arriv

STP1 09:30
GAR1 STP1 09:3007:30

TERM 12:30

STP2 13:03 GAR2 16:00

t1
t2
t3
t4

Orig Dep Dest Arriv
GAR2 10:00
STP3 10:30 TERM

08:00
12:30

STP4TERM 13:00 13:03
STP4 13:03 13:06STP5

STP3

STP5 GAR113:06 13:12

t5
t6
t7
8

9

t
t

TERM 13:00 STP2 13:03

Graph Gbus line A bus line B

Figure 3: On the top, 2 tables of 2 bus lines containing 9 tasks, and the graph

generated by those tables; On the next two rows it is shown a cost matrix Cm

built in iterationm followed by the set of the partial duties constructed according

with the solution of the Assignment Problem for that matrix.

Algorithm 1: ConstructSolution(G)

/* receive a multipartite graph G as defined */

1 begin

2 Set all duties Di,0 = ∅ for i = 1, 2, ..., d;

3 for m← 1 to k do

4 Take the layer Tm from G;

5 Set up the cost matrix C according to function f ;

6 Solve the assignment problem described by cost matrix C;

7 Assigning the tasks from Tm to each partial duty Dl
i,m−1,

i = 1, · · · , d according to assignment solution;

8 Remove all empty duty from D;

9 return D;

Figure 3 shows a complete run of Algorithm 1. We start with the 2 tables

on the top left of the figure and build the graph on the top right. Now we run

Algorithm 1. In the first iteration (m = 1) it finds that T1 = {t1, t5}. For this

492 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

layer, it builds the matrix C1. One of the solutions (of the Assignment Problem)

is marked with rectangles which sets D1,1 = (t1) and D2,1 = (t5) (see first pair of

partial duties on the right of matrix C1). In the second iteration (m = 2) it finds

that T2 = {t2, t6}. For this layer, it builds the matrix C2, again, the solution

is marked with rectangles which sets D1,2 = (t1, t2) and D2,2 = (t5, t6) (shown

in the right of matrix C2). The same applies to iteration 3 and 4. At the last

iteration (m = 5) it finds that T5 = {t9}. For this layer, it builds the last matrix

C5 where the solution is marked with rectangles and sets D1,5 = (t1, t2, t3, t4)

and D2,5 = (t5, t6, t7, t8, t9). Note that it assigned dummy tasks to duty D1,5 in

this last step. Since all tasks are set into layers, the algorithm ends. Thus, we

set D1 ← D1,5 and D2 ← D2,5.

3.4 Improvement Phase

A duty cut m on a duty Di, denoted by Cm
Di

, is a partition of the tasks of Di

into two sets of tasks forming two partial duties: left partial duty Dl
i,m and right

partial duty Dr
i,m+1, m = 1, · · · , k − 1.

A cut m on the set D, denoted by Cm
D , is a set of duty cut m, i.e. is the

set of the partial duties formed by the duty cuts on all duties on D such that

D = Dl
m ∪ D

r
m+1 where Dl

m = {Dl
i,m, i = 1, · · · , |D|} and Dr

m+1 = {Dr
i,m+1, i =

1, · · · , |D|}.

Lemma1. If Cm
D is cut m on the set D then duties from Dl

m may be recombined

with Dr
m+1 forming a new set of duties D′ in such a way that f(D) ≥ f(D′).

Proof. Let D be an instance of the set of duties constructed by algorithm 1. Let

Cm
D be a cut m on D (1 ≤ m ≤ k − 1). Let E be a square matrix |D| × |D|

where each line i (i = 1, 2, ..., |D|) corresponds to the partial duty Dl
i,m ∈ D

l
m,

each column j (j = 1, 2, ..., |D|) corresponds to the partial duty Dr
j,m+1 ∈ D

r
m+1

and each entry ei,j corresponds to the cost of assigning all tasks of the partial

duty Dr
j,m+1 at the end of the partial duty Dl

i,m, i.e. ei,j = f(Dl
i,m, Dr

j,m+1) (the

function f used here is the same used in the construction phase) is element of the

cost matrix E used by assignment problem. Since, the set of duties D belongs

to the matrix E (it is the diagonal ei,i for i = 1, 2, ..., |D|) and the solution of

the assignment problem that recombines Dl
m with Dr

m+1 into a new set of duties

D′, then f(D) ≥ f(D′), the assertion follows from the minimum solution found

by the assignment problem. �

Let Recombine(Cm
D) be an operation which receives cut m on the set D,

1 ≤ m ≤ k − 1, and recombine the partial duties as stated by Algorithm 2.

Let D′ be the set of duties obtained by performing a Recombine operation

on the set of duties D. It follows from Lemma 1 that f(D) ≥ f(D′). However, if

f(D) > f(D′) then new set of duties is an improvement over the previous one,

493Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

Algorithm 2: Recombine(Cm
D)

1 begin

2 Recombine the partial duties Dl
m and Dr

m+1 of D into a new set of

duties D′ according to the assignment problem solution using the

cost matrix E as defined in the proof of Lemma 1;

3 Remove all empty duty from D′;

4 return D′;

otherwise (f(D) = f(D′)) and both sets are equivalent. In any case, set D ← D′

at the end of each iteration.

The general improvement algorithm (Algorithm 5) uses two algorithms: Imp1

and Imp2. Algorithm Imp1 (Algorithm 3) performs successive cuts m on the

set D and tries to recombine them. Algorithm Imp2 (Algorithm 4) scans tasks

with overtime and tries to reassign them to other duties in order to reduce the

total cost.

Algorithm 3: Imp1(D)

1 begin

2 for m← 1 to k − 1 do

3 D ← Recombine(Cm
D);

4 Remove all empty duty from D;

5 return D;

Let lot(Di) be the index of the last no dummy task of dutyDi if ot(Di) > 0 (it

has overtime), otherwise lot(Di) = 0, i.e. lot(Di) = maxku=1 {u | (ti,u ∈ Di ∧ (ti,u)

is not dummy task ∧(ot(Di) > 0), 0}.

Algorithm 4: Imp2(D)

1 begin

2 for i← 1 to |D| do

3 m← lot(Di)− 1 ;

4 if m > 0 then

5 D ← Recombine(Cm
D);

6 Remove all empty duty from D;

7 return D;

Let nit be a positive integer number that defines the maximum iteration

without improvement as a stop criterion. We used this parameter nit because

we noted that the incumbent solution may be changed without improving its cost

in a iteration, but this changing gives a opportunity to improve the incumbent

494 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

solution in a next iteration. Thus, the general improvement algorithm is stated

by Algorithm 5. The algorithm ends after performing the two procedures Imp1

and Imp2 without improvement for nit times.

Algorithm 5: ImproveSolution(D)

/* receive a solution D from the construction phase */

1 begin

2 i1 ← 0; i2 ← 0;

3 repeat

4 i1 ← i1 + 1;

5 repeat

6 i2 ← i2 + 1;

7 D′ ← Imp1(D);

8 if f(D′) < f(D) then

9 i1 ← 0; i2 ← 0;

10 D ← D′;

11 until i2 > nit;

12 i2 ← 0;

13 repeat

14 i2 ← i2 + 1;

15 D′ ← Imp2(D);

16 if f(D′) < f(D) then

17 i1 ← 0; i2 ← 0;

18 D ← D′;

19 until i2 > nit;

20 until i1 > nit;

21 return D;

Figure 4 shows a sample of an iteration performed by algorithm Imp1. The

initial bus lines, graph and duties built by algorithm 1 are the same shown in

Figure 3. The cost of the initial solution D is f1(D1)+f1(D2) = 504+432 = 936.

There are 5 layers in the graph. Thus, there are 4 possible cuts: cut1 between

layers T1 and T2, cut2 between layers T2 and T3, cut3 between layers T3 and T4

and cut4 between layers T4 and T5. In this figure it is considered the cut2 (see

Figure 4 top right). This cut will generate the C2
D = {{Dl

1,2, D
l
2,2}, {D

r
1,3, D

r
2,3}}

where Dl
1,2 = (t1, t2), D

r
2,2 = (t5, t6), D

r
1,3 = (t3, t4), D

r
2,3 = (t7, t8, t9). The

computation of the matrix E is as follows: e1,1 = f(Dl
1,2, D

r
1,3) = 504 which

495Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

T 5

t9

1,L

2,L

D

D

1

2

D

D

1

2

D

D

D

D

1,L

2,L

1,R

2,R

D

D

3

7

T 3

t

t t8

t4

T 4 T 5

t9

D

cut cut cutcut

t1

t5

T 1

t

t

T 2

2

6

1 2 3 4

3

7

T 3

t

t t8

t4

T 4

t1

t5

T 1

t

t

T 2

2

6

3

7

T 3

t

t t8

t4

T 4 T 5

t9

t1

t5

T 1

t

t

T 2

2

6

504 452

432452

D

cut

t1

t5

T 1

t

t

T 2

2

6

3

7

T 3

t

t t8

t4

T 4 T 5

2

t9

DC E

D’

1,3D D

2,2

D

D

1,2
l

2,3
r

l

r

Figure 4: A sample of an iteration with a cut between layers T2 and T3.

is the cost of 480 minutes of work time plus 50% of 48 minutes of overtime;

e1,2 = f(Dl
1,2, D

r
2,3) = 452 which is the cost of 312 minutes of work plus 120

minutes of idle time and 20 minutes as a penalization for bus line change; e2,1 =

f(Dl
2,2, D1, 3r) = 432 which is the cost of 420 minutes of work plus 12 minutes

of idle time and 20 minutes as a penalization for bus line change. The solution

of the Assignment Problem is shown in rectangles which is the set {e1,2, e2,1}.

Thus, D′ = {D′
1, D

′
2} where D′

1 = (t1, t2, t7, t8, t9) and D′
2 = (t5, t6, t3, t4). The

cost of the solution D′ is f(D′) = 904 which is smaller than the cost f(D) = 936.

Thus, the D′ is an improvement over D. Naturally, if the penalization for a bus

line change were too high (above 36 minutes), this improvement should not be

possible. Note that, procedure Imp2 may only perform cut3 which cut the last

non dummy task t4 of duty D1 which has overtime. Therefore, in this particular

case, procedure Imp2 does not improve the solution.

4 Computational Complexity Analysis

The assignment problem can be solved in O(n3) running time [Carpaneto and

Toth, 1987], where n assume different values according to the algorithm phase.

In the construction phase n = d+ sm, while n = |D| in the improvement phase.

496 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

Anyway d, sm e |D| depend on the task number nt, that is k < maxs � |D| �

d� nt, wheremaxs = max{sm,m = 1, . . . , k}. An assignment problem is solved

k times for each iteration of Imp1. The Imp2 is only applied for the last layer

where there is overtime. Thus, the time complexity of Imp1 and Imp2 is O(nt4).

Usually these procedures Imp1 and Imp2 are not applied more than nt times.

Therefore, we conclude that the overall complexity of our algorithm is O(nt5).

5 Computational Results and Analysis

Algorithm GraphBDSP is tested using real-world instances4 from a large Brazil-

ian metropolitan transportation company obtained of different days in a year.

The instances are listed below; being the numerical part of the name an indi-

cation of the number of tasks (e.g. CV412 contains 412 tasks): CV412, CC130,

CC251, CC512, CC761, CC1000, CC1253, CC1517, CC2010 and C2313. The last

three instances (CC1517, CC2010, C2313) are real cases, while the remaining

were randomly created by extracting of vehicle blocks from these real instances.

Our algorithm was coded in Pascal language. All these computational tests

were carried out on a PC with an Intel 2.8Ghz processor and 8GB of RAM

memory, running Windows operational system.

For the solution of the assignment problem we used the algorithm proposed

by [Carpaneto and Toth, 1987], which combines the Hungarian method and the

Shortest Augmenting Path method. To get the solution of the integer linear pro-

gramming (ILP) the CBC solver [Ralphs, 2015] were used. CBC is maintained

by IBM researchers, which is pretty competitive to current state-of-the-art com-

mercial ILP solvers.

5.1 Computational Results

Table 3 lists the results obtained by our GraphBDSP using the functions f1,

f2 and f3 by the construction of the initial solution. We set up the parameters

pblg = 1 (penalty for each bus line change) and nit = 4 (number of iterations

without solution improvement). For each instance, the number of duties (Ndt)

in the solution, the solution cost in minutes paid are shown. The best solution

cost for each instance is highlighted in bold. The LB column shows the value

of lower bound for the BDSP computed according to the mathematical model

(ILP model) for personnel scheduling into a fixed place (named MPF), following

the model proposed by [Bodin et al., 1983]. In this model, information on the

spatial availability of the driver is ignored, thus a solution reached by this model

is not a feasible BDSP solution.

4 The instances are available for download by this URL http://gpea.uem.br/
benchmark.html.

497Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

Table 3: Results obtained by the proposed algorithm compared with LB

Instance GraphBDSP using f1 GraphBDSP using f2 GraphBDSP using f3 LB

Ndt Solution cost Ndt Solution Cost Ndt Solution Cost

CC130 19 8,451.30 19 8,472.50 19 8,389.40 8,057.00

CC251 40 17,667.50 40 17,690.00 40 17,600.00 15,655.00

CV412 69 30,810.00 69 30,795.00 66 29,512.50 25,427.00

CC512 80 35,612.50 79 35,105.00 80 35,312.50 30,858.00

CC761 109 48,395.00 110 48,632.50 107 47,532.90 43,010.00

CC1000 152 67,090.00 147 65,019.40 146 64,873.60 57,000.00

CC1253 191 84,580.00 188 83,261.10 187 82,842.90 72,261.00

CC1517 232 102,729.50 225 99,852.80 227 100,507.00 89,191.00

CC2010 297 131,482.50 290 128,964.20 292 129,637.80 116,019.00

CC2313 339 150,649.70 331 147,215.00 340 150,522.50 131,800.00

Running time was short, being 4min:4s the longest for instance CC2313 using

function f1. The best results were obtained using functions f2 and f3.

5.2 Improvement Procedures Analysis

Table 4 indicates how much the initial solution cost can be reduced by using each

procedure Imp1 and Imp2 (alone and combined) in all cases using function f3.

Columns Red% mean the percentage of reduction in relation to initial solution

cost.

Table 4: Comparison between improvement procedures

Instance Initial Sol. Experiment 1 Experiment 2 Experiment 3

Imp1 Red% Imp2 Red% Imp1 + Imp2 Red%

CV412 33,394.80 29,512.50 11.63 30,897.30 7.48 29,512.50 11.63

CC1000 74,637.00 65,442.00 12.32 68,550.50 8.15 64,873.60 13.08

CC1253 95,622.00 82,955.40 13.25 88,486.90 7.46 82,842.90 13.36

CC2313 172,660.40 150,635.00 12.76 158,088.00 8.44 150,522.50 12.82

Table 4 also shows that the solutions obtained by using only Imp1 (exper-

iment 1) were better than those obtained by using only Imp2 (experiment 2).

However, the combination of the two procedures (experiment 3) generated better

solutions for instances CC130, CC251, CC412, CC1000, CC1253 and CC2313.

498 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

The highest gain by using both Imp1 and Imp2 was for instance CC1000, which

obtained an additional reduction of 0.88% in relation to the reduction obtained

by using only Imp1. Although such a gain was small in percentage, it is worth

noting that its economic value can be rather significant.

5.3 Results with the Set Covering Problem - SCP

This section presents results for the BDSP modeled as a SCP. For small instances,

the optimal value could be obtained by using ILP solver, whereas for large in-

stances, lower bounds was computed using the subgradient method to solve a La-

grangian relaxation problem for SCP according to [Beasley, 1987, Umetani and

Yagiura, 2007]. As mentioned at the beginning of this paper, the total number of

possible columns in a SCP instance is usually very high, mainly for the largest

BDSP instances. Thus, we used a classical heuristic technique to reduce (gener-

ate) the number of columns based on a maximum number of PWOs per column

(MaxPC), limiting the minimum and maximum duration for each PWOs of 60

and 100 minutes, respectively. A similar procedure was also used by [De Leone

et al., 2011a]. In this paper the values of MaxPC were estimated taking into

account some previous real scheduling provided by the transportation company.

Table 5 presents results obtained from BDSP solution using the SCP model. An

asterisk (*) before the number indicates that all possible columns have been gen-

erated. Values without the asterisk indicate that the instance could have more

columns with more MaxPC PWOs, but they were not generated in order to

keep the problem in a solvable size.

Table 5: Results obtained with SCP model

Instance MaxPC Rows Columns ZILP ZLGP

CC130 *3 36 172 9,530.60 9,528.90

CC251 *4 77 1,483 18,691.20 18,587.40

CV412 *4 136 6,730 30,455.00 30,228.10

CC512 *5 162 16,875 37,112.50 36,468.69

CC761 *5 234 47,552 51,752.50 50,242.08

CC1000 *6 315 176,734 67,971.50 65,821.81

CC1253 *6 398 314,149 86,349.00 84,052.23

CC1517 *6 480 579,666 105,178.5 102,315.24

CC2010 4 623 1,206,504 138,035.4 133,055.62

CC2313 4 715 1,610,242 - 149,648.34

Table 5 also shows the number of Rows and Columns obtained from the

combination of PWOs. Column ZILP is the cost of the solution obtained by

499Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

solving of ILP, ZLGP is the Lagrangian lower bound [Beasley, 1987, Umetani and

Yagiura, 2007]. To obtain ZILP a running time limit of 24 hours was adopted.

Table 5 shows it was possible to obtain the ZILP value for nearly all the instances,

except for instance CC2313 due to the high number of columns and the high

running time without obtaining the solution (more than 24 hours waiting).

5.4 Comparison of Results

Table 6 shows relative percentage deviation, named GAP. First column is the

GAP from the best solution cost from GraphBDSP (Table 3) in relation to LB.

Second column is the GAP from the best solution cost from SCP (ZILP or ZLGP

value) (Table 5) in relation to LB (Table 3). Third column is the GAP from the

best solution cost from GraphBDSP (Table 3) in relation to the best solution

cost from SCP (Table 5).

Note that the GraphBDSP GAP to LB are apparently high due to LB

quality, since the MPF formulation is a fairly relaxed model to BDSP [Bodin

et al., 1983], but it is the best known model to get lower bound for BSDP. The

GraphBDSP solution costs were kept above the lower bound (LB) by between

4.13% and 16.07%.

Table 6: Comparison GraphBDSP results against LB and SCP results

Instance GraphBDSP SCP GraphBDSP

GAP to GAP to GAP to

LB (%) LB (%) SCP (%)

CC130 4.13 18.29 -11.97

CC251 12.42 19.39 -5.84

CV412 16.07 19.77 -3.09

CC512 13.76 20.27 -5.41

CC761 10.52 20.33 -8.15

CC1000 13.81 19.25 -4.56

CC1253 14.64 19.50 -4.06

CC1517 11.95 17.93 -5.06

CC2010 11.16 18.98 -6.57

CC2313 11.70 13.54 -1.63

The third column in Table 6 indicates that, for all instances, the solution

costs obtained by GraphBDSP are lower than the solution cost obtained by

SCP. As explained in Section 5.3, this happen because the SCP instances are

heuristically constructed, thus the optimum solution for these instances does not

500 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

means optimum solution for the BDSP, even for the Lagrangian lower bound for

these instances. Note that, we got the optimum solution for the SCP instances

(except instance CC2313).

6 Conclusions

We presented a deterministic 2-phase algorithm, named GraphBDSP, to tackle

the bus driver scheduling problem based on Brazilian real instances, from an

urban public transportation company. This algorithm produced competitive re-

sults comparing with SCP-based approach providing good result for huge real

instances with more than 2,300 tasks within reasonable computing time. To the

best of our knowledge this is the largest real instance in the literature and the

GraphBDSP represents a new approach applied to the bus driver scheduling

problem. The results are compared against to lower bounds computed by math-

ematical programming. The computational performance of the GraphBDSP was

very satisfactory regarding both the solution quality and the running time.

We compared three different cost functions, which the function f3 based on

idle time and overtime presented best results for most cases instead of focusing

on paid time only. Although the best solution for the large instance was achieved

with the function f2 (idle time). Anyway, the objective function f1 focusing on

paid time was not the best option.

GraphBDSP is a deterministic algorithm that uses no random operations,

i.e., it always find the same solution for the same input. In addition, it has only

one parameter to tune (nit), so it uses an easy parameter tuning. GraphBDSP is

quite flexible to changes of rules. The adapt5ations regarding the new rules are

needed to compute the cost matrix for each bipartite graph, without changing

the model. Thus, we believe it is extensible to other crew scheduling problems.

Our algorithm meets the criteria defined by [Cordeau et al., 2002] for heuris-

tic methods. The simplicity criterion is met because the proposed algorithm

requires only one parameter to tune and uses a classical well-known assignment

problem, which is easily solved by polynomial running time algorithm. The flex-

ibility criterion is also observed when incorporating new rules. A reasonable

accuracy and speed criteria are also observed as shown in section 5.

A fundamental feature of this algorithm is that it can be carried out to

solve both the static scheduling problem (tasks do not change throughout the

day) and the dynamic scheduling problem (when tasks can be changed due to

unexpected events). In other words it is suitable to be used in re-scheduling for

an unexpected situation.

501Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

Acknowledgments

We would like to thank the anonymous referees for their constructive comments,

which led to a clearer presentation of this paper. We would also like to thank

CNPq (process 306754/2015-0), CAPES and Fundação Araucária for their fi-

nancial support.

References

[Beasley, 1987] Beasley, J. E. (1987). An algorithm for set covering problems. Euro-
pean Journal of Operational Research, 31:85–93.

[Beasley and Chu, 1996] Beasley, J. E. and Chu, P. C. (1996). A genetic algorithm for
the set covering problem. European Journal of Operational Research, 94(2):392–404.

[Bodin et al., 1983] Bodin, L., Golden, B., Assad, A., and Ball, M. (1983). Routing
and scheduling of vehicles and crews - the state of the art. Computers and Operations
Research, 10(2):63–212.

[Borndörfers, 2010] Borndörfers, R. (2010). Aspects of Set Packing, Partitioning, and
Covering. PhD thesis, Technische Universität Berlin.

[Caprara et al., 1999] Caprara, A., Fischetti, M., and Toth, P. (1999). A heuristic
method for the set covering problem. Operations Research, 47:730–743.

[Carpaneto and Toth, 1987] Carpaneto, G. and Toth, P. (1987). Primal-dual algror-
ithms for the assignment problem. Discrete Applied Mathematics, 18(2):137 – 153.

[CASPT2015, 2015] CASPT2015 (2015). Conference on Advanced Systems in Public
Transport. http://www.caspt.org.

[Constantino et al., 2014] Constantino, A. A., Landa-Silva, D., de Melo, E. L.,
de Mendonça, C. F. X., Rizzato, D. B., and Romão, W. (2014). A heuristic algo-
rithm based on multi-assignment procedures for nurse scheduling. Annals of Opera-
tions Research, 218(1):165–183.

[Cordeau et al., 2002] Cordeau, J. F., Gendreau, M., Laporte, G., Potvin, J. Y., and
Semet, F. (2002). A guide to vehicle routing heuristics. Journal of the Operational
Research Society, 53(5):512–522.

[Daduna and Wren, 1988] Daduna, J. and Wren, A. (1988). Computer-aided Transit
Scheduling: Proceedings of the Fourth International Workshop on Computer-Aided
Scheduling of Public Transport. Lecture Notes in Economics and Mathematical Sys-
tems. Springer-Verlag.

[D’Annibale et al., 2007] D’Annibale, G., Leone, R. D., Festa, P., and Marchitto, E.
(2007). A new meta-heuristic for the bus driver scheduling problem: GRASP com-
bined with rollout. In 2007 IEEE Symposium on Computational Intelligence in
Scheduling, CISched 2007, Honolulu, Hawaii, USA, April 2-4, 2007, pages 192–197.

[De Groot and Huisman, 2008] De Groot, S. W. and Huisman, D. (2008). Vehicle and
Crew Scheduling: Solving Large Real-World Instances with an Integrated Approach,
pages 43–56. Springer Berlin Heidelberg, Springer Berlin Heidelberg, Berlin, Heidel-
berg.

[De Leone et al., 2011a] De Leone, R., Festa, P., and Marchitto, E. (2011a). A bus
driver scheduling problem: a new mathematical model and a GRASP approximate
solution. J. Heuristics, 17(4):441–466.

[De Leone et al., 2011b] De Leone, R., Festa, P., and Marchitto, E. (2011b). Solving a
bus driver scheduling problem with randomized multistart heuristics. International
Transactions in Operational Research, 18(6):707–727.

[Ernst et al., 2004] Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., and Sier,
D. (2004). An annotated bibliography of personnel scheduling and rostering. Annals
of Operations Research, 127(1-4):21–144.

502 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

[Fores, 2001] Fores, S. (2001). Column generation approaches to bus driver scheduling.
PhD thesis, School of Computing.

[Huisman et al., 2005] Huisman, D., Freling, R., and Wagelmans, A. P. M. (2005).
Multiple-depot integrated vehicle and crew scheduling. Transportation Science,
39(4):491–502.

[Laurent and Hao, 2008] Laurent, B. and Hao, J.-K. (2008). Simultaneous vehicle and
crew scheduling for extra urban transports. In Nguyen, N., Borzemski, L., Grzech,
A., and Ali, M., editors, New Frontiers in Applied Artificial Intelligence, volume 5027
of Lecture Notes in Computer Science, pages 466–475. Springer Berlin Heidelberg.

[Li et al., 2015] Li, H., Wang, Y., Li, S., and Li, S. (2015). A Column Generation
Based Hyper-Heuristic to the Bus Driver Scheduling Problem. Discrete Dynamics in
Nature and Society, 2015:1–10.

[Li, 2005] Li, J. (2005). A self-adjusting algorithm for driver scheduling. Journal of
Heuristics, 11(4):351–367.

[Li and Kwan, 2003] Li, J. and Kwan, R. S. (2003). A fuzzy genetic algorithm for
driver scheduling. European Journal of Operational Research, 147(2):334 – 344.

[Liping Zhao, 2006] Liping Zhao (2006). A heuristic method for analyzing driver
scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 36(3):521–531.

[Ma et al., 2016] Ma, J., Ceder, A. A., Yang, Y., Liu, T., and Guan, W. (2016). A case
study of Beijing bus crew scheduling: a variable neighborhood-based approach: VNS
Algorithm for Bus Crew Scheduling. Journal of Advanced Transportation, 50(4):434–
445.

[Mauri and Lorena, 2007] Mauri, G. R. and Lorena, L. A. N. (2007). A new hybrid
heuristic for driver scheduling. Int. J. Hybrid Intell. Syst., 4(1):39–47.

[Mesquita and Paias, 2008] Mesquita, M. and Paias, A. (2008). Set
partitioning/covering-based approaches for the integrated vehicle and crew
scheduling problem. Computers and Operations Research, 35(5):1562–1575.

[Ohlsson et al., 2001] Ohlsson, M., Peterson, C., and Söderberg, B. (2001). An efficient
mean field approach to the set covering problem. European Journal of Operational
Research, 133(3):583–595.

[Pentico, 2007] Pentico, D. W. (2007). Assignment problems: A golden anniversary
survey. European Journal of Operational Research, 176(2):774–793.

[Portugal et al., 2009] Portugal, R., Loureno, H., and Paixo, J. (2009). Driver schedul-
ing problem modelling. Public Transport, 1(2):103–120.

[Ralphs, 2015] Ralphs, T. (2015 (accessed 30-May-2015)). CBC MILP. https://
projects.coin-or.org/Cbc.

[Santos and Mateus, 2007] Santos, A. G. d. and Mateus, G. R. (2007). Hybrid ap-
proach to solve a crew scheduling problem: an exact column generation algorithm
improved by metaheuristics. In 7th International Conference on Hybrid Intelligent
Systems (HIS 2007), pages 107–112.

[Shen and Kwan, 2001] Shen, Y. and Kwan, R. S. K. (2001). Computer-Aided Schedul-
ing of Public Transport, chapter Tabu Search for Driver Scheduling, pages 121–135.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[Shijun Chen, 2013] Shijun Chen, Y. S. (2013). An improved column generation al-
gorithm for crew scheduling problems. Journal of Information and Computational
Science, 10(1):175–183.

[Silva and Reis, 2014] Silva, G. P. and Reis, A. F. d. S. (2014). A study of different
metaheuristics to solve the urban transit crew scheduling problem. Journal of Trans-
port Literature, 8(4):227–251.

[Umetani and Yagiura, 2007] Umetani, S. and Yagiura, M. (2007). Relaxation heuris-
tics for the set covering problem. Journal of the Operations Research Society of
Japan, 50(4):350–375.

[Vera Valdes, 2010] Vera Valdes, V. A. (2010). Integrating Crew Scheduling and Ros-
tering Problems. PhD thesis, Universit di Bologna.

503Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

[Wren and Rousseau, 1995] Wren, A. and Rousseau, J.-M. (1995). Bus Driver Schedul-
ing - An Overview, volume 430 of Lecture Notes in Economics and Mathematical
Systems, pages 173–187. Springer Berlin Heidelberg.

[Wren and Wren, 1995] Wren, A. and Wren, D. O. (1995). A genetic algorithm for
public transport driver scheduling. Computers and Operations Research, 22(1):101–
110.

[Yunes et al., 2005] Yunes, T. H., Moura, A. V., and De Souza, C. C. (2005). Hybrid
column generation approaches for urban transit crew management problems. Trans-
portation Science, 39(2):273–288.

504 Constantino A.A., de Mendonca Neto C.F.X., de Araujo S.A., Landa-Silva D. ...

