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Abstract. An approximate dynamic programming that incorporates a
combined policy, value function approximation and lookahead policy, is
proposed. The algorithm is validated by applying it to solve a set of
instances of the nurse rostering problem tackled as a multi-stage prob-
lem. In each stage of the problem, a weekly roster is constructed taking
into consideration historical information about the nurse rosters in the
previous week and assuming the future demand for the following weeks
as unknown. The proposed method consists of three phases. First, a
pre-process phase generates a set of valid shift patterns. Next, a local
phase solves the weekly optimization problem using value function ap-
proximation policy. Finally, the global phase uses lookahead policy to
evaluate the weekly rosters within a lookahead period. Experiments are
conducted using instances from the Second International Nurse Roster-
ing Competition and results indicate that the method is able to solve
large instances of the problem which was not possible with a previous
version of approximate dynamic programming.
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1 Introduction

This paper investigates the ability of approximate dynamic programming us-
ing a combined policy function to tackle a multi-stage nurse rostering problem.
Approximate dynamic programming (ADP) is designed to tackle the Markov
Decision Process that dynamic programming is unable to solve in practice [1].
ADP aims to learn the selection of the optimal policy for mapping the state
space into the action space. The purpose of policies in ADP is to determine
decisions. The technique presented here is a hybrid approach that combines the
lookahead policy and the value function approximation policy. The lookahead
policy makes decisions now by explicitly optimizing over some time horizon by
combining some approximation of future information while the value function
approximation policy refers to an approximation of the value of being in a future
state as a result of a decision made now [2].



The Nurse Rostering Problem (NRP) is an NP-Hard problem that consists
in constructing rosters for a number of nurses over a time horizon of typically no
more than a few weeks. Constructing a roster involves assigning shifts types of
each nurse for each day in order to fulfill daily duty requirements plus satisfying
a number of soft and hard constraints [3]. In this paper, the NRP is tackled as a
multi-stage optimisation problem is used to test the proposed technique because
it is a widely investigated problem and presents an interesting challenge to ADP.
Tackling the NRP as a multi-stage problem was proposed by [4].

Solving the NRP with dynamic programming is impractical due to the curse
of dimensionality [2, 5]. Our previous work investigated ADP to solve NRP, where
a value function approximation based method was proposed to tackle various in-
stances of the NRP [6]. However, the computation time required for constructing
solution samples and the memory space required for recording rewards increased
exponentially for larger problem instances. Hence, that shortfall has motivated
the present work. A number of ADP practical issues related to the complexity
of the environment, in particular when dealing with large state or action space,
are reported in the literature [5]. The technique proposed in this paper enhances
the ability of ADP to solve NRP as a multi-stage problem by combining two
policy functions, value function approximation to solve the weekly problem, and
lookahead policy to evaluate weekly rosters with artificially constructed future
demand within a given lookahead period.

The contribution of this paper is an enhanced approximate dynamic program-
ming approach that takes advantage of tackling the NRP in multiple stages and
is able to tackle instances of this problem with longer planning horizons. The
rest of paper is structured as follows. Section 2 describes NRP used in this inves-
tigation and its modelling as a Markov Decision Process. Section 3 explains the
details of the proposed algorithm. Section 4 presents the experimental results.
Section 5 concludes the paper and outlines future work.

2 The Multi-Stage Nurse Rostering Problem

In the multi-stage nurse rostering problem the planning horizon is seen as mul-
tiple non-overlapping stages, nurse rosters should be selected one stage at a
time. A stage is a part of the planning period for which the demands are com-
pletely known at its start [7]. In this paper, the Second International Nurse
Rostering Competition (INRC-II) instances are used for experimentation. In
these instances, each stage is a week under the competition setting. This section
outlines the problem and its modelling as a Markov Decision Process proposed
in a previous paper [6].

2.1 Problem Description

An instance in the INRC-II consists of three data parts, global information, week
requirement and history data. The global constraints, listed below, are those that
are the same for each stage of the problem and those that are applicable to the
last stage only.



H1 A nurse can be assigned at most one working shift per day.
H3 Two consecutive shifts of a nurse must follow a legal shift type successor,

for example a late shift could not be followed by a early shift.
H4 A shift of a given skill must be fulfilled by a nurse having that skill.
S5 Each nurse is required to either work or rest on both days of weekends.
S6 For the whole planning period, each nurse has a minimum and maximum

total number of working assignments.
S7 For the whole planning period, each nurse works a maximum number of

weekends.

Week requirement is a list of specific hard or soft constraints in each week:

H2 For each day, shift or skill combination, the assigned number of nurses must
cover the minimum requirement.

S1 The number of nurses for each shift with each skill must be equal to the
optimal requirement.

S2 Maximum and minimum number of consecutive assignment per shift or day.
S3 Maximum and minimum number of consecutive days off.
S4 Respect to the specific shift requirement for each nurse.

History data is a summary of the acutal roster for the previous stage which
is required when tackling the problem. If the first week is the current solving
stage, history data is randomly selected from built-in artificial files [4]. History
data for each stage must be produced by solvers before processing to the next
stage and it should include the following information for each individual roster:

• the last assignment of previous week.
• consecutive assignments of the same type as last day.
• total number of worked shifts.
• total number of worked weekends.

In the above list of constraints, H indicates hard constraints that must be
satisfied by a solution to be considered feasible and S indicates soft constraints
that incur a penalty if violated.

2.2 Problem Modification

Given that in each stage the future demand in this multi-stage NRP is considered
as unknown, we apply the framework by Powell [2] which considers the exogenous
information. The Markov Decision Process (MDP) notation is summarized as
{S,A,W, Tr(S,A,W )}.

S is a state variable, split as pre-decision state and post-decision state. The
pre-decision state is the start point and the post-decision state is a termination
for each stage. For each stage t in the NRP, the pre-decision state variable
corresponds to the combination of weekly schedules from stages 1 to t− 1, and
S is the empty set for the first stage. The post-decision state is the combination
of weekly schedules including the one for the current stage t.



A is an action variable which determines the policy selected in the current
stage. In the NRP, A is a weekly roster where each nurse is assigned a combina-
tion of integer variables indicating the shift type for each day. The feasibility of
a solution is controlled by the selection of decisions.

W is defined as exogenous information which is available only within each
stage t. In the NRP, W represents the weekly requirements (local constraints)
described above.

The transition function Tr(S,A,W ) transfers a pre-decision state to the
post-decision state with the decision A and the exogenous information W . In
the NRP considered here, the transition function performs two roles, one is to
update the solution with weekly roster A and week data W and the other one
is to update the nurse historical information based on the value of A and W .

3 Proposed Algorithm

The structure of the proposed algorithm is exhibited in figure 1 and consists
of three parts. First, the pre-process phase sets up the search space. Then, the
local phase is an enhancement of our previous work [6] for solving the weekly
optimization problems. Finally, the global phase applies a lookahead policy for
future demand evaluation. Each of these parts is explained below.
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3.1 Pre-process Phase

If a shift pattern (SP) is defined as a weekly roster of a nurse, then a solu-
tion should be described as the combination of nurses’ shift patterns. A solution
is feasible if and only if each constructed SP satisfies all the hard constraints.
Exploring infeasible solutions is not required in the principle-of-optimality ap-
proaches [2]. Instead, evaluating feasible-shift-pattern based solutions has the
potential to make the search more efficient. With this purpose, the pre-process
phase is designed to construct a reduced search space for the subsequent local
and global phases.

The pseudocode of this pre-process phase is shown in algorithm 1. Hard
constraints selected to filter shift patterns belong to global information (2.1)
which each individual nurse roster is expected to obey. The set that contains all
feasible shift patterns is defined as feasible set. Lines 2-6 are the selection steps,
where sp indicates a single shift pattern and vsp represents the feasible set.

Once the feasible set is prepared, some shift patterns are not available to
specific nurses with the consideration of nurse history data. For example, if the
last assignment of a nurse in history data is a late shift, then any pattern starting
with an early shift in the feasible set becomes infeasible for this nurse (2.1 H3).
Lines 7-13 represent the specific shift pattern selection procedure of each nurse
with the consideration of related history data.

Algorithm 1 Pre-process Phase

1: vsp← null;
2: repeat
3: sp← ShiftPatternConstructor();
4: if sp satisfy hard constraints then
5: add sp to vsp;

6: until no more action from constructor
7: for Each Nurse n do
8: ivsp← null;
9: Collect the last assigned shift type xlast;

10: for each sp ∈ vsp do
11: Select x1 from sp;
12: if {xlast, x1} satisfy hard constraint then
13: add sp to ivsp

3.2 Local Phase - Value Function Approximation

Given the output of the pre-process phase, the weekly nurse rostering optimiza-
tion problem can be seen as selecting a proper shift pattern for each nurse, so
as to satisfy constraint H2 and minimize the soft constraints violation cost. The
input to this phase are the ivsp for each nurse. Since the future demand is as-
sumed not known in each particular week, the local optimal weekly roster is not



guaranteed to be the one incorporated into the overall solution. Therefore, the
output of this local phase is a selection of weekly rosters as depicted in figure 1.

Q(S, a) = r(S, a) + γmaxa′Q(δ(S, a), a′) (1)

The Q-learning function, presented in Eq (1), is applied to tackle the local
phase problem. The aim is to update the value of S when changes are made by
the selected a. In this multi-stage nurse rostering problem, S is a weekly roster
and a is a list of selected shift patterns for nurses. Shift patterns are selected
based on two methods. Random Selection is applied if S is not fully constructed
or sample size of S is small. Shift patterns of unassigned nurses in the roster
will be randomly selected. This selection is replaced by Greedy Selection after
constructing a number of S. For a fully constructed S, shift pattern of one or a
list of nurses is updated by the one with minimum cost, or equally described as
highest reward, from previous steps. r(S, a) is the reward function and calculated
from two aspects, the overall constraint violation update and times of the selected
a. The pseudocode of this local phase is shown in algorithm 2.

Algorithm 2 Local Phase - Value Function Approximation

1: Initial value of max iter, ε
2: i← 0, M ← Empty SList ← Empty;
3: while i < max iter do
4: Sol← Empty
5: for Each Nurse n do
6: rnd← RandomNumberGenerator()
7: if rnd < ε then
8: sp← RandomSelection(ivsp)
9: else

10: sp← GreedySelection(ivsp)

11: Insert(Sol, sp)
12: c = CostFunction(sp)
13: UpdateV alue(V (Sol), c)

14: Add(SList, Sol)
15: e = ExpectedFunction(SList)
16: γ = Parameter(V (Sol), e)
17: UpdateV alue(V (Sol), γ × e)
18: Update(ε)
19: i← i+ 1

20: WeeklyRosterSelection(SList,M)

A sample here is a weekly roster which is constructed by selecting shift pat-
terns from each nurse. The shift pattern selection function in lines 6-10 uses
RandomSelection or GreedySelection which selects the shift pattern with min-
imum cost. This is known as ε-greedy selection function [2]. This shift pattern
selection function ensures that the local phase constructs a weekly rosters set



with a degree of variety and not only concentrating on the local optimum. The
selected shift pattern sp is added to Sol in line 11. In line 12, CostFunction
calculates the shift pattern cost (c) according to the violation of soft constraints
S1-S5 and then the value of this weekly roster is updated in line 13.

In line 14, the fully constructed weekly roster Sol is stored in the sample list
SList. Lines 15-18 correspond to the Evaluation & Update in figure 1. The pur-
pose of the expected function is to indicate the average value of the constructed
weekly roster while γ is an importance factor and its value is adjusted in the
opposite direction to the value of the constructed weekly roster. For instance, if
the cost value of a particular weekly roster is larger than the expected value, the
value of γ is set to a smaller value, and vice verse.

The end of this local phase in line 20 results in the output set M which is a
subset of SList, i.e. a set of weekly rosters some with small constraint violation
cost (due to the greedy selection) and others with possibly large cost (due to the
random selection). This set M is the input to the global phase described in the
following subsection.

3.3 Global Phase - Lookahead Policy

In the local phase, the weekly rosters are evaluated for the weekly constraints
only, i.e. from H1 to H4 and from S1 to S5. However, since in each week the
future demand is unknown, the global constraints S6 and S7 are not considered.
Then, this global phase evaluates the weekly rosters with artificial future demand
through a lookahead period. The lookahead policy seeks to construct a potential
solution within a lookahead period based on the weekly roster and artificial
future demand in order to evaluate the solution for the global constraints. The
input to this global phase is the set of weekly rosters M from the local phase. The
output is one weekly roster only as the final solution to the weekly optimization
problem. The pseudocode of the global phase is shown in algorithm 3 which is
applied to each weekly roster in M . The method Information Generation will be
explained in section 4, here we assume all the artificial future demand is obtained
in advance.

LK(S) is the lookahead value for each weekly roster S and calculated using
equation 2. n is the nurse index. stage is the week index. T is the lookahead
period. spn is a single shift pattern of nurse n in the weekly roster S. xnt is a
shift pattern at the lookahead stage t of nurse n. xnt belongs to the valid shift
pattern set V SPnt.

LK(S) =

N∑
n=1

T+stage∑
t=stage

minnV (spn, xnt) (2)

This global phase incorporates the pre-process and local phases described
above. For each nurse n, the valid shift pattern set V SPnt is constructed in line
7 based on the current shift pattern spn and the artificial weekly demand at
lookahead period t. We select the shift pattern xnt in V SPnt with the lowest
cost and build up an ideal individual assignment with the combination of spn



Algorithm 3 Global Phase

1: Initial value of LK(S);
2: for Each Nurse n do
3: select spn from S
4: Initial ideal sol = Insert(spn, φ)
5: V (ideal sol) = V (spn)
6: for t← stage to T + stage do
7: V SPnt ← Pre− processPhase
8: xnt ← GreedySelection(V SP )
9: c← CostFunction(xnt)

10: UpdateV alue(V (ideal sol), c)
11: Insert(ideal sol, xnt)

12: c← CostFunction(ideal sol)
13: UpdateV alue(V (ideal sol), c)
14: UpdateV alue(LK(S), V (ideal sol))

and xnt in lines 8 and 11. The initial value of this ideal solution is the same
value of spn and is updated with the constraint violation cost of xnt in line 10.
Lines 7-11 are repeated until reaching the last lookahead stage T + stage. The
value of ideal sol is then added the constraint violation of S6 and S7. This is
the evaluation of a single shift pattern spn and this value is added to LK(S) for
each nurse n.

Once all the weekly rosters are evaluated through the algorithm 3, the one
with lowest LK(S) will be selected as the final weekly solution and the nurse
historical information is updated for the following week.

4 Experimental Design and Results Analysis

The problem instances for evaluating the proposed approach are selected from
the Second International Nurse Rostering Competition (INRC-II) [4]. The are
three sets of instances, all available at [8]. One is a test set with small number (up
to 21) of nurses. Another is the competition set released to the competitors. The
last set is a hidden set that was made available at the end of the competition.
For the experiments here we use the first two data set only.

The proposed algorithm described in section 3 was implemented in Java (JDK
1.7) and all computations were performed on an Intel (R) Core (TM) i7 CPU
with 3.2 GHz and RAM 6 GB.

4.1 Experimental Settings

For a problem that considers 3 working shifts and 1 day off per day of the week,
the total number of possible shift patterns is 16384 (47). The pre-process phase
reduces this number to 1607 making possible to apply the proposed approach to
solve large NRP instances. There are three different representations in the value
function approximation, lookup table, parametric model and non-parametric



model. As the search space is considerably small after the pre-process phase, we
implement a lookup table in the local phase procedure.

The initial value of ε is set to 0.9 and is updated based on the Generalized
Harmonic Step Size Function [2]. Through preliminary experimentation we tuned
the size of the simulation sample SList = 100 and the output set M = 30 in
the local phase. Also through preliminary experiments and results analysis, we
decided to select elements from SList for M following the 1-6-3 rule. That is,
10% is selected from S List with the lowest V (S), the 90% of S List is split
into two subgroups, good and bad, based on the constraint violation cost. Then
60% is randomly selected from the good subgroup and 30% is randomly selected
from the bad subgroup.

The cost value for both single shift pattern sp and weekly roster S is cal-
culated using Eq. (3) where cs is the soft constraint violation cost and Vsc is
the number of violation for each constraint. The calculation of the constraint
violation is fully described in [4].

c =
∑

eachconstraint

cs × Vsc (3)

The artificial future demand is generated by randomly selecting a week data file
per week in the lookahead period. Back to the algorithm described in the section
3, only one future path is evaluated for each weekly roster. Less evaluations of
lookahead policy is not ideal but more evaluations consume much computation
time and memory. By preliminary experiments we found that 1000 evaluations is
the minimum to achieve the level of performance in our results while still using
considerably short computation time. The value of LK(S) is updated based on
Eq. (4). All experimental results presented in the rest of this section correspond
to 20 runs for each problem instance.

LK(S) =
1

k

k∑
i=1

LKi(S) (4)

4.2 Lookahead Period Comparison

We tested various lookahead periods for each planning horizon. The lookahead
period T for scenarios with 4 weeks is set as 1, 2 and 3 and as 3, 5 and 7 for
scenarios with 8 weeks. All the scenarios from the test set were used for these
experiments comparing the different values of T and results are presented in
table 1.

In the table, Obj is the average objective value and Std. is the standard
deviation. The performance of using longer lookahead period is not much better
than when using a shorter one for the smallest problem instance (n005w4). But
for the larger problem, either with longer planning horizon or larger number
of nurses, the average objective value when using that largest T is the best,
as much as 20% improvement is achieved in instance n021w4. The standard
deviation value is smaller as the value of T increases indicating that the algorithm
performance is more robust with longer lookahead period.



T=1 T=2 T=3

Instance Obj Std. Obj Std. Obj Std.

n005w4 1 456 55.724 452 49.67 451.5 23.573

n005w4 2 436.5 35.6735 430.5 31.578 430.5 14.568

n005w4 3 541 67.456 530.5 54.674 530 33.584

n021w4 1 2176 435.754 2056.5 343.563 1815 185.683

n021w4 2 3059.5 563.743 2375.5 484.626 2150 254.673

n021w4 3 3415 447.784 2767.5 306.639 2035 186.460

T=3 T=5 T=7

Instance Obj Std. Obj Std Obj Std

n012w8 1 1527.5 435.375 1375.5 368.466 1237.5 235.256

n012w8 2 1747 373.692 1623.5 275.573 1544 205.574

n012w8 3 1928.5 563.681 1736.5 503.684 1515.5 385.678
Table 1. The Average Objective Value and Standard Deviation Obtained with Various
Lookahead Periods for Each Instance. Best values are indicated in bold.

4.3 Algorithm Validation and Comparison

Based on the observations from the experiments with the test set, the lookahead
period was set to T = 3 for 4-week instances and to T = 7 for 8-week instances
on experiments with the competition data set. Results are presented in table 2.

A value of 99999 in the table indicates that the approach ran out of memory.
The performance of the proposed ADP-CP is evaluated through two aspects for
each instance. In the left part of the table 2 we compare it with each individual
policy. The solution constructed by individual simulation approach is a combina-
tion of optimal weekly rosters. The global constraints are considered only when
solving the weekly optimization problem in the last stage. On the other hand,
the individual lookahead policy focuses on the solution evaluation of global con-
straints but each weekly solution is solved with random selection approaches.
Looking further has the benefit on the overall solution by comparing the value
in columns 2 and 4. Local optimum is only concentrated on the assignment pat-
terns, such as the consecutive working patterns and the consecutive days off.
We select the instance n030w4 1 as an example. The number of working shifts
for each nurse is set as 4 to avoid local constraint violations. The total working
days for each nurse is 16 in the final solution. However in some contract, the
minimum total working days is 20. A significant large global constraint violation
cost is added to the final objective value. A good weekly roster also improves
the optimality of lookahead policy with the comparison of columns 3 and 4.

The right part of table 2 seeks to validate our ADP-CP approach by compar-
ing the quality of the solutions obtained to the Best and Worst reported for the
competition. The performance of ADP-CP is close to the best in the instance
n030w4. It also achieved a good gap from the best in instances n040w4 and
n050w4. However, the performance is not so close to the best solutions for larger
problem instances. Nevertheless, the quality of the solutions produced with the
proposed ADP-CP is in the middle among all the competition results which were
produced by several different algorithms. We believe that this work has accom-
plished good progress in making possible the application of dynamic program-



Instance Simulation Lookahead ADP-CP Best Worst

n030w4 1 1925 2725 1780 1745 9850

n030w4 2 2650 2710 1610 1935 10605

n030w8 1 5350 6645 4830 2295 21185

n030w8 2 6310 5820 4855 1900 21145

n040w4 1 8120 3945 3270 1765 14680

n040w4 2 6895 4260 3735 1910 14460

n040w8 1 14720 10125 9305 3105 35010

n040w8 2 19255 10165 8975 2975 33000

n050w4 1 5900 4070 3535 1525 17745

n050w4 2 6210 4070 3030 1480 15380

n050w8 1 19525 10045 8965 5560 43040

n050w8 2 13905 9725 8420 5475 42765

n060w4 1 18480 16977 12282 2830 19230

n060w4 2 20945 17794 15019 2950 20400

n060w8 1 20215 9590 9720 2840 44130

n060w8 2 17545 11000 10160 3200 44430

n080w4 1 23195 21870 18350 3474 26935

n080w4 2 26305 21435 16885 3535 27210

n080w8 1 48505 44880 35975 4845 64915

n080w8 2 47355 44065 38800 5105 66515

n100w4 1 19625 19295 16045 1445 33740

n100w4 2 20530 20270 17885 2070 33465

n100w8 1 53155 39550 35690 3095 85260

n100w8 2 50340 40755 35440 3135 87445

n120w4 1 99999 24075 22960 2470 36235

n120w4 2 99999 22680 22065 2530 36320

n120w8 1 99999 43215 39170 3555 83590

n120w8 2 99999 40840 41350 3435 82145

Table 2. Experimental Results of the Proposed ADP with Combined Policy (ADP-
CP), Individual Simulation Approach, Individual Lookahead Policy, Best and the Worst
Results from the Competition. Best values are indicated in bold.

ming, with the approximation policies, for solving this complicated multi-stage
nurse rostering problem. This is an important step towards making dynamic
programming practical in its application for solving difficult combinatorial opti-
mization problems when a multi-stage solving approach can be followed.

5 Conclusion

This paper proposed a three-phase approximate dynamic programming (ADP)
algorithm to solve the multi-stage nurse rostering problem. This is a problem
where a roster is constructed for each week with the future demand assumed
not known and the history information for the previous week needs to be con-
sidered. The first phase of the proposed approach is a pre-process that generates
a set of valid shift patterns. The second phase is a local phase that applies the
the value function approximation, to solve the weekly optimization problem and



generate a set of weekly rosters. The third phase is a global phase that imple-
ments a lookahead policy to evaluate the effect of the future uncertainty within
a lookahead period. The proposed ADP then combines value function approx-
imation and lookahead policy. The instances from the Second Nurse Rostering
Competition (INRC-II) are used in the experiments to validate the performance
of this proposed algorithm. Experimental results show that the combined policy
approach in the proposed algorithm produces better performance than the in-
dividual policies. Besides, the results obtained with the proposed algorithm on
some of the INRC-II problem instances are close to the best solutions reported for
the competition. Future works should be focused on improving the solution qual-
ity and reducing the computational time. These improvements could be achieved
by applying different methods to evaluate the lookahead samples. Furthermore,
improving the quality of weekly rosters could also benefit the lookahead policy as
arguably better weekly rosters could help to achieve better results with shorter
lookahead periods and also reduce the computation time.
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