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Abstract The current research trends on hyper-heuristics desiga $awung up in
two different flavours: heuristics that choose heuristiog heuristics that generate
heuristics. In the latter, the goal is to develop a probleamdin independent strat-
egy to automatically generate a good performing heuristicspecific problems,
that is, the input to the algorithm are problems and the dwgpiproblem-tailored
heuristics. This can be done, for example, by automaticalgcting and combin-
ing different low-level heuristics into a problem specifideeffective strategy. Thus,
hyper-heuristics raise the level of generality on autoch@t®@blem solving by at-
tempting to select and/or generate tailored heuristic®@problem in hand. Some
approaches like genetic programming have been proposetiiforin this paper,
we report on an alternative methodology that sheds lightirople methodologies
that efficiently cooperate by means of local interactiorteese entities are seen as
building blocks, the combination of which is employed foe thutomated manu-
facture of good performing heuristic search strategiesp¥@sent proof-of-concept
results of applying this methodology to instances of thd-kebwn symmetric TSP.
The goal here is to demonstrdeasibility rather than compete with state of the art
TSP solvers. This TSP is chosen only because it is an easgteoastd well known
problem.
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1 Introduction

A hyper-heuristic is a search methodology that selects and combines hearistic
generate good solutions for a given problem. To investigatihe design of hyper-
heuristics is important because they provide a problenmpeddent level of abstrac-
tion for the automatic generation of good performing altjoris. Given a compu-
tational search problem and a set of simpler heuristicsehipuristics contribute
with a methodology for the manufacture of heuristic capabfgoducing high qual-
ity solutions when applied to the problem in hand. We consildat developing a
systematic procedure in which beneficial entities are ifledtand combined for
the automated manufacture of good performing heuristi@s ssitable approach.
The purpose of this paper is then to propose a method for tioeratied construc-
tion of heuristic search strategies in terms of simpler is¢iaibuilding blocks which
cooperate efficiently. Our methodology has three main stggatern-based heuris-
tics generation, cross validation and template-basedsimsrdistilling. In the fol-
lowing, Section 2 gives a brief introduction to hyper-hstics and the context of
our investigation. Section 3 expands on the proposed appgiging details of the
model components and the methodology. After that, experisnand results are
presented and discussed in Section 4. Finally, conclusindgurther work are the
subject of Section 5.

2 Heuristics Design

Hyper-heuristics are defined as search methodologiesdtetand combine low-
level heuristics to solve hard computational search problg, 16]. The general
aim of a hyper-heuristic is to manufacture unknown hewsstvhich are fast, well
performing and widely applicable to a range of problems.ibythe process of
fabrication, hyper-heuristics receive feedback from ttabfem domain which indi-
cates how good the chosen heuristics for solving the probidrand, hence driving
the search process. Hyper-heuristics do not violate thigeetunch theory which
indicates that over all problems, no algorithm performsdsehan another. Study-
ing novel approaches for the development of hyper-heasiss important since
they are domain-independent problem strategies that tgpenaa space of heuris-
tics, rather than on a space of solutions, and rise the Iégarerality on automated
problem solving. Hyper-heuristics have been employeddbsiisg search and opti-
misation problems such as bin-packing [17, 4], timetablib4], scheduling [9, 8]
and satisfiability [2] among others. For detailed reviewlkygier-heuristics and their
applications, please refer to [16, 13, 7].

The automated manufacture of heuristic search strategiendans of hyper-
heuristics has received increasing attention in the last&ars or so. Recent in-
vestigations have sprung up in two main different directiohhyper-heuristics: 1)
heuristics that choose heuristics and 2) heuristics thatigge heuristics. In the first
case, a learning mechanism assists the selection of lcelHewuristics according to
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their historical performance during the search procegs,[&)]. In the second case,
the focus is on searching components that once combinedajersenew heuristic
suitable for the problem in hand. For example, approachssdan genetic algo-
rithms [9] and genetic programming have been proposed &athomated gener-
ation of heuristics [5, 11]. From an engineering point ofwithe already existent
approaches are defined in terms of the architecture egtallisy the underlying
meta-heuristic which sometimes brings unsuspected difisuisuch as the correct
modelling of solutions or parameters tunning. Hence, thesttaction of well per-
forming heuristics in terms of low-level heuristics whicfii@ently cooperate by
means of local interactions is an interesting route for tgiag a new alternative
within the second flavour of hyper-heuristics. Our intetags on the identification
of beneficial cooperative structures, the combination attigive rise to a specifi-
cation for the automated manufacture of good performingibtci strategies for a
given combinatorial optimisation problem.

3 Proposed Approach

Given a set of instances of a combinatorial optimisatiorbfem 7, we propose a
methodology composed of pattern-based heuristics gémeratoss validation and
template-based heuristics distilling. Each stage is datutto a dataset generated
from the optimisation problem in hand whilst the output of tinethodology is a
template to be employed for the manufacture of good perfogrheuristics. Fig. 1
depicts the methodology and its components.

Training Dataset

‘@

Pattern-based Heuristics Generation
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Fig. 1 Schematic representation of the proposed methodologyitsitiree stages, their associated
datasets and the achieved template for the problem in hand.

In the pattern-based heuristics generation, an input dataset is employed to train
randomly generated sequences of low-level heuristich{lggel heuristics). This
training aims at generating proficient high-level heueistthe common constituents
of which are expected to produce high quality solutions wapplied to a given
instance of the problem in hand. The research questionsrstage is:
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Given a set of high-level heuristics, isit possible to generate common combina-
tions of low-level heuristics ? If yes, how do they look like and how reliable are these
combinations ?

In order to address the first question, a process that spotsioo combinations
of low-level heuristics (patterns) and constructs patteased heuristic is employed.
The goal of thecross validation is then to assess the performance of the constructed
pattern-based heuristic over a validation dataset comgrgmilar instances of the
combinatorial optimisation problem in hand. Thus, the tjoasn this stage is:

What is the performance of a pattern-based heuristic when applied to a set of
different probleminstances ?

The goal of thaemplate-based heuristics distilling stage is to discover coopera-
tive and efficient low-level heuristics (building blockshang several pattern-based
heuristics. These building blocks are expected to givetoisetemplate from where
better than average heuristics could be drawn. Here, aa éataset is employed to
test the performance of the constructed heuristics. Thstiunein this stage is:

Isit possibleto distill a template in terms of building blocks of heuristics ? If yes,
how is the performance of the template-based heuristics when applied to a set of
different probleminstances ?

The above methodology is expected to deliver a proceduréhtoautomated
construction of effective and efficient heuristic searchtsgies.

4 Methods and Results

This section presents the findings obtained by the aboveadelbgy. The cho-
sen combinatorial optimisation problem is the widely knasymmetric Traveling
Salesman Problem (TSP). The TSP instance considered tkeoAis00 which com-
prises 100 cities distributed in the Euclidean space. Tlectitee value correspond-
ing to the known optimum solution (shortest tour) for thistamce is 21282 (see
TSPLIBY). For each stage of our methodology, we generated five stis iiollow-
ing systematic way. Each set is initialised with ten copiethe known optimum
solution for kroA100. Each of this initial solutions is th&hsturbed’ with n con-
secutive city swaps. In this way, settimgo 5, 25, 50, 75 and 100, a total of ten
independently ‘disturbed’ tours per set are obtained.

We consider a high-level heuristic as a sequence made ofelesl-heuristics.
The low-level heuristics for the TSP used here can be dividédo types: stochas-
tic low-level heuristics and deterministic low-level histics. A low-level heuristic

1 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsgitml
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is stochastic if different or the same output tours are retdrwhen applied to the
same input tour. Contrary to this, a low-level heuristic é&etministic if the same
output tour is returned when applied to the same input touour casel-city in-
sertion, 2-exchange, arbitrary insertion andinver-over are the stochastic low-level
heuristics, whils-opt, 3-opt, OR-opt andnode insertion are the deterministic ones.
These eight low-level heuristics were implemented as defing¢l, 3, 10, 15, 19]
and operating in a hill climber style [12].

4.1 Pattern-based Heuristics Generation

4.1.1 Training Datasets

In this stage, each of the perturbed tours, labeletkesA10Q", i =0...9, n =
5,25,50,75,100, is independently considered for training. A sampléefttaining
data, grouped by sen), is listed in table 1 where the values indicate the pergenta
distance to the optimum from each perturbed tours.

Table 1 Three sample perturbed tours for each of the five training set

n=>5 n=25 n=>50 n=75 n=100
tkroA100 1.42669 425805 639869 701362 680147
tkroA100] 1.27600 460262 646067 638215 659012
tkroA100; 1.79926 413631 576585 675190 693252

tkroA10Q" is the i-th disturbed tour after applyingrandom swaps tkroA100 optimal tour.

4.1.2 Method

For a given disturbed toutkroA10Q"), a set containing 500 high-level heuristics
generated at random was created. Then, each of the 500évighhleuristics was
independently applied to the associated perturbed todhisncontext, an applica-
tion is seen as a pipeline process in which the chain of psitgglements is given
by the sequence of low-level heuristics and the informatiohe processed is the
disturbed tour. Thus, the low-level heuristics are apptied after another in the or-
der in which they appear in the sequence and producing lzetegyual solutions at
each step. To illustrate this process, Fig. 2 depicts hovgh-kvel heuristic com-
prising 1-city insertion and 2-exchange is applied to a Tri&faince.

In order to identify common combinations of low-level hestids, the 500 high-
level heuristics are then sorted according to the distart@den the solution that
their applications produce and the known optimum solufidre top five high-level
heuristics are then selected and encoded as sequencesaaftergausing ‘A’ to rep-
resent 1-city insertion, ‘C’ to represent 2-opt, ‘D’ to repent 3-opt, ‘E’ to represent
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Fig. 2 A high-level heuristic in which successive applicationsldfity insertion and 2-exchange
find the optimum solution for the Star of David tour.

OR-opt, ‘T’ to represent 2-exchange, ‘F’ to represent nodeition, ‘G’ to repre-
sent arbitrary insertion and ‘H’ to represent inver-ovegnide, in order to identify
common combinations of low-level heuristics among thergitesequence, we em-
ploy a multiple sequence alignment (MSA) method [18] ovexr émcodings. For
instance, Fig. 3 highlights in gray the common combinatioonsid among the best
five high-level heuristics generated troA1005°.

1-HLH”®, ehhG —thHG ———— HEG- £hhD-—-DBhDh
2-HLH”, ----aD--—BdadtdtH-————————————— DddED-D-
3-HLH®, ————- D--HG———— H--Gaccchecaca—-D--C———-
4-HLH”®, -——-@-——-HG-———— BE-G--———————- D-—————
5-HLH®, --—-Ge—-—-G-———— g--8--—————- D--—-B-—
[ [ [
[ [ [
PBH", -——G-D--HG-————— HH-G-——————————— D--CD-D-

Fig. 3 Multiple sequence alignment of the top five heuristics. @aphighlighted in gray indicate
the common sequences of heuristics.

The results obtained by the MSA method reveal that thererateeid occur-
rences of common combinations, i.e. patterns of low-lewlristics, among the
best ranked high-level heuristics. Thus, these findings gipositive answer to the
research question stated for the first part of our methogdlo&ection 3.

From the resulting alignment, we construct a consensussegcapturing and
representing regions of similarity. We define this consersgguence as a pattern-
based heuristic (PBH associated to a perturbed totkrbA10("). The constructing
procedure consists in copying the matching charactersdsgtwvo or more encod-
ings into a new sequence from left to right and following tlesifon in which they
appear. For instance, Fig. 3 shows that I%BH the resulting pattern-based heuris-
tic encoded as GDHGHHGDCDD, after combining the commonepast from the
high-level heuristics 1-HLEP to 5-HLHZ®. Given that this new heuristic is built
in terms of common combinations of low-level heuristics,performance is then
expected to be as good as (or better than) any of the top raNaite that the
length of the constructed heuristic varies according totiaber of matches. Since
this is related to the way in which the construction procedsiidefined, alternative
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methodologies to obtain the optimal common sequence anetoderther investi-
gation.
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Fig. 4 Assessment of ten pattern-based heuristics resultingifirdependent sequence alignments.
Each pair of boxplots summarises a vis-a-vis comparisowdsst the performance of 300 copies
of PBH’® and the performance of other 300 high-level heuristics waplied totkroA10(/® for
i=0...9.

In order to assess the reliability of the spotted patteresh&n proceed to evalu-
ate the performance of PBHgainst a set of high-level heuristics (different than the
initial ones) with the hope that, on average, the best topravements are obtained
by the former. In order to do this, 300 copies of PB&te obtained and for each of
them a new high-level heuristic equal in length is created:hEof these heuristics
is then independently applied tkroA10Q" a total of 10 times and the average per-
centage distance between the lengths of the resulting ématthe known optimum
is considered as the measure of their performance. As anpeaiig. 4 shows the
assessment of the 10 pattern-based heuristics obtainmdlifiedata set generated
with n=75.

According to the results, it is clear that the performancpaifern-based heuris-
tics (white boxplots) is better in average than the perfaroeaof the non-pattern-
based high-level heuristics (gray boxplots). These finsltwnstitute a positive an-
swer to the second research question stated in the firstatdyepresented method-
ology, i.e. the identified common-sequences of heuristiesmaleed reliable.

4.2 Cross Validation

4.2.1 Validation Dataset

The cross validation data are given in sets of ten perturbedsvkroA10Q", i =
0...9. A sample of the data, grouped by s&}, {s listed in table 2 where the values
indicate the percentage distance to the optimum from eactrped tours.
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Table 2 Three sample perturbed tours for each of the five validais s

n=5 n=25 n=>50 n=75 n=100
vkroA100} 1.86490 538403 685800 692453 758471
vkroA100] 1.72394 542246 613800 657452 669500
vkroA100; 1.41001 376134 666469 685969 690264

vkroA10Q" is the i-th disturbed tour after applyingrandom swaps tkroA100 optimal tour.

4.2.2 Method

The goal of this stage is to perform a cross validation amglysorder to assess
the performance of the pattern-based heuristics over & sittarbed tours. Thus,
for each combination of PBHandvkroA10(d, i, j = 0...9, a total of 300 copies of
PBH’J-1 were obtained and, for each of the copies, a new high-lewgistee equal
in length was created. Then, the heuristics are indepelydgoplied to the given
vkroA10(Q' a total of 10 independent times and the average percentsigadé be-
tween the lengths of the resulting tours and the known optinsuconsidered as the
measure of their performance. Fig. 5 shows the resultingsassent of a pattern-
based heuristic, encoded as GDHGHHGDCDD, over the 10 fetitours belong-
ing to the data set generated with= 75.
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Fig. 5 Performance evaluation of a pattern-based heuristic si¢chesperturbed tours belonging
to the data set generated with= 75. Each pair of boxplots summarises a vis-a-vis comparison
between the performance of 300 copies of GDHGHHGDCDD angémrmance of other 300
high-level heuristics when applied #roA100/.

Clearly, the performances of pattern-based heuristicstéwioxplots) are bet-
ter in average than the performance of the ones generateas$mssment (gray
boxplots). These findings answer the research questiotedstathe second part
of Section 3, revealing that a pattern-based heuristic geimeral well performing
when applied to a set of different problem instances. Intamdithe similar level of
performance observed among the white boxplots gives acatidn that common
low-level heuristics could be acting as building blocks agnthe PBH, j=1...10.
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4.3 Template-based Heuristics Distilling

4.3.1 Test Dataset

The data used in this last stage comprise five sets listedlatge 3 for a sample.

Thus, for a given experiment, each of the ten perturbed whkrA100", i =0...9,
belonging to a given set is independently employed forrigsti

Table 3 Three sample perturbed tours for each of the five test sets.

Tour n=5 n=25 n=>50 n=75 n=100
dkroA10(] 1.43750 400032 561831 634000 686100
dkroA100; 1.12729 470731 644469 628794 669199
dkroA100; 0.80584 401320 596786 657973 710008

dkroA10Q" is the i-th disturbed tour after applyimgrandom swaps tkroA100 optimal tour.

4.3.2 Method

The purpose of this stage is to identify common building k&oaf low-level heuris-

tics among the PBﬁassessed in the second part of our methodology. These build-
ing blocks are employed to construct templates of heusistiiee instances of which
are expected to show similar or better performance wherirgphny dkroA10Q".
Hence, for each data set, we applied the MSA method over ttadémys of PBFJ-%,

i,j =0...9. For example, Fig. 6 highlights in gray building blocks amgdhe ten
pattern-based heuristics found for the data set of pertutbers generated with
n=75.

PBH", ----F--——G--D-—BagH-G————— DhG----- CHdhDh-D--—-——- Ch-———- L
PBH", G-—-D-———-- 88— GAthglC-———m €-D--hahD------— B
PBH®, --————-—- G--B-—-- H-GHh-—-----— G-——--———- D €-D-—---- D-mmmm
PBH™, -———————— G--DCcA--H-GH-———————— G-———— c-——D-———- ctC-———— BC-————————— ggT-——
PBH”, C————————— AD-—————————— Cfla—-G———————— D--D-——————————- D-CgDda---D--------
PBH; ChhhFF---G-————-—- HtG———————- a--——-TCH-——————————————————— C-——mmmmm
PBH", ————————— G———————— aG--C-—————- GA----CHa-Da————————- C--—-DACAD--ahcD----TadA
PBH, —————-—————- I C-——-- D-G--——-- Cagab--D-----C-CdahHD-C-D----~ D
PBH”, C-ct----—— Gt-DCC—-—-—-—- CdTcacD-G-----C---D-aD--——- c-C-————- C-D----- Dece—————
PBH”; ————-FFdddG-AD-———- BEG-C——— GA-———C-—-D--DhhchcChC-——HD-CAD-————— D-——————

I I [ [ [ [ [ [ I

| | | | [ [ [ [ [ |
TBI.I'7S C***F****G*%D**k*kaGk*C*T***D*GA****CH**D**D*%*%*C*C***kaC*D*****D********

Fig. 6 Multiple sequence alignment of the pattern-based hecsiftiund for the data set generated
with n = 75. Capitals highlighted in gray indicate the spotted comtmailding blocks.

The resulting alignment reveals that there are common tsires among the
pattern-based heuristics. A template (TBIs$ then constructed in terms of building
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blocks. This procedure consists in copying the matchingastiars between three or
more encodings into a new sequence from left to right andvieiig the position in
which they appear. In case no matchings are found or matsleicgur only between
two encodings, a wildcard character is placed in that positf the sequence. For
instance, Fig. 6 shows TBF as the resulting template after combining the building
blocks from the input pattern-based heuristics B PBE,°.
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Fig. 7 Assessment of a template-based heuristic across a settoflet tours belonging to the
data set generated with= 75. Each pair of boxplots summarises a vis-a-vis compatisiween
the performance of 300 instances drawn from TBEnd the performance of other 300 high-level
heuristics when applied tkroA10(/® for i = 0...9.

For eachdkroA10(", a total of 300 different instances are drawn from the con-
structed template. During the instantiation processdingl blocks are preserved
and each of the wildcard characters is either removed oacedl with one of the
eight low-level heuristics chosen at random. In order tessshe reliability of the
building blocks, we compared the performance of the 30Gims#s against new
300 high-level heuristics expecting that, on average, #st tour improvements are
obtained by the former. In this way, each of the heuristicapplied to the same
perturbed tour a total of 10 independent times and the aeed&jance between
the lengths of the resulting tours and the known optimum isimtered as the mea-
sure of performance. A representative outcome of the assggss shown in Fig. 7
where the resulting assessment of the instances drawn fBid Twhen applied to
the data set created with= 75 is depicted.

The results of this stage demonstrate that it is certainlysipbe to define a
template of building blocks of heuristics in terms of comnsdructures identified
among a set of pattern-based heuristics. This fact coteditu positive answer for
the first question established in the third part of our metthagly. In addition, it is
also shown that the performance of template-based hasr{sthite boxplots) is on
average better than the performance of the randomly getehegh-level heuris-
tics (gray boxplots), even though some of the high-levelriséias generated for
comparison have outperformed the ones drawn from the teenfslee Fig. 7). Nat-
urally, one of the reasons for this is that during the rand@megation, appropri-
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ate combinations of low-level heuristics with more effi¢iktal interactions could
be generated (by chance). However, the template-basedisatien still brings a
more robust and convenient way for the automated manuaotfugood perform-
ing heuristic strategies to solve the problem in hand. Atlinthe outcome of this
assessment answers the last question of the proposed roketdrhat is, the in-
stances of such templates are always well performing wheleaito any disturbed
tour of a given data set.

5 Conclusions

In this paper, we proposed a novel approach for the autondisign of heuristics
following the rationale of hyper-heuristics which are listic methods to generate
tailored heuristics for the problem in hand.

The proposed methodology consists of pattern-based liearionstruction,
cross validation and template-based heuristics congtrudhs a proof of concept,
we applied the methodology to instances of the symmetric D&Fhe one hand, our
initial findings confirm that there are indeed common patieilow-level heuris-
tics among the top ranked high-level heuristics. These gemtrecurrent structures
were subjectto a cross validation, the results of which @ddliem to be local search
strategies beneficial to achieve good solutions when splaisymmetric TSP in-
stance. On the other hand, the outcome achieved in the ldsifiaur approach has
resulted in a specification to automatically generate alfaafiheuristics capable
of producing high quality solutions when applied to peradhours. In particular,
these high performing heuristics are made of emergentihgildlocks extracted
from the patterns seen in the first stage.

From a functional point of view, the building blocks achigwe the last stage are
beneficial structures needed for the manufacturing of higdlity solutions. When
these key elements appear in combination with randomlyerhtisv-level heuris-
tics, they seem to guide the search across the space ofos@uth other words,
the local interactions contributed by the building blocks be seen as artifacts that
drive the optimisation process when applied to the combiiedtoptimisation prob-
lem in hand. Likewise, the local interactions contributedtibe randomly created
low-level heuristics placed in an instance can be seen dacastthat contribute
with a variety of alternative paths for exploring the spatesalutions during the
optimisation process. Hence, both types of contributiczensto be properly or-
chestrated into an instance of a template-based heuristic.

To continue with our methodology, future work involves thdéemsion of our
approach to other instances of TSP as well as to differenbewatorial optimisa-
tion problems. In addition, we also consider to exploreralitive ways to generate
the family of good performing heuristics in order to get atdagnd less human-
dependent way. This could be done for instance by means aifrgadical infer-
ence where the encodings of the pattern-based heuristiglsl\lwe the input to the
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grammatical inference algorithm and the resulting gramwaarld be employed to
generate a family of words encoding sequences of low-|lexetiktics.
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