
Chapter 9
Exploring Feasible and Infeasible Regions in the
Vehicle Routing Problem with Time Windows
Using a Multi-Objective Particle Swarm
Optimization Approach

J.P. Castro, D. Landa-Silva, and J.A. Moreno

Abstract This paper investigates the ability of a discrete particle swarm optimiza-
tion algorithm (DPSO) to evolve solutions from infeasibility to feasibility for the
Vehicle Routing Problem with Time Windows (VRPTW). The proposed algorithm
incorporates some principles from multi-objective optimization to allow particles to
conduct a dynamic trade-off between objectives in order to reach feasibility. The
main contribution of this paper is to demonstrate that without incorporating tailored
heuristics or operators to tackle infeasibility, it is possible to evolve very poor infea-
sible route-plans to very good feasible ones using swarm intelligence.

Key words: Particle Swarm Optimization, PSO, Multi-Objective, Vehicle Routing
Problem with Time Windows, VRPTW

9.1 Introduction

The Vehicle Routing Problem (VRP) is a well-known complex combinatorial op-
timization problem that consists of creating a set of routes, called a route-plan,
to serve N costumers with a fleet of k vehicles. Each customer has a demand di
(i = 1 . . .N) and each vehicle has a capacity C. A distance matrix D is given where
di j is the Euclidean distance between customer i and customer j. One main objective

J.P. Castro
Automated Scheduling, Optimisation and Planning Research Group (ASAP), University of Not-
tingham (UK) e-mail: jpc@cs.nott.ac.uk

D. Landa-Silva
Automated Scheduling, Optimisation and Planning Research Group (ASAP), University of Not-
tingham (UK) e-mail: jds@cs.nott.ac.uk

J.A. Moreno
Group of Intelligent Computing, Dpto. de Estadística, I.O. y Computación, Escuela Técnica Supe-
rior de Ingeniería Informática, Universidad de La Laguna (Spain) e-mail: jamoreno@ull.es

109



110 J.P. Castro, D. Landa-Silva, and J.A. Moreno

in the VRP is to minimize the number of vehicles needed because this represents the
largest fixed cost for companies. Another main objective is to minimize the total
distance in the route-plan, i.e. the sum of distances travelled by all vehicles. Com-
mon constraints in the VRP include among others: (a) not to exceed the maximum
capacity C, (b) every vehicle must set off and arrive at the depot, (c) every costumer
can only be visited once, and (d) every route is served by exactly one vehicle.

Due to its wide application on real-world scenarios, there are several variants
of the VRP [1]. Many companies have more than one basement for goods so the
problem becomes the multi-depot VRP (MDVRP). In the periodic VRP (PVRP)
costumers may not be served all in the same day. Instead, a list of possible days
within a time horizon is given for each customer. Applications of the PVRP arise
in grocery industries, soft-drinks distribution and waste collection among others.
The stochastic VRP (SVRP) refers to those scenarios with uncertain information
about the number of costumers to be served, the travel time required for delivery,
the demand, etc. In the split delivery VRP (SDVRP) the constraint no allowing to
serve costumers more than once is relaxed in order to minimize the overall cost.

In this paper, we are interested in the VRPTW, an extension of the common
VRP in which a time window (ei, li) is given for the depot (i = 0) and for every
costumer (i = 1 . . .N). If the delivery vehicle arrives at the location of customer i
at time (t < ei), then it will have to wait (ei − t) time until the costumer is ready to
be served. Arriving at the location of customer i at time (t > li) is not permitted.
Similarly, no vehicle can depart the depot at time (t < e0) or arrive at the depot at
time (t > l0). Although in the VRPTW delivery within the time windows is a hard-
constraint, there is another version of the same problem in which delivery within
the time windows is considered a soft-constraint so that tardiness is penalized in
the objective function. For surveys on the VRPTW see the papers by Bräysy and
Gendreau [2, 3].

The remainder if this paper is organized as follows. Section 9.2 describes the
particle swarm optimization (PSO) paradigm which is used in this paper to tackle
the VRPTW. Section 9.3 describes the multi-objective discrete PSO proposed in this
paper to evolve infeasible solutions to feasible ones using a dynamic trade-off of
the multiple objectives. Section 9.4 describes and discusses experiments and results
while Section 9.5 concludes this paper.

9.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based search technique inspired
by the social behavior of bird flocking or fish schooling. PSO is a kind of swarm in-
telligence algorithm developed by Kennedy and Eberhart [4]. Particles in a PSO
implementation fly through a multi-dimensional continuous space. Each particle
(identified by an id) has a position xid given by the current solution that the particle
is exploring, and a velocity vid used to update the particle’s position. In a basic PSO
implementation, each particle knows at least its best position and the best position



9 Towards an Efficient MOPSO for the VRPTW 111

of its neighborhood. With this information, the new particle’s position is computed
as follows:

vid = w · vid + c1 · rand() · (gi− xid) + c2 · rand() · (g− xid) (9.1)

xid = xid + vid (9.2)

Eqs. (9.1) and (9.2) determine how a particle updates its velocity and position
respectively. The velocity update is highly affected by the inertial and social co-
efficients. The inertial weight component w encourages exploration by the particle
while the social coefficients c1 and c2 represent attraction forces to the best location
the particle has achieved and to the best position found by the swarm so far. In or-
der to avoid a predictable behavior, the social coefficients are multiplied by random
numbers rand() chosen from a uniform distribution U[0,1]. Once the velocity is up-
dated using (9.1), the location of the particle changes by summing up the current
position to the new velocity as in (9.2). A basic PSO algorithm consists of a number
of iterations in which the swarm evolves by updating the position (current solution)
and velocity of each particle in the swarm. Because particles also know the best
position of its neighbourhood (best solution achieved by other particles), the whole
swarm evolves towards better positions guided by the leading particle.

PSO has been applied too many different problems due to its relatively easy im-
plementation and high performance with low demand for computational resources.
See the survey by Eberhart and Shi for a sample of applications of the PSO algo-
rithm [5].

9.2.1 Multi-Objective Particle Swarm Optimization

Many real-world optimization problems have more than one objective and in most
cases these objectives are in a trade-off conflict. In multi-objective optimization
(MOO) there is not a single solution that optimizes all objectives at the same time,
so it is useful to provide a set of good trade-off solutions for the decision-maker to
choose one that fits best the current requirements. A common approach to compare
solutions in MOO is to use Pareto dominance which works as follows. Given two
solutions x1 and x2 for a minimization problem with q objectives, we say that x1

dominates x2 (x1 ≺ x2) if x1
i ≤ x2

i for every i = 1 . . .q and x1
i < x2

i for at least one
i. Moreover, if x1

i < x2
i for every i we say that x1 strictly dominates x2, otherwise

we say that x1 weakly dominates x2 (usually, weak dominance is simply referred to
as dominance). A solution x is set to be non-dominated with respect to a set S of
solutions if there is not solution in S that (weakly or strictly) dominates x. A set of
non-dominated solutions is usually called non-dominated set or Pareto front.

Coello Coello et al. [6] state that three main considerations must be taken into
account when dealing with MOO using PSO:



112 J.P. Castro, D. Landa-Silva, and J.A. Moreno

1. The selection of the particles that will act as leaders.
2. The storage of non-dominated solutions found by the swarm.
3. The preservation of diversity within the swarm.

In recent years, a number of alternatives has been suggested to handle the optimiza-
tion of multiple objectives using PSO. We briefly review some of these approaches.
Moore and Chapman [7] maintain a list of non-dominated solutions (NDS) for each
particle from which each particle’s best position is chosen at random, the best neigh-
bour is then selected using Pareto dominance. Coello Coello and Lechuga [8] used
an external archive to store NDS and a crowding-based hyper-grid to select leader
particles and to encourage diversity within the swarm. Later, Coello Coello et al. [9]
used an archive which was allowed to grow as necessary in order to avoid missing
good NDS. They selected leader particles based on the concept of global attraction
using the history of NDS solutions in the archive. Hu and Eberhart [10] introduced
the concept of dynamic neighborhood in which the neighborhood’s best position
is chosen based on a compound criterion that takes into account the optimization
objective and the proximity between particles. This work was extended by Hu et
al. [11] by incorporating an external NDS archive as in [8]. In order to overcome the
drawbacks of having an external repository with fixed size, Fieldsend and Singh [12]
proposed a dominated tree to store NDS and to select leader particles. Parsopoluos
and Vrahatis [13] proposed three aggregation criteria for the optimization of con-
tinuous functions: static Conventional Weighted Approach (CWA), dynamic Bang-
bang Weighted Aggregation (BWA) and Dynamic Weighted Aggregation (DWA).
Their tests showed that DWA is the best approach for continuous optimization func-
tions. Parsopolous et al. [14] suggested a swarm to optimize each objective, each
swarm communicates its global best to the other swarms to guide the search to-
wards the Pareto front. Their approach does not store NDS, instead each swarm
reports the best solution found with respect to its objective. Santana-Quintero et
al. [15] extended the work in [8]. They reserved q particles in the swarm, each one
to optimize one of the q objectives and maintain an ideal vector with the best value
for each objective from the q particles. The leader particle is the one closest to the
ideal vector. They used a local search heuristic based on rough sets theory to spread
the NDS and adaptive ε-dominance to adjust the hyper-boxes according to certain
geometric characteristics of the Pareto front.

9.2.2 Discrete Particle Swarm Optimization

The PSO algorithm was originally proposed to tackle continuous optimization prob-
lems. That is because particles in the swarm fly on a continuous space updating
their position and velocity in every iteration. However, for combinatorial optimiza-
tion problems, the notion of smooth flying disappears. Then, the associated concepts
of velocity and position updates in the traditional PSO algorithm (Eqs. 9.1 and 9.2
above) lose their sense. Combinatorial optimization scenarios like the VRPTW re-



9 Towards an Efficient MOPSO for the VRPTW 113

quire to redefine how a particle moves in a discrete space and hence to redefine the
mechanism for updating the velocity and position of particles.

A discrete PSO was proposed by Kennedy et al. [16]. They interpreted changes
of velocity in terms of probabilities by encoding the particle’s position as a binary
vector and using a stochastic velocity scheme. Since then, several authors have used
this approach (e.g. [17, 18]). Other implementations of discrete particle swarm op-
timization (DPSO) have been introduced (e.g. [19, 20, 21]), see the survey in the
paper by Martinez Garcia and Moreno Perez [22].

9.2.3 Jumping Frog Optimization

The Jumping Frog Optimization (JFO) approach proposed in [22, 23, 24] is based
on the particles point of view instead of the solutions or particle’s position. The
metaphor of JFO is that of a group of frogs looking around for food while jumping
from lilypad to lilypad. This group of frogs competes for food by jumping to the best
locations so that if a frog is well-placed, then other frogs tend to move towards it.
The JFO approach uses an interesting scheme without the need of velocity to update
the particle’s position. Instead, the position is updated using a follower-attractor
system. When a particle wants to jump to a new better position, the particle uses a
better positioned particle as a reference. For this particular case, a particle that wants
to move (follower) towards the best positioned particle in the swarm (attractor) tries
to be similar to its attractor, i.e. the follower will analyze the components of the
attractor’s position to somehow copy them, and eventually jump to a new better
position.

9.3 Proposed MOJFO Algorithm

This section describes the proposed multi-objective JFO algorithm which is showed
in Program 1. The particles in the swarm can perform four types of moves (jumps)
depending on which particle acts as the attractor in each iteration. For this purpose,
a segment [0,1] is divided into four sub-segments with variable width subject to
a certain probability ci so that

∑4
i=1 ci = 1. The longer a sub-segment is, the more

probability a particle has to strike out the particular associated move. Then, a ran-
dom number r with uniform distribution U[0,1] is chosen and the particle will move
to a new position depending on the value of r as follows:

• If r ∈ c1 then no particle acts as attractor and the particle makes a random move
with respect to its current position xid. The purpose of this Inertial Move is to
explore the area around the particle’s position. We decided to let the particle
jump around the neighbourhood by using a λ-interchange (with λ = 1) to simply
swap two nodes (customers) in different sub-routes.



114 J.P. Castro, D. Landa-Silva, and J.A. Moreno

• If r ∈ c2 then the particle moves towards the best positioned particle in its current
neighborhood. This type of move is done by applying a route-exchange algorithm
that consists of copying a random sub-route from the attractor to the follower, re-
moving those nodes in the follower that are in the new sub-route. This represents
a Cognitive Move to influence an attraction force within the swarm.

• If r ∈ c3 the move is based on the best position bid found so far by the moving par-
ticle. The current position xid takes a sub-route from bid using the route-exchange
algorithm. This Local Move helps the particle to explore similar structures to the
ones in bid in order to improve its current position xid.

• If r ∈ c4 then the attractor is the best position g found by the swarm during the
search process so far. A route-exchange algorithm is carried out between xid and
g. This Global Move encourages reusing parts of the overall best solution g found
so far on the design of different structures.

As in the original (single-objective) implementation of the JFO approach, after
finding a new solution, local search is applied to improve its quality (improvements
are accepted based on Pareto dominance). Finally, a particle finishes its jumping
round by updating its best position bid and the best global position g achieved so far.
The update is based on Pareto dominance, i.e. when bid and/or g are dominated by
the new position nid.

9.3.1 Solution Representation and Initilization

Since in a DPSO scheme particles do not fly on a continuous space, the position or
solution is given by a codification of a VRPTW solution. A route-plan is given by
a sequence of costumers who are visited by a number of vehicles that set off from
the depot. A solution or route-plan for a problem with i = 1 to N customers and one
i = 0 depot looks like:

xid = (0,ci, . . . ,c j,0, . . . ,0,cm, . . . ,cn,0)

For example, the route-plan: (0 2 1 4 0 5 3 6 0 9 8 0) has three routes. The first
route is (0 2 1 4 0), the second route is (0 5 3 6 0) and the third route is (0 9 8 0). In
the first route, the vehicle sets off from the depot 0, then visits costumer 2, followed
by customers 1 and 4 before returning to the depot 0. The other two routes in the
encoding have similar interpretations.

Our primary goal is to investigate the ability of the proposed algorithm to find
feasible route-plans even if starting the search in the infeasible region. Hence, no
heuristics were used to initialize the positions of the particles with feasible or near-
feasible route-plans. Instead, the position of each particle is randomly generated
which provokes starting solutions to have a very high number of violations of both
vehicle capacity and time windows. Then, the swarm in our algorithm has to truly
evolve solutions by making transitions between the feasible and infeasible regions



9 Towards an Efficient MOPSO for the VRPTW 115

Program 1 JFO Algorithm Pseudo-code
do {

forEach(p in swarm) {
n = rand();
case (n) {

// Inertial Move
n is in c1: ni = lambda-i(p.xi)

// Cognitive Move
n is in c2: gi = getBestPosInNeighborhood()

ni = subRouteCopy(gi, p.xi)
// Local Move

n is in c3: ni = subRouteCopy(p.bi, p.xi)
// Social Move

n is in c4: ni = subRouteCopy(g, p.xi)
}
localSearch(ni)
computeFitness(ni)
p.xi = ni
if (firstIsParetoCompatibleOrBetter(ni, p.bi) {

update(p.bi)
if (firstIsParetoCompatibleOrBetter(ni, g)

update(g)
}

}
} while (!stopCriterion)

Legend:
p.xid is the current position of the particle.
p.bid is the best position found by the own particle.
giter is the best position in the swarm/neighborhood in the current iteration.
g is the best position found by the swarm.
nid is the new position of the particle.
lambda-i is an operator that exchanges two costumers in different routes.
getBestPosInNeighborhood() is a procedure that picks the best solution communicated by its
neighborhood.
subRouteCopy(source, dest) is a function that copies an entire sub-route from ‘source’ to ‘dest’.
All the costumers who are placed in the new sub-route are previously deleted in ‘dest’.

of the search space as necessary. Examples of starting and evolved tour-plans are
shown later in this paper.

9.3.2 Constraints and Objectives

We conducted preliminary experiments to understand how the setup of various ob-
jectives affects the convergence towards feasible solutions. These experiments were
conducted using eight objectives, four of which are constraints and the other four
are genuine objectives representative from the most commonly used in the VRP lit-
erature. The constraints are: Time Window Violation (R1), Number of Time Window



116 J.P. Castro, D. Landa-Silva, and J.A. Moreno

Violations (R2), Capacity Violation (R3) and Number of Capacity Violations (R4).
The proper objectives are: Number of Vehicles (O1), Total Distance (O2), Waiting
Time (O3) and Elapsed Time (O4). The waiting time is the sum of waiting times for
all vehicles and the elapsed time is the total time elapsed between the departure of
vehicles and the arrival of the last vehicle to the depot. Following our preliminary
experiments, we decided to guide the swarm towards finding feasible solutions us-
ing four objectives: O1,O2,R2 and R3 while values of the other four objectives were
just traced for our posterior analysis.

9.4 Experimental Analysis

This section describes our computational experiments and results. We used the pop-
ular Solomon’s problem instances [1] which are divided into three categories: with
cluster-located costumers (cxxx), with random-located costumers (rxxx) and a mix
of these two (rcxxx). We took two instances from each category for our experi-
ments, namely c101,c201,r101,r201,rc101,rc201. For the six instances, we fixed
the number of vehicles to its best known solution, the reason for this is that we
wanted to find out whether the swarm was able to move towards feasible areas after
starting with violations of all constraints, so no operators were included to minimize
the number of routes.

As mentioned above, each particle in the swarm starts with a purely random
solution. This initial solution consists of a shuffled vector with the ids of the cos-
tumers and the number of zeros specified by the best known solution for the current
instance. For example, for the Solomon’s c101 the best known solution uses 10 ve-
hicles to serve all costumers, so the initialization process involves to take the vectors
of ids, to add 11 zeros (number of vehicles plus one) and to shuffle this vector. The
ci segments that the particles use to choose the next type of move, are all of constant
length equal to 0.25 so that a particle has the same probability for choosing any of
the above four types of move.

Regarding the issue of deciding when to update the best solution of the swarm
g, our experiments showed that much better results are obtained when the update
(as it is stated in 1) is done using weak-dominating solutions and not only strict-
dominating solutions. Another observation made was that when we update g based
on constraints violations, i.e. accepting a new swarm leader only when it improves
upon the satisfaction of constraints, the convergence speed towards feasible solu-
tions increases significantly.

Table 9.1 shows some illustrative results from our experiments. For each problem
instance, the table presents the best solution g within the swarm in the First Iteration
and in the Last Iteration. At the end of each row, there is the best known result for
each instance as it can be found in [25]. Note that in all six instances the swarm is
capable of moving from very bad infeasible solutions (high values of R2 and R3)
to feasible (rows c101, r201 and rc201) or very close to feasible (rows c201, r101
and rc101) route-plans. In most cases, the value of the Total Distance objective



9 Towards an Efficient MOPSO for the VRPTW 117

Table 9.1: Results obtained with the proposed MOJFO algorithm

First Iteration Last Iteration Best Known
Problem O1 O2 R2 R3 O1 O2 R2 R3 O1 O2
c101 10 4327.17 95 810 10 828.94 0 0 10 828.94
c201 3 4233.16 95 290 3 1073 2 0 3 591.53
r101 19 3663.51 87 142 19 1752 1 0 19 1645.79
r201 4 3315.15 94 0 4 1460.86 0 0 4 1252.37
rc101 14 4829.68 90 535 14 1641.68 2 0 14 1696.94
rc201 4 4599.99 95 0 4 1825.56 0 0 4 1406.91
Legend:
O1: Number of Vehicles
O2: Total Distance
R2: Number of Time Windows Violations
R3: Capacity Violation

O2 is very close to or matches (row c101) that of the best known solution. For
the three cases in which the final route-plan is not feasible, the number of time
windows violations is very low indeed. We are quite satisfied with these results
which demonstrate that it is possible for our algorithm to effectively evolve very
poor infeasible solutions towards good feasible ones without incorporating specific
initilization heuristics or search operators to tackle infeasibility. Figure 9.1 shows an
example of a starting (very poor) infeasible route-plan and the final (good-quality)
feasible route-plan evolved by the swarm in our algorithm.

(a) Initial route-plan (b) Final route-plan

Fig. 9.1: Example of starting infeasible route-plan and evolved feasible route-plan

Since no stop condition is used to wipe out the swarm and since the global best g
accepts weakly-dominating solutions, the swarm does not stop searching for better
solutions. This provokes a large set of solutions to be found in the current non-
dominated front once the optimal solution has been found or once g is very close to



118 J.P. Castro, D. Landa-Silva, and J.A. Moreno

a feasible area and its objective is better than the optimum solution (see the row of
rc101 in Table 9.1). After conducting repeated experiments with several instances
and without forcing the global g to avoid the comparison of the Total Distance O2,
we observed that the swarm tends to an equilibrium state. That is, some time after
the swarm starts moving, all the objectives begin to oscillate between a minimum
and a maximum values, just like if the swarm was moving in circles. The same
phenomenon occurs when we force the global g to ignore O2 and not until the con-
straints get to value of zero, allow g to start comparing the Total Distance, then the
constraints suddenly increase to that state of balance. Figure 9.2 shows the evolu-
tion of the swarm for a typical run of our algorithm on the c101 problem instance.
The number of iterations (generations of the swarm) is in the X-axis while the Y-
axis shows a normalized scale for all objectives. The range [max,min] explored
during the search for each objective is also shown. We can see that the algorithm
starts with high values of time windows violations (in fact, only 5% of costumers
are served within the time window) and finishes with no time windows violations
(same happens with the capacity violations). We can see that the algorithm manages
the trade-off between the objectives allowing some objectives to worsen in order to
improve others (because we use weak Pareto dominance). The graph shows abrupt
rises and falls of the objective values. Note that around the 1150th iteration all the
objectives suddenly go up except the Capacity Violation which achieves a value near
to zero. This gives us an indication that an adaptive-MOJFO in which the particles
decide which objectives to improve and how at different times during the search is
a promising approach.

Fig. 9.2: Swarm evolution for typical run of the MOJFO algorithm on instance c101



9 Towards an Efficient MOPSO for the VRPTW 119

9.5 Conclusions

We proposed an adaptation of the Jumping Frog Optimization algorithm incorpo-
rating some principles of multi-objective optimization to tackle the Vehicle Routing
Problem with Time Windows. The proposed MOJFO algorithm uses Pareto dom-
inance to guide the search by particles in the swarm allowing a dynamic trade-off

between objectives during the search. Particles explore the discrete search space us-
ing four types of moves. Two objectives (number of vehicles and total distance) and
two constraints (number of time window violations and capacity violation) are used
as objectives to guide the search. It has been shown in this paper that the proposed
approach is capable of starting from very poor infeasible solutions and evolve them
to obtain very good feasible solutions without incorporating tailored heurisitics or
operators to tackle infeasibility. In our future work we intend to incorporate some
adaptive capability in the algorithm to allow particles to choose which move to
perform and which objectives to tackle (and when) during the search for a more
effective search process.

9.6 Acknowledgements

This work has been partially funded by the projects TIN-2005-08404-C04-03 and
TIN2008-06872-C04-01/TIN of the Spanish Government.

References

[1] The VRP Web http://neo.lcc.uma.es/radi-aeb/WebVRP/

[2] Olli Bräysy, Michel Gendreau Vehicle Routing Problem with Time Windows,
Part I: Route Construction and Local Search Algorithms Transportation Science
Vol. 39, No. 1, pp. 104-118, 2005

[3] Olli Bräysy, Michel Gendreau Vehicle Routing Problem with Time Windows,
Part II: Metaheuristics Transportation Science Vol. 39, No. 1, pp. 119-139, 2005

[4] J. Kennedy, R.C. Eberhart. Swarm Intelligence - Morgan Kaufmann. 2001
[5] Eberhart, R. C., Shi, Y. Particle swarm optimization: developments, applica-

tions and resources Proceedings of the 2001 IEEE Congress on Evolutionary
Computation pp. 81-86, 2001

[6] M. Reyes-Sierra, C.A. Coello Coello International Journal of Computational
Intelligence Research Research India Publications pp. 287-308, 2006

[7] J Moore and R Chapman Application of Particle Swarm to Multiobjective Opti-
mization Department of Computer Science and Software Engineering, Auburn
University, 1999



120 J.P. Castro, D. Landa-Silva, and J.A. Moreno

[8] C.A.Coello-Coello, M. Salazar Lechuga MOPSO: A proposal for multiple
objective particle swarm optimization Proceedings of the IEEE Congress on
Computational Intelligence pp. 12-17, 2002

[9] C.A. Coello Coello, G.T. Pulido, M. Salazar Lechuga Handling Multiple Ob-
jectives with Particle Swarm Optimization IEEE Transactions on Evolutionary
Computation Vol. 8, No. 3, pp. 256-279, 2004

[10] Xiaohui Hu, Russell Eberhart Multiobjective Optimization Using Dynamic
Neighborhood Particle Swarm Optimization Proceedings of the 2002 Congress
on Evolutionary Computation pp. 1677-1681, 2002

[11] X. Hu, R.C. Eberhart, Y. Shi Particle Swarm Optimization with extended
memory for multiobjective optimization Proceedings of the IEEE Swarm Intel-
ligence Symposium 2003 pp. 193-197, 2003

[12] Fieldsend, J.E. and Singh, S. A multi-objective algorithm based upon particle
swarm optimisation, an efficient data structure and turbulence UK Workshop
on Computational Intelligence (UKCI’02) pp. 37-44, 2002

[13] Parsopoulos, K.E., Vrahatis, M.N. Recent Approaches to Global Optimization
Problems Through Particle Swarm Optimization Natural Computing pp. 235-
306, Springer, 2002

[14] Parsopoulos, K.E., Vrahatis, M.N. On the Computation of All Global Mini-
mizers Through Particle Swarm Optimization IEEE Transactions on Evolution-
ary Computation, 8 pp. 211-224, 2004

[15] Luis V. Santana-Quintero, N. Ramírez-Santiago, C. A. Coello Coello, J.
Molina-Luque and A. G. Hernández-Díaz A new proposal for multiobjective
optimization using particle swarm optimization and rough sets theory Lecture
notes in computer science Springer, pp. 483-492, 2006

[16] Kennedy, J and Eberhart, R.C. A discrete binary version of the particle swarm
optimization algorithm Proceedings of the World Multiconference on Systemics,
Cybernetics and Informatics pp. 4104-4109, 1997

[17] Chang, R. F. and Lu, C. N Feeder reconfiguration for load facto improve-
ment Proceedings of the IEEE Power Engineering Society Transmission and
Distribution Conference pp. 980-984, 2002

[18] Mohan, C.K. and Al-kazemi, B. Discrete Particle Swarm Optimization Pro-
ceeding of the Workshop on Particle Swarm Optimization 2001

[19] S. Yang, M. Wang, L. Jiao A quantum particle swarm optimization Pro-
ceedings of the 2004 IEEE Congress on Evolutionary Computation Vol. 1, pp.
320-324, 2004

[20] B. Al-kazemi, C.K. Mohan Multi-phase discrete particle swarm optimization
Proceedings of the Fourth International Workshop on Frontiers in Evolutionary
Algorithms 2000

[21] Combining particle swarm optimisation with angle modulation to solve binary
problems IEEE Congress on Evolutionary Computing Vol. 1, pp. 89-96, 2005

[22] F. Javier Martinez Garcia, Jose A. Moreno Perez. Jumping Frogs Optimiza-
tion: a new swarm method for discrete optimization. Documentos de Trabajo
del DEIOC. N. 3/2008, Universidad de La Laguna



9 Towards an Efficient MOPSO for the VRPTW 121

[23] Discrete Particle Swarm Optimization for the p-median problem F.J. Martinez,
Jose A. Moreno, MIC 2007, Metaheuristics International Conference Montreal,
Canada, 2007

[24] Discrete Particle Swarm Optimization for the minimum labelling Steiner tree
problem Consoli S., Moreno-Perez J.A., Darby-Dowman K., Mladenovic N.
:Nature Inspired Cooperative Strategies for Optimization (NICSO 2007) Vol.
129, Studies in Computational Intelligence, pp. 313-322, 2007

[25] Best Known Solutions Identified by Heuris-
tics for Solomon’s (1987) Benchmark Problems
http://www.sintef.no/static/am/opti/projects/top/vrp/bknown.html


