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Abstract In many contexts of Information Retrieval (IR), term weights play
an important role in retrieving the relevant documents responding to users’
queries. The term weight measures the importance or the information content
of a keyword existing in the documents in the IR system. The term weight
can be divided into two parts, the Global Term Weight (GTW) and the Local
Term Weight (LTW). The GTW is a value assigned to each index term to
indicate the topic of the documents. It has the discrimination value of the
term to discriminate between documents in the same collection. The LTW is a
value that measures the contribution of the index term in the document. This
paper proposes an approach, based on an evolutionary gradient strategy, for
evolving the Global Term Weights (GTWs) of the collection and using Term
Frequency-Average Term Occurrence (TF-ATO) as the Local Term Weights
(LTWs). This approach reduces the problem size for the term weights evolu-
tion which reduces the computational time helping to achieve an improved IR
effectiveness compared to other Evolutionary Computation (EC) approaches
in the literature. The paper also investigates the limitation that the relevance
judgment can have in this approach by conducting two sets of experiments,
for partially and fully evolved GTWs. The proposed approach outperformed
the Okapi BM25 and TF-ATO with DA weighting schemes methods in terms
of Mean Average Precision (MAP), Average Precision (AP) and Normalized
Discounted Cumulative Gain (NDCG).
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1 Introduction

The effectiveness of an Information Retrieval (IR) system is measured by
the quality of retrieving relevant documents responding to user information
needs (queries). One of the common models used in IR is Vector Space Model
(VSM). Documents are represented in VSM as vectors of term weights. The
term weight has a significant impact on the IR system effectiveness to retrieve
relevant documents responding to user information needs. An IR system con-
tains the document weight representations of the document collection in the
form of an IR index file [32]. For every index term in an IR index file, a
term weight measures the information content or the importance of the term
in the document. This term weight has two parts: the local and the global
weights. The Local Term Weight (LTW) measures the contribution of the
term within a given document. The Global Term Weight (GTW) measures
the discrimination value of the term to represent the topic of the documents
in the collection. GTW also indicates the importance of the term as a good
discriminator between documents. Figure 1 shows the term weights structure
in the Index File in an IR system.

Term weights can be improved for achieving better IR effectiveness if the
users can identify examples of the relevant documents that they require for
their current search. These examples of relevant documents and their cor-
responding user queries are stored into the relevance judgment file of the
document collection. The relevance judgment of the IR document collection
contains the group of relevant documents identified by users and their corre-
sponding user information needs (queries). Evolutionary Computation (EC)
techniques have been used extensively to improve IR effectiveness using the
relevance judgment feedback from IR systems [7, 8]. Some of that previous
research does not consider the problem size and the computational time that
are required in order to achieve an improvement in IR effectiveness. Another
issue is the dynamic variation in the document collection in real IR systems
that happens when documents are added to or removed from the collection.

The related work on the Term-Weighting Problem can be divided into two
categories: 1) evolving collection-based Term-Weighting Schemes (TWS) and
2) evolving term weights. These approaches have limited success to be used
in real IR systems due to several reasons as explained below, which gives the
motivation for the work presented in this paper.

1. The TWS evolved by Genetic Programming (GP) rely on the relevance
judgment [9, 7, 23] to check the quality of the proposed weighting function.
These approaches have the following limitations:

• The problem size of creating better collection-based weighting function
using GP is large [9, 23, 12]. This is because the whole documents space



Fig. 1 The Construction of the Index File (also called post file) which serves as an index
for the IR system. It contains the global and local term weights for every term in each

document and the document and term identifiers with the local term weight for each term.

in the collection is considered in the evolving procedure of the global
and local term-weighting functions.

• The computational run-time required to create better collection-based
weighting functions using GP is high [9, 23, 12]. In [12], the computa-
tional run-time for evolving TWS in a subset of 20-Newsgroup collection
[1] using GP was 18 hours. Moreover, other GP approaches [9, 23] ap-
plied on very small collections used a cluster of computers or took long
computational run-time.

2. Evolving term weights of the document representations and evolving TWS
using EC have resulted in better IR effectiveness regarding Mean Average
Precision (MAP) and Average Precision (AP) [8, 7].

The main aim of this work is to propose a method to increase IR effec-
tiveness by evolving better representations of documents in the collection for
the trained queries with less computer memory usage. This is accomplished
by evolving the Global Term Weights (GTWs) of the collection rather than
evolving representations for the whole collection as is typically done with pre-
vious EC approaches in the literature. Hence, the main contribution of this
paper is the development of a (1+1)-Evolutionary Gradient Strategy ((1+1)-
EGS) with Adaptive Ziggurat Random Gaussian Mutation [18, 11, 21] to
evolve GTWs. The proposed methodology reduces the problem size, from
evolving (N ×M) document representation vectors to evolving (1×M) vec-



tor, where N is the number of documents in the collection and M is the
number of index terms in the collection. This paper also also examines a
new meta-heuristic method ((1+1)-EGS) in IR with a new methodology for
evolving document representation. This method considers the limitation of
the relevance judgment of the document collections in EC [16].

In order to evaluate the performance of the proposed method, experimental
results are presented and discussed. The study compares results from using
classical, fully evolved and partially evolved IR experiments. The proposed
approach obtained improved MAP and improved AP compared to the Okapi
BM25 and TF-ATO weighting schemes [25, 24, 16]. In addition, the ratio of
AP improvement obtained is larger than the one from evolving global term
weighting function approaches in some related work [9, 13, 7].

Section 2 reviews the related work, particularly on using EC for improv-
ing automatic indexing problem domain. Section 3 describes the proposed
approach. Section 4 presents experimental setting and results while also dis-
cussing the key observations from the study. Finally, Section 5 presents some
conclusions and outlines proposed future work.

2 Related Works

EC techniques have been widely used to improve effectiveness on various IR
problems [7, 22, 20]. The objective functions used in such EC techniques usu-
ally rely on the relevance judgment to determine the quality of the candidate
solutions being evolved. The following subsections outline the research that
has been carried out on the document indexing problem [32] using EC tech-
niques. The document indexing problem refers to assigning weights to each
term in every document in the collection. This type of problem can be divided
into: 1) evolving term-weighting schemes, and 2) evolving term weights.

2.1 Evolving term-weighting schemes

In this category, researchers have tried to evolve the best TWS for improving
IR effectiveness using Genetic Programming (GP). However, these TWS can
be considered as collection-based functions since each document collection
has different characteristics. Furthermore, all the document collections are
partially judged to simulate real document collections. Consequently, most
of the index terms in a test collection do not exist in the training queries and
their relevant documents [16].



The first approach to evolving a weighting function using GP was devel-
oped by Fan et. al. [13] using two document collections. One was the Cranfield
collection containing 1,400 documents and 225 queries. The other one was the
Federal Register (FR) text collection from TREC 4 containing a huge num-
ber of documents (55,554 documents) compared to its queries (50 queries).
Fan et. al. argued that few documents are relevant for these queries so they
choose a number of documents larger (2,200 documents) than the number
of relevant documents as a training set. Fan et. al. used the precision based
on collections relevance judgment with a threshold as a fitness function in
their application. The evolved TWS with their GP approach was tested for
the same trained queries on the whole document collections. Their results
outperformed TF-IDF [17]. No results for the Cranfield collection have been
produced with their approach [13]. Furthermore, the Federal Register (FR)
text collection is a pooled collection and there is a question of how reliable it
is to use the average precision and other effectiveness measurements on this
collection [5, 29]. These limitations do not exist for evaluating the sampled
judged document collections [5, 29].

Oren [23] proposed GP to evolve the term-weighting function using a ter-
minal set similar to the one used by Fan et. al [13] but with an additional
function operator (square root). Oren used the Cystic Fibrosis database [27]
which consists of 1239 documents and 100 queries and compared his approach
to the TF-IDF term-weighting scheme. Oren’s method outperformed TF-IDF
in respect of recall-precision values. In this case, a cluster of computers were
used due to the problem size. Thus, the computational cost of Oren’s ap-
proach even in the small collection used, was very high.

Cummins and O’Riordan [9] proposed a methodology for evolving local
and global term-weighting schemes from small document collections. They
showed that their global weighting function evolved on small collections also
increased the average precision on larger document collections. However, their
local weighting function evolved on small collections did not perform well on
large collections. They conducted experiments on five document collections:
Medline, Cranfield, CISI, NPL and Ohsumed. The computational run time
required by their approach on the smallest training set from Medline collec-
tion was significant, 6 hours on a standard PC. Then, the main limitations of
their approach are: 1) long computational time on medium and large docu-
ment collections, 2) the issue of document collections being partially judged,
and hence 3) poor performance on collections other than the training set.



2.2 Evolving term weights

Genetic Algorithms (GA) have been used for evolving term weights to pro-
duce better document representations for the whole document collections.
These approaches are also based on the relevance judgment. The same draw-
backs noted before also arise in these approaches: the reliance on partial rel-
evance judgment for the collection and the need to run the GA again when
changes happen in the collection (dynamic collections).

Gordon [14] proposed the first approach applying a GA to IR for adapting
term weights for every document in the corpus. He demonstrated the value of
using a GA for adapting terms weights instead of using probabilistic models.
He also pointed at some issues when using probabilistic models: dependencies
among index terms, dependency on the estimation of probabilities, relevance
judgment based on a small set of queries and high computational cost of auto-
mated probabilistic models. The GA used a probability of crossover equal to 1
with no mutation and relevance feedback adaptation for the fitness function.
He showed that the GA improved documents representation to distinguish
between relevant and non-relevant queries. The problem size was very large,
more than the document space as it consisted of multiple representations for
each document.

Vrajitoru [31] also applied a GA to adapt term weights. The approach used
a new dissociated crossover and tested different ways to generate the initial
documents descriptions. Vrajitoru ran experiments using two document col-
lections (CISI and CACM collections) larger than Gordon’s collection [14].
This approach also has the limitation related to the relevance judgment due
to the document collections nature.

3 The Proposed Approach

This section presents the proposed approach to evolve Global Term Weights
(GTWs) in information retrieval from document collections. The method
uses Term Frequency-Average Term Occurrence (TF-ATO) [16] and a (1+1)-
Evolutionary Gradient Strategy (EGS) for this purpose. The general Evolu-
tionary Gradient Algorithms was described in [3, 18]. To the best of our
knowledge, this approach is the first one that focuses on evolving the GTWs
vector instead of evolving term-weighting functions or evolving term weights
for the whole document collection, as discussed in the introduction. Experi-
ments conducted here show that this approach achieves better MAP and AP
compared to the other methods in the literature [9, 7, 23, 13].



Table 1 The Notations Used in Algorithm 1.

Notation Definition

RelDocSet
is the relevant document vector set of TF-ATO as the
form of local term weight vectors.

IRRDocSet
is the irrelevant document vector set of TF-ATO as the
local term weight representations.

QSet is the query set of vectors in TF-ATO form.

ParentChromosomeGTW is the current parent proposed of the evolved GTW vector
chromosome for the index terms.

OffspringChromosomeGTW
is the current offspring of the evolved GTW vector of the
index terms. This is the mutated (evolved) GTW parent
chromosome (PG) of the current iteration.

ZGaussian(0,1)
is the Ziggurat random Gaussian number with 0 mean
and 1 standard deviation and the value is between 0 and
1 [11].

MutatPos is the position of the gene that will undergo mutation.

MutatPosGood
is the array that saved the previous position of the gene
that had mutations in the previous iteration.

NoMutations is the number that indicates the number of genes (GTWs)
that will be mutated.

NoMutationsGood
is the saved number from the previous generation that in-
dicates the number of genes (GTWs) that had mutations.

MaxGTW
is the maximum GTW which is 1 in our case with using
TF-ATO as a local weighting scheme.

Random(t1,t2) is a function used to generate random number between t1
and t2

An outline of the main steps in the method is given next. The first step
is to obtain the corresponding vectors of local term weights for three sets of
documents: the relevant document set, the irrelevant document set and their
query set. These vectors contain TF-ATO values [16], of the index terms for
every document in the three sets. Next, a (1+1)-EGS and Ziggurat random
sampling [11] is used to mutate the gradient steps. This method was selected
because it has been shown that compared to other evolutionary strategies
methods, Ziggurat random sampling has lower cost in terms of memory space
or computational run-time [21]. The aim of the (1+1)-EGS is to optimize the
cosine similarity [4] between the relevant document vectors and the query
vectors. At the same time, it aims to minimize the cosine similarity between
the irrelevant document vectors and the query vectors. The evolved GTWs
will then be assigned to index-terms in the document collection. These GTWs
are multiplied by TF-ATO to produce term weight vectors for each document
in the collection.

The pseudo-code of the (1+1)-EGS is shown in Algorithm 1 and Table 1
lists the notations used in the pseudo-code. Steps 1 to 6 include two meth-
ods to initialize the parent GTW chromosome. The first method gives higher



Algorithm 1: (1+1)-Evolutionary Gradient Strategy for Evolving
GTWs

Data:
{RelDocSet:} is the Relevant Document Vector Set of TF-ATO weights.
{IRRDocSet:} is the Irrelevant Document Vector Set of TF-ATO weights.
{QSet:} is the Query Vector Set of TF-ATO weights.
{MaxGTW:} is equal 1 in case of using TF-ATO as a weighting scheme.
{M:} is equal to the number of index terms used to evolve their GTWs.
{Good:} has FALSE as an initialization value.
Result: Evolved GTWs of the Index Terms based on the relevance judgment values

1 Initialization for (IndexTerm Termi ∈M) do

2 if (Termi is a good discriminator) then
3 ParentChromosomeGTW[i] = MaxGTW + ZGaussian(0,1);

4 else
5 ParentChromosomeGTW[i] = ZGaussian(0,1);
6 end

7 OffspringChromosomeGTW[i] = ParentChromosomeGTW[i];

8 end

9 while CosineSimilarity(RelDocSet,QSet,ParentChromosomeGTW) ≤ Maximum do
10 if (Good==TRUE) then
11 NoMutations=NoMutationsGood;
12 else

13 NoMutations = Random(0,M);

14 NoMutationsGood = NoMutations;

15 end
16 for i=1 → NoMutations do
17 if (Good==TRUE) then

18 MutatPos=MutatPosGood[i];
19 else
20 MutatPos = Random(0,M);
21 MutatPosGood[i]=MutatPos;

22 end

23 OffspringChromosomeGTW[MutatPos]=OffspringChromosomeGTW[MutatPos]+

(ParentChromosomeGTW[MutatPos] -
OffspringChromosomeGTW[MutatPos]) * ZGaussian(0,1);

24 end

/* Keep the fitter evolved chromosome */

25 if (CosineSimilarity(RelDocSet,QSet,ParentChromosomeGTW)

<CosineSimilarity(RelDocSet,QSet,OffspringChromosomeGTW)) AND

(CosineSimilarity(IRRDocSet,QSet, ParentChromosomeGTW) >
CosineSimilarity(IRRDocSet,QSet,OffspringChromosomeGTW)) then

26 for i=1 → M do

27 ParentChromosomeGTW[i] = OffspringChromosomeGTW[i];
28 Good=TRUE;

29 end

30 else
31 for i=1 → M do
32 OffspringChromosomeGTW[i] = ParentChromosomeGTW[i];

33 Good=FALSE ;

34 end

35 end

36 end



initialization values and is applied to index terms that are good discrimina-
tors. An index term is a good discriminator when: 1) it exists in irrelevant
documents only or 2) it exists with higher TF-ATO value in relevant docu-
ments than in irrelevant document and this index term exists in the queries.
The second method gives lower initialization values and is applied to index
terms that are not good discriminators. Adding MaxGTW (a value of 1) to
the initialization for good discriminators, instead of only a Ziggurat random
number, reduces the convergence run-time. The initialized parent chromo-
some is then copied as the offspring chromosome in step 7. Then, the main
evolution cycle of the (1+1)-EGS is described in steps 9-36. The stopping
criterion of the algorithm (step 9) indicates that the evolution will stop when
the maximum similarity (a value of 1 as given by the cosine function) be-
tween relevant documents and user queries is achieved. Steps 10 to 24 show
the procedure to control the mutation within the (1+1)-EGS. As shown in
step 23, the actual mutation operator uses the genes gradient multiplied by
Ziggurat random Gaussian number with mean equal to 0 and standard devi-
ation equal to 1 as the step-size. Steps 10 to 22 show the strategy to control
the number of gradient mutations and the position in the chromosome to
mutate. Note that this strategy repeats the mutation settings when the mu-
tated offspring chromosome improves upon the parent chromosome (this is
indicated by the Boolean variable Good). The objective function that exam-
ines the quality of the offspring solution is shown in step 25. This objective
function contains two conditions. The first condition is to increase the co-
sine similarity value between the relevant document vector set and the query
vector set. The second condition is to reduce the cosine similarity between
the irrelevant document vector set and the query vector set. That is, the
offspring GTW chromosome is selected as the parent chromosome (line 27)
for the next iteration if it increases the discrimination between the relevant
and irrelevant document vector sets with the query vector set. In this case,
the variable Good is set to TRUE so that the mutation settings are repeated
in the next iteration. Otherwise, the offspring GTW chromosome is replaced
by the parent GTW chromosome (line 32), and the variable Good is set to
FALSE.

As explained above, the initialization step in the above (1+1)-EGS distin-
guishes between index terms that are good discriminators and those that are
not. This gives the proposed approach the ability to tackle Polysemy, one of
the challenges in natural language. Polysemy happens when the same terms
exists in both the relevant and the irrelevant document sets and the term
has multiple different meanings in different contexts. Hence, Polysemy words
are not good discriminators because they have high TF-ATO values (LTWs)
in relevant and irrelevant documents. However, with the proposed approach
Polysemy words get lower GTWs than the good discriminator terms, which
emphasizes their non-discriminating nature.



4 Experimental Study and Evaluation

4.1 Document Collections

Nine document collections were used in these experiments [15, 10, 28, 30].
Table 2 shows their main characteristics. In these experiments, four combi-
nation groups from the document collections were used to produce four test
collections. Each test collection combination contains three textual materi-
als: a set of documents, a set of queries, and relevance judgments between
documents and queries. For each query, a list of relevant documents is associ-
ated with it. The first test collection consists of Ohsumed, CISI and CACM
document collections [15, 10], containing 353226 documents and 233 queries.
The second test collection consists of Cranfield, Medline and NPL document
collections [10], containing 13862 documents and 348 queries. These two test
collections were formed from sampled collections and they have been widely
used for research such as in [26, 7]. The third and fourth collection combi-
nations are from three document collections in the TREC Disks 4 & 5 with
two different query sets and their relevance judgments. Crowdsourced and
robust relevance evaluation were used with the queries and relevance judg-
ments [28, 30]. These third and fourth combinations contain FBIS, LA and
FT document collections. The third test collection contains 472525 docu-
ments and 230 queries, while the fourth collection contains 18260 documents
and 10 queries.

Table 2 Characteristics of the Document Collections Used in the Experiments.

ID Description No. of Docs No. of Queries
Cranfield Aeronautical engineering abstracts 1400 225

Ohsumed
Clinically-Oriented MEDLINE sub-
set

348566 105

NPL Electrical Engineering abstracts 11429 93

CACM Computer Science ACM abstracts 3200 52

CISI Information Science abstracts 1460 76

Medline Biomedicine abstracts 1033 30

TREC Disks 4&5 (Robust 2004) News and Broadcast WebPages 472525 230

TREC Disks 4&5 (Crowdsource
2012)

News and Broadcast WebPages 18260 10



4.2 IR System Evaluation

In this experimental study, Mean Average Precision (MAP), Average Preci-
sion (AP) and Normalized Discounted Cumulative Gain (NDCG) were used
[4, 19, 6]. Let d1, d2, ..., d|D| denote the sorted documents by decreasing order
of their similarity measure function value, where |D| represents the number
of testing documents. The function r(di) gives the relevance value of a docu-
ment di. It returns 1 if di is relevant, and 0 otherwise. The AP per query or
q (AvgP (q)) is defined as follows:

AvgP (q) =
1

|D|
Σ

|D|
i=1 r(di) . Σ

|D|
j=1

1

j
(1)

The MAP for a set of queries is the mean of the average precision values
over all queries. This can be given by the following equation:

MAP =
ΣQ

q=1 AvgP (q)

Q
(2)

where Q is the number of queries. The Normalized Discounted Cumula-
tive Gain of top-k documents retrieved (NDCG@k) can be calculated by the
following equation:

NDCG@k =
1

IDCG@k
∗Σk

i=1

2r(di) − 1

log2(i+ 1)
(3)

The Discounted Cumulative Gain of top-k documents retrieved (NDCG
(k)) can be calculated by the following equation:

DCG@k = Σk
i=1

2r(di) − 1

log2(i+ 1)
(4)

where IDCG@k is the ideal (maximum) discounted cumulative gain of
top-k documents retrieved and r(di) returns 1 if the document retrieved in
position i is relevant and has 0 otherwise. If all top-k documents retrieved
are relevant, the DCG@k will be equal to IDCG@k.

4.3 Experimental Results

In this paper, two term-weighting schemes were used. The first weighting
scheme was the BM25 Okapi probabilistic weighting scheme [25, 24]. This
weighting scheme has a good capability for estimating the term weights based
on probability theory [2]. The second weighting scheme was TF-ATO with
the Discriminative Approach (DA) [17, 16], which is the only existing non-
evolved approach that gives a good performance by discriminating documents



without requiring any prior knowledge of the collection’s relevance judgment.
The number of index terms that were used in evolving their GTWs in the
Partially Evolved Experiment in the test collections were 31658, 14679, 63091
and 6230 respectively. These terms are the keywords that exist in the rele-
vant documents, the top-30 irrelevant documents using TF-ATO weighting
scheme and their corresponding queries in the relevance judgment. In this
experiment, the remaining non-evolved index terms in the document collec-
tions had values of 1s as GTWs. The number of index terms used in the
Fully Evolved Experiment were 241450, 21600, 476850 and 18429 terms re-
spectively. These terms constitute all the index terms in the collections.

Table 3 The NDCG@30 in the Four Collection Combinations of Using Okapi BM25,

TF-ATO with DA and the Proposed Approach.

Normalized Discounted Cumulative Gain for top-30 Documents Retrieved

DocID BM25 Okapi TF-ATO with DA Fully Evolved Partially Evolved

1st Collection Combination 0.451 0.525 0.663 0.695

2nd Collection Combination 0.515 0.57 0.733 0.754

3rd Collection Combination 0.558 0.608 0.768 0.778

4th Collection Combination 0.519 0.569 0.729 0.739

Table 4 The Mean Average Precision in the Four Collection Combinations of Using Okapi
BM25, TF-ATO with DA and the Proposed Approach.

Mean Average Precision (MAP)

DocID BM25 Okapi TF-ATO with DA Fully Evolved Partially Evolved

1st Collection Combination 0.29 0.364 0.4272 0.4779

2nd Collection Combination 0.345 0.4 0.4884 0.5157

3rd Collection Combination 0.3767 0.4243 0.5007 0.5245

4th Collection Combination 0.399 0.4512 0.5144 0.522

Tables 3 and 4 show the average results of 10 runs of the proposed
approach. These results are focused in the MAP and the Normalized Dis-
counted Cumulative Gain (NDCG@30) for the experimental study. The Par-
tially Evolved Experiment and the Fully Evolved Experiment in general out-
performed the Okapi BM25 and TF-ATO with DA approaches in terms of
effectiveness. From table 3, the (NDCG@30) values of the Partially Evolved
Experiment were 0.695, 0.754, 0.778 and 0.739 for the test collection combi-
nations, while the NDCG@30 values of the Fully Evolved Experiment were
0.663, 0.733, 0.768 and 0.729. The ratios of improvement in NDCG@30 re-
garding Okapi BM25 in Partially and Fully Evolved Experiments were better



than the improvement gained in evolving term-weighting functions in the
literature [9, 13]. The ratios of improvement using the Partially Evolved Ex-
periments with respect to Okapi BM25 were 54.1%, 46.41%, 39.43% and
42.39% respectively in the four collections, while the improvement ratios in
the Fully Evolved Experiments were 47.01%, 42.33%, 37.63% and 40.46%.
From table 4, the improvement ratios in the MAP values in the Partially
Evolved Experiments were 64.8%, 49.5%, 39.24% and 30.83%, while the im-
provement ratios in the MAP values in the Fully Evolved Experiments were
47.31%, 41.57%, 32.92% and 28.92% respectively. Tables 6, 7, 8 and 9 in
the Appendix, show the detailed results of the AP and MAP.

Table 5 The Average Computational Run-time per a Document in the Four Collection
Combinations of Using Okapi BM25, TF-ATO with DA and the proposed Approach.

Average computational run-time in seconds per a document

DocID BM25 Okapi TF-ATO with DA Fully Evolved Partially Evolved

1st Collection Combination 17 15 300 180

2nd Collection Combination 19 17 430 120

3rd Collection Combination 18 15 600 230

4th Collection Combination 17 15 260 75

From Table 5, the average computational run time for the Partially Evolved
Experiment was less than for the Fully Evolved Experiment by 120 to 370 sec-
onds depending on the number of evolved index terms in the GTWs vector.
Thus, the Partially Evolved Experiment outperformed the Fully Evolved Ex-
periment on computation time and also system effectiveness. The average
running time of the Partially Evolved Experiment was between 75 seconds
and 230 seconds in the smallest and largest collection combination, while the
average computational time for the Fully Evolved Experiment was between
260 seconds and 600 seconds. In general, the TF-ATO with DA outperformed
the other approaches in terms of computation time. However, the TF-ATO
with DA weighting scheme had lower effectiveness values than the proposed
approach. Thus, the next step in future research will be to reduce the compu-
tational time using a combined machine learning technique with (1+1)-EGS.
These experiments were conducted on a 3.60 GHz Intel (R) core(TM) i7-3820
CPU and the implementation was in Java NetBeans under Windows 7 En-
terprise Edition.



5 Conclusion and Future Work

This paper proposes an approach based on a (1+1)-Evolutionary Gradient
Strategy and on Term Frequency-Average Term Occurrence (TF-ATO), for
evolving the Global Term Weights (GTWs) of the document collection in
Information Retrieval (IR). By using (1+1)-chromosomes of M genes, the
proposed method is less demanding in terms of computer memory, compared
to other evolutionary computation approaches for IR used in the literature.
Other approaches in the literature use non-adaptive evolutionary computa-
tion techniques and have large search spaces for evolving document vectors.
In contrast, the technique described here optimized the document vectors
through a GTW vector using the local weight vectors of the collection. This
approach also has positive impacts on improving IR effectiveness. In addition,
the Partially Evolved Experiment considers the limitations of the relevance
judgment and dynamic variation of the collection. The index terms that did
not exist in the Partially Evolved Experiment had values of 1 for GTWs and
TF-ATO for LTWs. The Partially Evolved Experiment was used to evolve
the GTWs of the index terms existing in the relevant document set and top-
30 irrelevant document set rather than all the index terms existing in the
collection. The remaining documents that did not have relevance judgment
values only had TF-ATO representations. The Partially Evolved Experiment
outperformed the Fully Evolved Experiment in IR system effectiveness. In
addition, the two experimental methods had better effectiveness than the
Okapi and TF-ATO weighting schemes. On the other hand, the Fully Evolved
Experiment consumed more computational time than the Partially Evolved
Experiment for evolving GTWs for the queries existing in the collection’s
relevance judgment. The extension of this work will involve examining the
proposed approach using city block function, distance function, MAP and
NDCG@30 as objective functions. This extended work will investigate these
objective functions for better performance. Moreover, combining machine
learning techniques with (1+1)-EGS for evolving the GTWs is also an in-
teresting future research direction towards achieving better IR effectiveness
with less computational run-time than when using an (1+1)-Evolutionary
Gradient Strategy.
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Appendix – Detailed results of the experimental study

Tables 6, 7, 8 and 9 show the Average Precision (AP), Mean Average Pre-
cision (MAP) of Okapi BM25, TF-ATO with DA and the proposed approach
in fully and partially experiments.

Table 6 The improvement in MAP and AP on Okapi BM25, TF-ATO with DA, Partially
Evolved and Fully Evolved Experiments of the first collection.

Recall

AP and MAP In The First Multi-topic Document Collection

BM25
Okapi

TF-ATO
with DA

Fully
Evolved
Experiment

Partially
Evolved
Experiment

The ratio of improvement W.R.T. BM25 Okapi

DA Improve-
ment (%)

Full Evolved Im-
provement (%)

Partially
Evolved Im-
provement (%)

0.1 0.745 0.8161 0.8715 0.8908 9.54 16.98 19.57

0.2 0.504 0.6104 0.7360 0.8203 21.11 46.032 62.76

0.3 0.357 0.4724 0.5109 0.615 31.96 43.109 72.27

0.4 0.2358 0.3617 0.4204 0.4935 53.39 78.29 109.8

0.5 0.200 0.2883 0.3972 0.4095 44.15 98.6 104.75

0.6 0.155 0.2400 0.3082 0.3581 54.84 98.839 131.032

0.7 0.138 0.1989 0.2395 0.2975 44.13 73.55 115.58

0.8 0.135 0.1541 0.1904 0.2191 14.148 41.037 62.3

0.9 0.127 0.1301 0.171 0.197 -3.64 34.65 55.12

MAP 0.289 0.364 0.4272 0.4779 25.57 39.067 50.1

Table 7 The improvement in MAP and AP on Okapi BM25, TF-ATO with DA, Partially

Evolved and Fully Evolved Experiments of the second collection.

Recall

AP and MAP In The Second Multi-topic Document Collection

Okapi
BM25

TF-ATO
with DA

Fully
Evolved
Experiment

Partially
Evolved
Experiment

The ratio of improvement W.R.T. Okapi BM25

DA Improve-
ment (%)

Full Evolved Im-
provement (%)

Partially
Evolved Im-
provement (%)

0.1 0.6195 0.765 0.857 0.8735 23.487 38.354 41.001

0.2 0.5087 0.6549 0.698 0.715 28.740 37.271 40.554

0.3 0.4785 0.5262 0.610 0.6569 9.969 27.544 37.283

0.4 0.3958 0.4084 0.575 0.5952 3.183 45.275 50.379

0.5 0.3475 0.3605 0.482 0.4957 3.741 38.705 42.647

0.6 0.2812 0.2925 0.3909 0.4283 4.018 39.011 52.312

0.7 0.2135 0.2255 0.3416 0.392 5.621 60.000 83.607

0.8 0.146 0.1923 0.2483 0.2805 31.712 70.068 92.123

0.9 0.1179 0.1727 0.1922 0.2046 46.480 63.020 73.537

MAP 0.3454 0.3998 0.4884 0.5157 17.44 46.583 57.049



Table 8 The improvement in MAP and AP on Okapi BM25, TF-ATO with DA, Partially

Evolved and Fully Evolved Experiments of on TREC Disk 4&5 Robust 2004 relevance
feedback [30].

Recall

AP and MAP In The Third Multi-topic Document Collection

Okapi
BM25

TF-ATO
with DA

Fully
Evolved
Experiment

Partially
Evolved
Experiment

The ratio of improvement W.R.T. Okapi BM25

DA Improve-
ment (%)

Fully Evolved
Improvement
(%)

Partially
Evolved Im-
provement (%)

0.1 0.61 0.729 0.898 0.907 19.51 47.21 48.69

0.2 0.59 0.66 0.82 0.85 11.86 38.98 44.07

0.3 0.53 0.55 0.58 0.6 3.77 9.43 13.21

0.4 0.43 0.49 0.53 0.54 13.95 23.26 25.58

0.5 0.38 0.41 0.43 0.46 7.89 13.16 21.05

0.6 0.32 0.33 0.4105 0.435 3.13 28.28 35.94

0.7 0.22 0.26 0.347 0.3912 18.18 57.73 77.82

0.8 0.17 0.2 0.273 0.296 17.65 60.59 74.12

0.9 0.14 0.19 0.218 0.2412 35.71 55.71 72.29

MAP 0.3767 0.4243 0.5007 0.5245 14.63 37.15 45.86

Table 9 The improvement in MAP and AP on Okapi BM25, TF-ATO with DA, Partially
Evolved and Fully Evolved Experiments of on TREC Disk 4&5 crowdsource 2012 relevance

feedback [28].

Recall

AP and MAP In The Fourth Multi-topic Document Collection

Okapi
BM25

TF-ATO
with DA

Fully
Evolved
Experiment

Partially
Evolved
Experiment

The ratio of improvement W.R.T. Okapi BM25

DA Improve-
ment (%)

Fully Evolved
Improvement
(%)

Partially
Evolved Im-
provement (%)

0.1 0.631 0.693 0.925 0.939 9.83 46.6 48.81

0.2 0.597 0.653 0.875 0.853 9.38 46.57 42.88

0.3 0.548 0.598 0.6203 0.638 9.12 13.19 16.42

0.4 0.463 0.569 0.5971 0.592 22.89 28.96 27.86

0.5 0.435 0.492 0.447 0.436 13.10 2.76 0.23

0.6 0.367 0.392 0.395 0.398 6.81 7.63 8.45

0.7 0.237 0.292 0.335 0.325 23.21 41.35 37.13

0.8 0.185 0.198 0.246 0.276 7.03 32.97 49.19

0.9 0.127 0.174 0.189 0.244 37.01 48.82 92.13

MAP 0.399 0.4512 0.5144 0.522 15.4 29.9 35.9
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