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Abstract

We propose a multi-objective evolutionary algorithm (MOEA), named the Hyper-volume Evolutionary
Algorithm (HVEA). The algorithm is characterised by three components. First, individual fitness evaluation
depends on the current Pareto front, specifically on the ratio of its dominated hyper-volume to the current Pareto
front hyper-volume, hence giving an indication of how close the individual is to the current Pareto front. Second,
a ranking strategy classifies individuals based on their fitness instead of Pareto dominance, individuals within
the same rank are non guaranteed to be mutually non-dominated. Third, a crowding assignment mechanism that
adapts according to the individual’s neighbouring area, controlled by the neighbouring area radius parameter,
and the archive of non-dominated solutions. We perform extensive experiments on the multiple 0/1 knapsack
problem using different greedy repair methods to compare the performance of HVEA to other MOEAs including
NSGA2, SEAMO2, SPEA2, IBEA and MOEA/D. This paper shows that by tuning the neighbouring area
radius parameter, the performance of the proposed HVEA can be pushed towards better convergence, diversity or
coverage and this could be beneficial to different types of problems.
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1. Introduction

The development of heuristic and evolutionary
techniques to solve real-world multi-objective
optimisation problems is an an active
research area. In Pareto-based multi-objective
optimisation, a set of non-dominated solutions,
also known as Pareto front, is sought so
that the decision-maker can select the most
appropriate one. Evolutionary xalgorithms
and other population based heuristics seem
well suited to deal with Pareto based multi-
objective optimisation problems because they
can evolve a population of solutions towards the
Pareto-optimal front in a single run. A good
multi-objective evolutionary algorithm (MOEA)
should be able to obtain Pareto fronts that
are both well-distributed and well-converged.

∗ Corresponding author. Email: khoi.n.le@vnu.edu.vn

An important issue in a MOEA is how to
establish superiority between solutions within
the population, i.e. how to assess solution
fitness in a multi-objective sense. In this paper,
we proposed the Hyper-Volume Evolutionary
Algorithm (HVEA), a MOEA that employs
the concepts of volume dominance proposed
by Le et at [1] to assess solution fitness in
multi-objective optimisation.

The paper is organised as follows. Section 2
describes the HVEA algorithm. In Section 3,
most well-known and recent MOEAs in the
literature together with the multiple 0/1 knapsack
problem are discussed. In Section 4, the
experimental results and discussion are presented.
Then some conclusions and perspectives are
discussed in Section 5.
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2. Hyper-volume Evolutionary Algorithm

We propose a new approach to multi-objective
optimisation, the Hyper-volume Evolutionary
Algorithm (HVEA). HVEA deploys techniques
that are well established in the literature as well
as presents new ones in order to find the Pareto
front of the problem. As other population-based
MOEAs, the proposed HVEA

• Uses a population of current solutions and an
archive for storing the best solutions found
so far,

• Assigns scalar fitness values to individuals
and uses the Pareto dominance relationship,

• Employs a crowding strategy to maintain the
diversity of the population and, if necessary,
control the size of the archive during
the search.

However, HVEA is distinguished by
four features:

• The fitness of an individual is calculated
using the hyper-volume of that individual
and the hyper-volume of the current
representative Pareto front.

• Individuals are ranked based on their
fitness values, individuals having fractional
difference in fitness values between them are
classified into the same rank.

• A niching technique to preserve the diversity
of the population based on distance between
the individual and other solutions in its
neighbouring area.

• Offspring that improve the current Pareto
front (in other words offspring that dominate
individuals in the current Pareto set) are
guaranteed to be selected not only for the
archive but also for the tournament selection
to fill the mating pool.

Overall, HVEA works as follows:

Step 1: Initialisation: Start with an empty
population P and create an initial archive P
(each of size N).

Step 2: Fitness assignment: Calculate
fitness values of individuals in P

⋃
P

(cf. Section 2.1).

Step 3: Ranking assignment: Assign ranking to
individuals in P

⋃
P (cf. Section 2.2).

Step 4: Environmental selection: Repeatedly
copy all individuals having the best ranking
from P to P and assign their crowding values
until the size of P exceeds N then reduce the
size of P by means of the truncation operator
(cf. Section 2.3 and Section 2.4).

Step 5: Termination: Stopping criteria are
satisfied then present all non-dominated
individuals in P as solutions to the problem,
and then the algorithm stops here.

Step 6: Generating offspring: Apply crossover
and mutation operators on parents, which
are selected with binary tournaments, to
produce offspring (cf. Section 2.5). Go to
Step 2.

2.1. Fitness Assignment

The fitness assignment procedure of HVEA
deploys the concept of volume dominance
proposed by Le et at [1]. Le et at. proposed a
new relaxed Pareto dominance for multi-objective
optimisation, named volume dominance. They
assign strength values to individuals in the
population using the ratio between the hyper-
volume of an individual and the hyper-volume
of the current representative Pareto front. The
dominance relationship between two individuals
is established by comparing strengths of the pair
with respect to the threshold strength rS tr. The
fitness assignment of HVEA is as follows. Let
V(x) be the hyper-volume of individual x w.r.t.
the reference point ~rx; ParetoFront is the current
Pareto front of the archived population P; the
current representative Pareto front, RP(x), is the
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set of all individuals in ParetoFront that Pareto-
dominate x.

RP(x) =

{
x* | x* � x

∧
x* ∈ ParetoFront

}
(1)

xref
i = sup

{
fi(x*) | x* ∈ RP(x)

}
(2)

Vref (x) is the hyper-volume of xref , given
by (2), w.r.t. the reference point ~rx, given by (4),
then the fitness value of individual x is as follows:

f itness(x) = 1 −
V(x)

Vref (x)
(3)

As RP(x) is an empty set if x is a Pareto
solution, (3) is relaxed by setting f itness(x) = 0.

The estimation of the reference point ~rx and
the hyper-volume V(x), Vref (x) is identical to the
one proposed by Le et al. [1]. The reference point
~rx =

(
rx

1 , r
x
2 , . . . , r

x
m

)
is as follows:

rx
i = fi(x) − (rsup

i − rinf
i ) (4)

for ∀i = 1, 2, . . . ,m

rinf
i = inf

{
fi(x*) | x* ∈ P

⋃
P
}

(5)

rsup
i = sup

{
fi(x*) | x* ∈ P

⋃
P
}

(6)

and the hyper-volume V(x), Vref (x):

V(x) =

m∏
i=1

( fi(x) − rx
i ) (7)

Vref (x) =

m∏
i=1

(xref
i − rx

i ) (8)

Fig. 1 illustrates the estimation of the above
terms that are required for the calculation of
individual fitness in HVEA. Lower values of
f itness(x) are preferred. The procedure to
determine the fitness values of individuals in
the offspring population P and the archive P is
as follows:

f1

f2

O

Pareto front

supr

infr
xr

current
Pareto front

 
representative
Pareto front

x ref

x

V(x)

V ref (x)

Fig. 1: The fitness assignment in HVEA.

Step 1: Use all individuals in P and P to update:

~rinf =
(
rinf

1 , rinf
2 , . . . , rinf

m

)
(9)

~rsup =
(
rsup

1 , rsup
2 , . . . , rsup

m

)
(10)

where rinf
i and rsup

i are given by (5) and (6)
respectively.

Step 2: Update ParetoFront using all newly
generated offspring in P. Assign fitness
value of −1 to offspring that Pareto-
dominate at least one individual in
ParetoFront of the previous generation.
Assign fitness value of 0 to the remaining
individuals in ParetoFront of the current
generation. Apply (3) to assign fitness value
to all remaining individuals in P and P.

Assigning fitness value of −1 to offspring
that Pareto-dominate at least one individual
in ParetoFront enables HVEA to distinguish
individuals that make a direct contribution in
moving the Pareto front forward during the
environmental selection and mating selection.
This fitness assignment strategy emphasises the
idea of preferring individuals near the Pareto front
especially individuals that improve the Pareto
front of the previous generation.

2.2. Ranking Assignment

As commonly found in the literature, the
ranking assignment in evolutionary algorithms
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classifies individuals with similar (or identical)
characteristic(s) into the same category(ies).
The characteristic usually used is the Pareto
non-dominance. In other words, Pareto non-
dominated individuals are classified into one
category (rank). Therefore it is guaranteed that
individuals with the same rank are all mutually
non-dominated. An example is NSGA2 [2] with
its fast non-dominated sorting approach. HVEA
takes a paradigm shift in ranking individuals. In
HVEA, it is the case that an individual is Pareto
dominated by another individual having the same
rank. The main intention of this mechanism
is to allow slightly worse quality individuals to
be able to compete for survival and/or selection.
HVEA computes ranking from the individual
fitness value as follows:

rank(x) =

⌊
f itness(x) ×

1
µ

⌋
(11)

where parameter µ indicates the ‘size’ of each
ranking level whereas 1

µ could be referred as
the desired number of ranks (desired number
of ‘fronts’). The advantage of this ranking
assignment mechanism is that only Pareto non-
dominated individuals are assigned rank 0 with
exception of individuals, which improve the
Pareto front, are assigned rank −1. Other Pareto
dominated individuals are assigned rank with
some noise induction by applying (11).

2.3. Environmental Selection
Let Fi is the set of individuals in P

⋃
P with

rank(x) = i:

Fi =
{
x | rank(x) = i ∧ x ∈ P

⋃
P
}

(12)

One set at a time, all individuals from
each set Fi, with i = −1, 0, 1, 2, . . ., are copied
to the archive P until the size of P equals to
or exceeds N. If the size of P equals to N,
the environmental selection is completed.
Otherwise, individuals in the last front Fl copied
to P, are removed from P until reducing the size
of P to N. The last copied front Fl satisfies the
following conditions:

l−1∑
i=−1

|Fi| < N (13)

l−1∑
i=−1

|Fi| + |Fl| > N (14)

Individuals in Fl are sorted by their crowding
values. The individual with the highest crowding
value in Fl is removed from P and Fl. The
crowding value of remaining individuals in P, not
just Fl, are updated accordingly. These processes
are repeated until the size of P equals to N.

2.4. Crowding Assignment
As NSGA2 and SPEA2, HVEA employs

the distance-based approach to estimate the
density of individuals around a particular
individual. However HVEA’s crowding
assignment mechanism is different from NSGA2
and SPEA2. Both NSGA2 and SPEA2 only
consider “one neighbour” in the neighbouring
area in order to determine the density of a
particular individual. NSGA2 combines the
distance to the adjacent neighbour in each
objective to estimate the crowding of a particular
individual whereas SPEA2 considers the distance
to the k-th nearest neighbour. HVEA takes
into account all individuals in the neighbouring
area to determine the crowding of a particular
individual. The neighbouring area is defined
by the current state of the combined population
P

⋃
P and a radius ω. An individual x* is in the

neighbouring area of an individual x (in other
word x* and x are neighbours) if the following
condition is satisfied:∣∣∣xi − x∗i

∣∣∣ ≤ (
rsup

i − rinf
i

)
× ω (15)

for ∀i = 1, 2, . . . ,m and rinf
i and rsup

i are given
in (5) and (6). Let NB(x) is the set of all
neighbouring individuals of x that means x* ∈
NB(x) if and only if x* and x are satisfied (15).
Then, the crowding value of x is as follows:

crowding(x) =
∑

x*∈NB(x)

(d(x, x*) + 1)−1(16)

where d(x, x*) is the Euclidean distance between
x and x*:

d(x, x*) =

√√ m∑
i=1

(xi − x∗i )2 (17)
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and lower value of crowding(x) is preferred.
Apart from considering all individuals in the

neighbouring area to estimate the crowding of a
particular individual, another main difference in
crowding assignment mechanism between HVEA
and NSGA2, SPEA2 is that NSGA2 only uses
each front separately to estimate crowding value
of individuals in that front, SPEA2 uses all
individuals in both the offspring population P
and the archive P to estimate crowding value of
individuals, but HVEA only uses individuals in
fronts, which are already added to the archive P,
to estimate the crowding value. Additionally, the
crowding value of individual x ∈ P is repeatedly
adjusted when a new front Fi is added to P which
is not the case in SPEA2. The pseudocode for the
crowding assignment of front Fi (−1 ≤ i ≤ l) is
as follows:

Procedure CrowdingAssignment(Fi)
begin

for each x in Fi

for each x* in Fi (x* , x)
if x* and x are neighbours
then add (d(x, x*) + 1)−1 to crowding(x) and crowding(x*)
endif

endfor
for each front F j (−1 ≤ j < i)

for each x* in F j

if x* and x are neighbours
then add (d(x, x*) + 1)−1 to crowding(x) and crowding(x*)
endif

endfor
endfor

endfor
end

2.5. Generating Offspring
HVEA chooses parents to fill the mating pool

by binary tournament selection. Individuals
competed for the second parent are different
from the first parent. The binary tournament
selection prioritises the following order: ranking,
crowding, fitness values of individuals. Crossover
and mutation are applied on the mating pool
to form the offspring population P. Any
duplicated offspring dies out of the combined
population P

⋃
P. This guarantees that there

is no duplication in the combined population
P

⋃
P before the environmental selection

process. Consequently, there is no duplication in
the archive P.

3. Comparative Case Study

3.1. Multi-objective Evolutionary Algorithms

The performance of HVEA is compared to
NSGA2 [2], SEAMO2 [3], SPEA2 [4], IBEA [5]
and MOEA/D [6].

3.1.1. Non-dominated Sorting Genetic Algorithm 2
(NSGA2)

Deb et at. [2] used a fixed population and
a fixed archive of size N for their NSGA2.
They proposed a fast non-dominated sorting
approach in NGSA2 to classify individuals in a
population into different non-domination levels
or different fronts. NSGA2 employed a density
estimation metric to preserve the population
diversity. It required to sort each front according
to each objective function value in ascending
order of magnitude. The boundary individuals are
assigned an infinite distance value. The density
of individuals surrounding other intermediate
individual in the front is the sum of the average
normalised distance of two individuals on either
side of this individuals along each of the
objectives. The mating pool is filled by the
binary tournament selection with the following
priority, non-domination level then crowding
distance. The offspring population is formed by
applying crossover and mutation on the mating
pool. The best fronts of the offspring population
and the archive combined are selected for the
next archive. If the size of the archive is greater
than N, individuals in the last front is removed
to reduce the size of the archive to N based on
their crowding value. There is no treatment to
prevent duplication of individuals whilst forming
the archive. The duplication individuals could
be spotted by the crowding value and removed
during the truncation of the archive but it is
not exhaustive.

3.1.2. Simple Evolutionary Algorithm for Multi-
objective Optimization 2 (SEAMO2)

SEAMO2 [3] uses a steady-state population
and a simple elitist replacement strategy. Each
individual of the population act as the first parent
once and a second parent is chosen at random.
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Crossover and mutation is applied on the pair
of parents to produce offspring. The offspring
replaces one of the parents if either its objective
vector improves on any best-so-far objective
function or it dominates that parent. If neither the
offspring dominates the parents nor the parents
dominate the offspring, the offspring replaces
a random individual in the population that the
offspring dominates. SEAMO2 does not allow
duplication in its population. Therefore,
any duplicated offspring dies before the
replacement process.

3.1.3. Strength Pareto Evolutionary Algorithm 2
(SPEA2)

Zitzler et at. [4] employed a fixed size archive
to store non-dominated individuals in addition
to a population for SPEA2. SPEA2 uses a
fine-grained fitness assignment strategy which
takes for each individual into account how many
individuals it dominates and it is dominated
by. Each individual in both the archive and
the population is assigned a strength value
S (i), indicating the number of individuals it
dominated. The raw fitness R(i) of an individual
is defined as the sum of the strength value of all
individuals by which it is dominated.

S (i) =
∣∣∣∣{ j | j ∈ P

⋃
P ∧ i � j

}∣∣∣∣ (18)

R(i) =
∑

j∈P⋃P∧ j�i

S ( j) (19)

SPEA2 uses an adaptation of the k-th nearest
neighbour method to estimate the density of an
individuals. The density of an individual is
estimated as the inverse of the distance to the
k-th nearest neighbour. Then, the density is
added to the raw fitness Ri to yields the fitness
of an individual i. Similarly to NSGA2, SPEA2
fills the mating pool using binary tournament
selection on the archive based on the fitness
of individuals participated in the tournament.
Crossover and mutation is applied on the mating
pool to create the offspring population. From
the offspring and the archive population, all
individuals having fitness less than one, i.e. all

non-dominated individuals in P
⋃

P, are copied
to the next archive. Zitzler et at. pointed out
that there are two situation: either the archive
is too small or too large. If the archive is
too small, the best dominated individuals, based
on the fitness value, are copied to fill P. In
the later situation, non-dominated individuals
in the archive are iteratively removed until the
archive’s size is not exceeded. The removal of
non-dominated individuals from the archive is
carefully managed by using an archive truncation
method that guarantees the preservation of
boundary solutions. As in NSGA2, SPEA2 relies
on the archive truncation to remove duplicated
individuals but it does not guarantee that the
archive contains no duplication.

3.1.4. Indicator Based Evolutionary Algorithm
(IBEA)

Zitzler and Künzli [5] proposed a general
framework indicator-based evolutionary
algorithm (IBEA). IBEA could be referred
as classic MOEAs but guided by a general
preference information of the dominance
relationship, a binary quality indicator. IBEA
needs neither specifications of weights or targets
(as in aggregation methods) nor the dominance
relationship and distribution techniques (as
in classic MOEAs). IBEA uses this binary
indicator guiding the search to optimise the
approximation set. The binary quality indicator
in IBEA maps an ordered pair of individuals to
a real number which therefore could be used
for fitness calculation. Zitzler and Künzli [5]
proposed two indicators, the additive ε-indicator
Iε+ and the hyper-volume-indicator IHD. For an
order pair of individuals (x1, x2), Iε+(x1, x2) gives
minimum distance for which x1 is translated
in each in objective space to weakly dominate
x2. IHD(x1, x2) measures the space volume that
is dominated by x2 but not by x1 with respect
to a predefined reference point. The fitness
of an individual is estimated as the sum of an
exponential function of the indicator values.
A positive constant κ = 0.05 is applied to
the indicator value to amplify the influence of
dominating individuals over dominated one. It
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is suggested to use adaptive scaling for both
indicator values and objective values to avoid
the issue of estimating a good reference point.
As aforementioned population based MOEAs
(NSGA2 and SPEA2), IBEA uses a fixed size
archive and an offspring population. Offspring
is produced by recombination and mutation on
a pair of parents selected from the archive. The
archive and the offspring population is combined
and truncated to generate the new archive for the
next iteration.

3.1.5. Multi-objective Evolutionary Algorithm
Based on Decomposition (MOEA/D)

MOEA/D, proposed by Zhang and Li [6],
decomposes a multi-objective optimisation
problem into a number of scalar optimisation sub-
problems and optimises them simultaneously.
Each sub-problem is optimised by utilising
information from it neighbouring sub-problems.
Non-dominated individuals found during
the search are stored to an external archive.
MOEA/D predefines a set of even spread weight
vector

{
λ1, . . . , λN

}
, where N is the number

of sub-problems, or the population size of
MOEA/D. Each sub-problem ith corresponds to
a weight vector λi. The neighbourhood of the ith
sub-problem consists of all sub-problems with
the weight vectors closest to λi which include the
ith sub-problem itself. Then, the population of
MOEA/D consists the best solution xi found so
far for each sub-problem ith. At each iteration,
an offspring to ith sub-problem is produced by
recombination and mutation on parents which
are the current solutions to the neighbohood
of the ith sub-problem. The offspring replaces
current solutions of the ith sub-problem and its
neighbouring sub-problems if the fitness value of
the offspring is better than that of these current
solutions. See [6] for more details of MOEA/D
and the fitness calculation.

3.1.6. Adaptive Evolutionary Multi-objective
Simulated Annealing (EMOSA) [7]

Li and Landa-Silva [7] proposed an improved
version of MOEA/D by incorporating an
advanced local search technique (simulated

annealing) and adapting the weight vectors, so
called EMOSA. EMOSA deploys the cooling
technique in simulated annealing to adaptively
modified weight vectors at the lowest temperature
in order to diversify the population towards the
unexplored part of the search space. EMOSA also
uses simulated annealing technique to further
improve each individual in the population.
Finally, EMOSA use ε-dominance to update
the external population in order to maintain
the diversity of the external population. The
performance of EMOSA is then compared
against a set of multi-objective simulated
annealing algorithms and a set of multi-objective
memetic algorithms using multi-objective 0/1
knapsack problem and multi-objective travelling
salesman problem. EMOSA performs better than
all these algorithms and is capable of finding very
good distribution of non-dominated solutions.

3.1.7. S-Metric Selection EMOA (SMS-EMOA)
SMS-EMOA is a steady state population and

selection scheme, proposed by Beume et al. [8].
SMS-EMOA’s goal is to maximise the hyper-
volume, S-metric value, of the population by
removing an individual which exclusively
contributes the least hyper-volume. At
each iteration, an offspring is produced by
recombination and mutation. The offspring
replace an individual in the population Pt if it
leads to higher quality of the population with
respect to the S-metric. The resulting population
Pt+1, formed by combining the offspring and
the previous population Pt, is partition into
different non-dominated sets, fronts, using the
fast non-dominated sorting algorithm as describe
in NSGA2 [2]. The first front R1 contains all
non-dominated solutions of Pt+1, the second front
contains all individual that are non-dominated
in the set (Pt+1\R1), etc.. An individual r is
discarded from the last front Rv, the worst ranked
front, for which that individual exclusively
contributes the least hyper-volume to the last
front Rv.

r = arg min
s∈Rv

[∆S (s,Rv)] (20)

∆S (s,Rv) = S (Rv) − S (Rv\ {s}) (21)
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Beume et al. also investigated several selection
variants of SMS-EMOA and pointed out that
if there is more than one front in Pt+1 (v >

1), the individual with the most number of
dominating points should be discarded. The
equation (20) should be replaced by the following
equation (22):

r = arg max
s∈Rv

[d (s,Pt+1)] (22)

d (s,Pt) = |{y ∈ Pt|y ≺ s}| (23)

The main motivation of this selection variant
is to reduce the runtime complexity and to
emphasise on sparsely filled regions of the
solution space. It is expected that dominating
individual will rise in rank to better fronts and fill
those vacancies [8]. The experimental results on
continuous problems including ZDT and DTLZ
indicated that SMS-EMOA outperforms NSGA2
and SPEA2.

It is emphasised that HVEA is clearly
different from SMS-EMOA. SMS-EMOA uses
the exclusive hyper-volume contribution of
individuals in the worst front to eliminate
an individual during the steady-state selection
scheme. HVEA use the hyper-volume of
an individual to determine its fitness and
its ranking. The next archive is selected
from the archive population combining with
the offspring population using only individual
ranking and crowding.

3.1.8. Direction-based Multi-objective Evolutionary
Algorithm (DMEA)

Bui et al. [9] proposed a population-based
evolutionary algorithm that evolves a population
along directions of improvement. They are two
types of directions employed in DMEA i.e. (1)
the convergence direction between an archived
non-dominated solution and a dominated solution
from the parental pool and (2) spread direction
between two non-dominated solutions in the
archive. These directions are used to perturb
the parental population at each generation. A
half of the next-generation parental pool is
formed by non-dominated whose spread is aided

by a niching criterion applied in the decision
space (i.e. using spread direction), whereas the
other half is filled by non-dominated dominated
solutions from the combined population using
convergence direction. The archive is updated
by scanning a bundle of rays from the estimated
ideal point into the part of objective space
containing the current pareto front. For each
ray scanned, the non-dominated solution in the
combined population, which are closest to the ray,
is selected for the next archive. The experimental
result on continuous problems including ZDT and
DTLZ obtained by DMEA is slightly better than
those by NSGA2 and SPEA2.

3.1.9. Direction-based Multi-objective Evolutionary
Algorithm II (DMEA-II)

The DMEA is further improved and so
called DMEA-II [10]. The main differences
between these two algorithms are: (1) an
adaptive approach for choosing directional types
in forming the parental pool, (2) a new concept
for ray-based density for niching and (3) a
new selection scheme based on this ray-based
density. In DMEA, a half of the parental pool
is formed by using the convergence direction
and the other half is formed by using the
spread direction. DMEA-II deployed an adaptive
approach, in which this ratio is depended on the
number of non-dominated solutions in the current
population. The higher the number of non-
dominated solutions in the current population is,
the more use of the spread direction. In other
words, if the current population contains all non-
dominated solutions then the spread direction is
used to generate the whole parental population.
The second improvement is a new ray-based
density approach by counting the number of
ray that a solution is the closest one. Then a
half of the archive is updated by non-dominated
solutions with highest ray-based density, whereas
the other half is formed by solutions closest to
each ray. Continuous problems including ZDT,
DTLZ and UF are used as benchmark problems
for comparison. Experimental results show
that DMEA-II outperforms DMEA, NSGA2 and
SPEA2 but remains competitive to MOEA/D.
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3.2. Experimental Design
3.2.1. Multi-objective Optimisation Problem

The performance of HVEA is assessed by
comparing to NSGA2, SEAMO2, SPEA2, IBEA
and MOEA/D on the multiple 0/1 knapsack
problem proposed by Zitzler and Thiele [11].
The multiple 0/1 knapsack is defined as a set of n
items and a set of m knapsacks, weight and profit
associated with each item in a knapsack, and an
upper bound for the knapsack capacity. The goal
is to find a subset of items that maximise the
profit in each knapsack and the knapsack weight
does not exceed its capacity.

pi, j = profit of item j in knapsack i

wi, j = weight of item j in knapsack i

ci = capacity of knapsack i

find a vector x = (x1, x2, . . . , xn) ∈ {0, 1}n such
that:

∀i ∈ {1, 2, . . . ,m} :
n∑

j=1

wi, j × x j ≤ ci (24)

and maximise f (x) = ( f1(x), f1(x), . . . , fm(x)),
where

fi(x) =

n∑
j=1

pi, j × x j (25)

and x j = 1 if and only if item j is selected.
There are 9 instances for the multiple 0/1

knapsack problem [11]. The population size for
each instance is as follows:

We perform 50 independent runs for statistical
analysis, each run is of 2000 generations. It
is noticed that MOEA/D predefines the set of
even spread weight vector

{
λ1, . . . , λN

}
where

N = Cm−1
H+m−1 (H: controlling parameter). It is

difficult to change N to the required population
size. Therefore it is suggested to respect the
population size set by MOEA/D but alter the
number of generations for MOEA/D as follows

g =

⌊ S
N
× 2000

⌋
(26)

Table 1: Parameter Setting for The Multiple
0/1 Knapsack Problem

Instance Population Size (S) N in MOEA/D
ks2 250 150 150
ks2 500 200 200
ks2 750 250 250
ks3 250 200 351
ks3 500 250 351
ks3 750 300 351
ks4 250 250 455
ks4 500 300 455
ks4 750 350 455

There are several representations, repair
methods and offspring productions for the
multiple 0/1 knapsack problem. Our preliminary
experiment show that the performance of MOEAs
on the multiple 0/1 knapsack problem is affected
by those. Therefore we outline 4 different repair
methods and corresponding representations.

Zitzler and Thiele [11] represented solutions
to the multiple 0/1 knapsack problem as binary
strings. Offspring is produced by applying one
point crossover followed by bit-flip mutation
on a pair of parents. The knapsack capacity
constraints are confronted by a greedy repair
method. This repair method repeatedly removed
items from the encoded solutions until all
capacity constraints are satisfied. Items are
deleted based on the order determined by the
maximum profit/weight ration per item (q j); for
item j the maximum profit/weight ratio (q j) is
given by the equation (27):

q j =
m

max
i=1

{
pi, j

wi, j

}
(27)

Items with lowest q j are removed first until
the capacity constraints are fulfilled. This
mechanism diminishes the overall profit as little
as possible [11].

Mumford [12] used a different set of
representation and repair method for the
multiple 0/1 knapsack problem. The solution to
the knapsack problem in SEAMO2 is represented
as a simple permutation of items to be packed.
Offspring is produced from a pair of parents by
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applying cycle crossover followed by random
mutation swapping two arbitrarily selected
items within a single permutation list. The
repair method starts from the beginning of the
permutation list, packing item once at a time
until the weight for any knapsack exceeds its
capacity. Packing is discontinued and the final
item is removed from all knapsacks.

Jaszkiewicz [13] used binary strings to
represent solutions of the multiple knapsack
problem. As Zitzler and Thiele [11], Jaszkiewicz
used one point crossover followed by bit-flip
mutation on a pair of parents to produce offspring.
However Jaszkiewicz used the weighted linear
scalarising approach to repair infeasible solutions
rather than the maximum profit/weight ratio
(q j) [11]. Items are sorted according to the
following ratio:

l j =

∑n
i=1 λi × pi, j∑n

i=1 wi, j
(28)

where ~λ = (λ1, λ2, . . . , λn) is the weight
vector used in the current iteration. Later,
Jaszkiewicz improved this greedy repair method
which is subsequently deployed in MOEA/D.
Jaszkiewicz’s improved greedy repair method is
as follows.

Let set J =
{
j|1 ≤ j ≤ n ∧ x j = 1

}
is

a subset of selected items and set I ={
i|1 ≤ i ≤ m ∧

∑n
j=1 wi, j × x j > ci

}
is a set of

overfilled knapsacks. Repeatedly select item k ∈
J to remove until none knapsack is overfilled,
such that:

k = arg min
j∈J

f (x j−) − f (x)∑
i∈I wi, j

(29)

where x j− is different from x only by item j,
x j−

i = xi for all i , j and x j−
j = 0, and

f (x) is the fitness value of x. We investigated
two approaches, weighted sum approach and
Tchebycheff approach, determining the fitness
value of x addressed in MOEA/D [6].

f ws
(
x
∣∣∣∣~λ,~z) =

m∑
i=1

λi × (zi − fi (x)) (30)

f te
(
x
∣∣∣∣~λ,~z) = max

1≤i≤m
{λi × |zi − fi(x)|} (31)

where ~z = (z1, z2, . . . , zm) is the reference point
with respect to the current population, zi =

max { fi (x) |x ∈ P}.
As aforementioned, our initial investigation

shows that there is difference in performance
regarding the greedy repair methods and their
corresponding representations and recombination
methods for the multiple 0/1 knapsack problem.
Therefore we assess the performance of HVEA,
NSGA2, SEAMO2, SPEA2, IBEA and MOEA/D
using different methods separately.

3.2.2. Performance Metrics
We use the hyper-volume measurement

proposed by Zitzler and Thiele [11], the
generational distance and the inverted
generational distance measurements for
evaluation.

Regarding the hyper-volume metric, Zitzler
and Thiele suggested that the reference point
to estimate the hyper-volume at the origin in
the objective space. However, this suggestion
gives extreme points in the objective space much
higher exclusive contribution to the hyper-volume
metric especially when the objective values of the
solutions are high. Therefore, we propose that
the reference point ~r = (r1, r2, . . . , rm) should
be close to the solution set S obtained by all
algorithm. The estimation of the reference point
is as follows:

ui = max
x∈S
{ fi(x)} (32)

li = min
x∈S
{ fi(x)} (33)

ri = li − (ui − li) × 0.1 (34)

The generational distance measures the
distance from a non-dominated solutions set Pf

to the true Pareto front Pt:

gd(Pf ,Pt) =

√∑
x∈Pf

(d(x,Pt))2∣∣∣Pf
∣∣∣ (35)
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where d(x,Pt) is the minimum Euclidean distance
between x and points in Pt:

d(x,Pt) = min
x*∈Pt


√√ m∑

i=1

(
fi(x) − fi(x*)

)2

(36)

The generational distance measurement
indicates how close a non-dominated solutions
set to the true Pareto front is. In other words,
this metric indicates the convergence of a
non-dominated solutions set to a particular part
of the true Pareto front. The lower the value
of the generational distance, the closer of a
non-dominated solutions set to a particular part
of the true Pareto front, the better performance of
the algorithm.

The inverted generational distance works on
the opposite manner, measuring the diversity of a
non-dominated solutions set along the whole true
Pareto front or how close the true Pareto front to
a non-dominated solutions set is. The lower the
value of the inverted generational distance, the
more diversity of a non-dominated solutions set,
the better performance of the algorithm.

igd(Pf ,Pt) =

√∑
x∈Pt

(
d(x,Pf )

)2

|Pt|
(37)

The true Pareto front Pt is not available for
every instance of the multiple 0/1 knapsack
problem. Therefore we use the approximation
of Pt estimated by Jaszkiewicz [13] as suggested
in MOEA/D [6] to determine the generational
distance and inverted generational distance
measurements.

4. Experimental Results and Discussion

We set µ = 0.01 to determine the rank of an
individual based on its fitness as in equation (11).
We experiment different neighbouring area
radius values ω which is given in (15) for HVEA.
The value of ω should lie in the range of 0 and
1 (0 ≤ ω ≤ 1). We report results for ω = 0.01
and ω = 1.0 which abbreviate as hv1 and hv100
respectively in both sets of figures and tables
and as HVEA0.01 and HVEA1.0 respectively in
the text.

4.1. Comparison to MOEAs

The performance of HVEA is compared
against NSGA2, SEAMO2, SPEA2, IBEAε+

and IBEAHV abbreviated as ns2, sea2, sp2,
ibε+ (ibe) and ibHV (ibhv) respectively. The
performance of these MOEAs is assessed using
four greedy repair methods for the multiple 0/1
knapsack problem, included binary encoding
approach proposed by Zitzler and Thiele [11],
permutation encoding approach proposed by
Mumford [12], te binary encoding (Tchebycheff)
and ws binary encoding (weighted sum) different
weighted linear scalarising approaches proposed
by Jaszkiewicz [13].

Table 2: Generational distance
(permutation encoding)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV

ks2 250 3.20 3.24 1.99 4.57 1.74 3.31 3.45
ks2 500 10.10 10.37 6.00 14.47 5.46 10.65 12.02
ks2 750 17.86 17.48 12.73 26.54 11.36 21.86 23.71
ks3 250 6.96 14.59 24.31 8.04 10.83 6.15 5.73
ks3 500 16.68 34.11 54.61 18.24 18.04 13.91 12.75
ks3 750 26.57 54.02 73.69 29.58 23.35 22.61 20.36
ks4 250 11.43 38.73 44.97 12.60 19.93 12.27 11.39
ks4 500 22.37 66.97 95.02 27.28 27.74 22.97 20.84
ks4 750 34.44 99.30 141.16 42.77 34.04 35.25 30.96

Table 3: Inverted generational distance
(permutation encoding)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV

ks2 250 10.13 9.06 8.45 11.49 8.67 8.48 8.48
ks2 500 10.96 9.98 10.07 13.93 9.86 9.50 8.62
ks2 750 48.07 46.02 42.92 64.14 44.40 38.07 38.01
ks3 250 21.11 5.59 10.37 18.35 12.41 13.25 15.74
ks3 500 48.73 15.58 25.60 43.54 39.14 33.71 37.69
ks3 750 69.65 27.06 39.73 61.16 61.03 48.20 54.06
ks4 250 19.33 9.39 13.57 14.98 14.53 12.30 15.03
ks4 500 43.24 19.71 30.15 33.84 39.64 29.83 35.81
ks4 750 68.36 33.56 49.35 54.58 65.93 49.84 57.93

Regarding the hyper-volume metric,
Fig. 2,3,4,5 show that HVEA1.0 outperforms
or at least remains competitive to NSGA2,
SEAMO2, SPEA2 on all 9 instances of the
multiple 0/1 knapsack problem using all 4
different greedy repair methods. HVEA1.0 is
worse in only few cases out of 36 instance-
repair method combinations which are mainly
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Fig. 2: The percentage of hypervolume (permutation encoding).

Table 4: Running time in seconds (permutation)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV
ks2 250 7 6 6 4 48 50 50
ks2 500 14 14 14 9 97 96 91
ks2 750 27 28 26 21 165 160 144
ks3 250 14 18 11 7 103 103 158
ks3 500 28 38 23 15 179 175 242
ks3 750 46 66 39 32 272 264 368
ks4 250 24 52 18 11 184 183 354
ks4 500 44 114 36 22 294 286 545
ks4 750 68 204 56 48 415 407 771

in the lowest dimension space, the 2-knapsack
problems. HVEA1.0 only outperforms IBEA
(both IBEAε+ and IBEAHV ) for the 3-knapsack

problems. It looses its competitiveness to IBEA
for 2,4-knapsack problems. IBEAε+ tends to be
the most effective MOEA to provide the coverage
(hyper-volume) for the Pareto sets. It is also
noticed that HVEA1.0 performs much better than
HVEA0.01. The reason is that HVEA0.01 only
looks at a tiny neighbouring area to determine
the crowding of an individual whereas HVEA1.0
examines the objective space as the whole picture,
i.e. every individuals contributing towards the
crowding of an individual. Results on the
generational and inverted generational distance
show more prominent evidence regarding
this issue.
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Fig. 3: The percentage of hypervolume (binary encoding).

Table 5: Generational distance
(binary encoding)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV
ks2 250 3.91 3.78 4.17 6.16 4.09 6.95 6.99
ks2 500 11.42 11.03 13.39 15.10 13.78 17.66 18.07
ks2 750 26.86 27.10 32.87 33.91 31.67 29.48 30.05
ks3 250 8.45 13.95 22.16 8.62 14.18 10.06 9.77
ks3 500 20.83 34.04 50.69 21.39 32.63 24.47 22.82
ks3 750 35.71 55.08 74.63 40.78 52.56 38.58 35.84
ks4 250 14.18 33.23 38.58 13.91 27.10 15.37 14.99
ks4 500 31.13 75.38 96.31 30.97 66.35 32.20 28.85
ks4 750 52.80 119.03 150.58 52.89 106.08 53.40 44.81

Table 2,5,8,11 show the generational distance
from non-dominated sets to the true Pareto front.
Table 3,6,9,12 show the inverted generational

distance from the true Pareto front to non-
dominated sets. Bold figures indicate the best
results for each instance. Both sets of tables
clearly indicate that HVEA1.0 provides better
diversity than HVEA0.01 whereas HVEA0.01
provides better convergence than HVEA1.0 due to
the use of neighbouring area radius ω. On the
performance regarding the generational distance
metric, HVEA0.01 outperforms NSGA2 and
SPEA2 but is competitive to SEAMO2 and IBEA.
SEAMO2 is one of the best algorithms to provide
convergence, although SEAMO2 only exploits
Pareto dominance without fitness, ranking and
crowding estimation. The reason behinds it is
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that SEAMO2 is a steady-state algorithm which
allows offspring to compete for recombination
immediately within the current generation. It
is not the case for the other population-based
MOEAs. However it leads SEAMO2 to be one
of the worst MOEAs to provide diversity for
non-dominated sets. The inverted generational
distance metric show that HVEA1.0 outperforms
other MOEAs in most cases of the 36 instance-
repair method combination. HVEA1.0 is clearly
the best algorithm to provide diversity in high
dimensional knapsack, 3,4-knapsack problems.
There is no strong evidence for which algorithm
is the best in the 2-knapsack problem.

Table 6: Inverted generational distance
(binary encoding)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV

ks2 250 14.55 13.88 9.75 16.81 10.51 10.67 9.89
ks2 500 17.97 17.91 11.75 20.95 12.85 12.19 11.79
ks2 750 81.69 81.09 54.68 98.40 54.63 56.50 55.30
ks3 250 20.33 6.76 10.20 20.46 11.16 14.33 16.36
ks3 500 46.55 22.41 27.22 49.62 31.86 36.09 39.43
ks3 750 64.04 40.16 43.82 72.18 48.56 53.63 56.87
ks4 250 18.37 8.47 12.53 16.64 12.67 13.45 15.90
ks4 500 39.55 22.05 30.54 37.02 30.33 29.45 34.11
ks4 750 62.33 38.87 51.83 60.39 51.45 49.51 55.66

Table 7: Running time in seconds (binary)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV

ks2 250 8 8 7 6 50 51 51
ks2 500 18 18 17 14 99 96 95
ks2 750 31 32 30 26 165 157 149
ks3 250 16 20 12 9 104 103 145
ks3 500 31 39 25 21 175 170 236
ks3 750 50 61 43 36 266 256 350
ks4 250 27 50 19 14 185 183 351
ks4 500 47 107 37 28 281 278 537
ks4 750 73 168 60 48 396 392 746

The running time (in seconds) is summarised in
table 4,7,10,??. SPEA2 and IBEA are the slowest
algorithms due to the complexity in computation
of fitness values (SPEA2) and indicator values
(IBEA). SEAMO2, NSGA2, HVEA are much
faster algorithms.

Taken all the above criteria into account, it
is concluded that HVEA outperforms NSGA2,
SEAMO2, and SPEA2 but remains competitive

Table 8: Generational distance
(te binary encoding)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV

ks2 250 4.42 4.46 5.18 6.94 5.41 6.84 6.93
ks2 500 16.33 16.60 17.68 23.92 17.62 18.35 19.01
ks2 750 44.67 43.98 46.88 64.90 44.96 41.62 43.42
ks3 250 13.99 18.92 28.85 11.79 21.06 13.64 13.50
ks3 500 36.35 44.72 70.27 33.93 50.40 31.61 29.84
ks3 750 64.61 78.85 113.39 67.64 85.45 59.47 56.29
ks4 250 22.82 40.94 47.44 16.53 37.85 17.53 17.29
ks4 500 51.52 89.40 114.67 40.71 89.75 43.05 37.09
ks4 750 90.24 144.94 183.81 79.45 148.89 78.48 67.98

Table 9: Inverted generational distance
(te binary encoding)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV

ks2 250 3.06 2.93 2.62 4.52 2.87 2.84 2.89
ks2 500 6.88 6.80 5.79 8.72 6.03 5.52 5.72
ks2 750 44.16 42.82 41.38 56.88 39.69 38.89 40.27
ks3 250 14.83 7.03 12.19 17.76 9.19 9.10 11.10
ks3 500 37.33 19.40 30.71 40.87 26.50 23.96 27.44
ks3 750 52.74 36.67 52.38 59.90 42.18 37.78 41.14
ks4 250 15.02 10.27 14.10 14.49 11.77 8.90 11.58
ks4 500 35.20 25.91 35.61 32.69 30.65 22.04 26.31
ks4 750 56.33 45.72 60.56 53.05 52.58 37.70 43.18

Table 10: Running time in seconds (te binary)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV

ks2 250 13 13 12 10 54 55 60
ks2 500 31 31 30 26 112 109 117
ks2 750 58 58 56 51 192 182 198
ks3 250 22 28 18 16 109 110 150
ks3 500 51 61 46 40 195 191 256
ks3 750 93 109 86 76 310 301 392
ks4 250 36 66 30 24 195 194 367
ks4 500 75 143 66 57 307 308 565
ks4 750 134 256 129 108 462 461 810

to IBEA with much faster computational time
than IBEA.

4.2. Comparison to MOEA/D

We compare HVEA against MOEA/D
separately from other MOEAs due to the setting
and approach employed by MOEA/D. As
discussed in Section 3.2.1, it is problematic
to alter the population size N in MOEA/D
to that population size S suggested for the
multiple 0/1 knapsack problem. Furthermore,
MOEA/D stores all non-dominated solutions
found so far in an external archive which is
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Fig. 4: The percentage of hypervolume (te binary encoding).

then reported as the final result. Therefore, it is
suggested to adapt HVEA to the setting similar
to MOEA/D included the population size and
an external archive for non-dominated solutions
found so far. Experimental results, including
figures and tables, are presented in a similar
format as in Section 4.1. MOEA/D employed
Tchebycheff and weight sum approach for the
fitness calculation are abbreviated as “mo/t” and
“mo/w”. The extracted population, the truncated
external population, is also reported so that the
size of the extracted population does not exceed
the suggested population size S . NSGA2’s
truncation approach is used here. Fig. 6,7,8,9

present extracted populations using prefix “e”.

Table 11: Generational distance
(ws binary encoding)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV
ks2 250 2.02 1.96 2.24 3.89 2.07 2.91 2.92
ks2 500 6.13 6.07 6.70 10.80 6.74 8.07 8.59
ks2 750 16.53 16.38 18.42 27.96 17.26 17.40 17.62
ks3 250 9.52 12.17 20.82 7.26 14.23 7.87 7.46
ks3 500 20.87 27.25 47.72 16.50 31.60 16.88 15.90
ks3 750 30.72 42.91 67.05 25.88 45.73 27.35 24.99
ks4 250 17.06 29.66 35.52 12.52 27.13 13.59 13.35
ks4 500 33.58 60.66 82.87 25.34 59.50 27.40 23.68
ks4 750 54.58 97.91 131.27 42.68 96.22 44.91 38.29

MOEA/D outperforms HVEA in most cases
out of 36 instance-repair method combinations
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Fig. 5: The percentage of hypervolume (ws binary encoding).

on the hyper-volume metric and the inverted
generational distance metric. The convergence
of MOEA/D is only better than that of HVEA
in the linear scalarising greedy repair method.
However the running time of MOEA/D is
significantly higher than that of HVEA. In the
other 2 repair methods, HVEA0.01 outperforms
MOEA/D regarding the generational distance
metric. Under a restriction of the size of the
population, where the truncation is applied to the
external population, HVEA is able to compete
to MOEA/D. However HVEA is much faster
than MOEA/D. The running time (in seconds) is
reported in Table 18, 15, 21, 24.

Table 12: Inverted generational distance
(ws binary encoding)

Instance hv1 hv100 ns2 sea2 sp2 ibε+ ibHV

ks2 250 3.80 3.40 2.70 4.90 3.05 3.14 3.34
ks2 500 7.02 6.62 4.97 9.05 5.27 4.53 4.78
ks2 750 41.14 40.31 28.86 52.55 27.86 26.11 27.82
ks3 250 16.83 4.78 9.71 17.31 8.93 9.06 11.05
ks3 500 40.25 13.21 22.43 40.48 24.74 23.92 27.69
ks3 750 56.43 23.72 35.38 59.39 37.02 36.85 41.70
ks4 250 16.08 7.75 11.47 14.33 11.35 9.17 11.85
ks4 500 37.35 18.10 27.27 32.41 28.35 22.44 27.55
ks4 750 58.56 31.92 46.15 52.21 47.00 38.13 45.26

4.3. Further Discussion
HVEA employs a parameter µ in equation (11)

to define the size of each front. In this paper,
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Fig. 6: The percentage of hypervolume (permutation encoding).

µ is set to 0.01, which is not only bounded to
the multiple 0/1 knapsack problem, could be used
for other multi-objective optimisation problems.
It is suggested that this parameter µ is fixed to
0.01 rather than tunable. The more important
parameter in HVEA is ω, the neighbouring area
radius, which is in the range [0, 1]. Section 4.1
shows a significant difference in performance
between HVEA0.01 and HVEA1.0. HVEA1.0
gives a much better performance regarding the
hyper-volume metric and the diversity of the non-
dominated set. However HVEA0.01 is better
in convergence than HVEA1.0. One could

tune ω to obtain desirable requirement. For
example, ω could be set to 1.0 for theoretical
problems such as the multiple 0/1 knapsack
problem to obtain non-dominated set with better
diversity (generational distance metric) and better
coverage (hyper-volume metric). However, for
real-world applications, where running time is
expensive, ω = 0.01 could be deployed.
Furthermore, in real-world applications, extreme
solutions are likely less of interest whereas better
convergence, which could strike a good balance
amongst objectives, is more important. We
experiment different ω values in the range [0, 1]
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but the performance of HVEA degrades quite
significantly. Therefore, it is suggested to use
ω = 1.0 for better diversity and better coverage
and 0.01 ≤ ω ≤ 0.05 for better convergence and
faster computational time.

Table 13: Generational distance
(permutation encoding)

External Population Extracted Population
Instance hv1 hv100 mo/t mo/w hv1 hv100 mo/t mo/w
ks2 250 3.16 3.21 5.98 7.00 3.19 3.23 6.18 7.18
ks2 500 10.00 10.17 17.57 16.05 10.08 10.33 18.64 16.84
ks2 750 17.49 17.06 29.28 24.43 17.78 17.40 33.04 26.86
ks3 250 2.08 2.84 4.64 3.86 7.99 9.90 14.77 13.18
ks3 500 4.97 6.81 10.31 6.84 16.72 27.44 37.67 26.73
ks3 750 9.29 12.21 17.22 9.99 26.94 48.53 59.89 38.67
ks4 250 2.24 3.75 3.80 2.92 14.11 30.34 20.63 17.17
ks4 500 4.23 6.79 8.21 5.11 24.22 57.09 39.98 34.94
ks4 750 6.79 10.63 13.32 7.47 34.17 86.46 61.01 51.07

Table 14: Inverted generational distance
(permutation encoding)

External Population Extracted Population
Instance hv1 hv100 mo/t mo/w hv1 hv100 mo/t mo/w
ks2 250 10.13 9.06 3.07 4.26 10.13 9.06 3.07 4.26
ks2 500 10.96 9.98 6.60 6.55 10.96 9.98 6.60 6.55
ks2 750 48.07 46.02 37.36 31.90 48.07 46.02 37.37 31.90
ks3 250 15.86 5.22 5.20 6.26 15.95 6.52 7.83 8.37
ks3 500 42.80 15.02 16.43 15.10 42.85 16.99 19.83 18.18
ks3 750 63.84 25.89 30.90 23.10 63.89 27.77 34.74 27.54
ks4 250 14.97 5.32 5.76 5.91 15.08 11.06 12.70 9.77
ks4 500 38.54 14.94 16.82 13.49 38.60 22.45 31.17 20.77
ks4 750 63.77 29.00 31.73 22.26 63.87 36.84 49.64 31.97

We further examine the performance of HVEA
against other MOEAs using a fixed running time,
although this approach is not widely adopted
due to its low reliability. The running time (in
seconds), reported in Table 25, is deduced from
the minimum running time of all MOEAs on
each knapsack instances over 2000 generations.
The running time for the linear scalarising greedy
repair method proposed by Jaszkiewicz [13]
is twice as much as the ones proposed by
Mumford [12] and Zitzler and Thiele [11].

Under the time restriction, HVEA outperforms
NSGA2, SPEA2, IBEAε+ and IBEAHV . HVEA
only outperforms SEAMO2 on 2,3-knapsack
problems. SEAMO2 is slightly better than HVEA
on 4-knapsack problems. It is suggested that due
to the steady-state approach and the simple Pareto
dominance, SEAMO2 is able to perform more

Table 15: Running time in seconds (permutation)

Instance hv1 hv100 mo/t mo/w
ks2 250 4 5 3 4
ks2 500 8 9 8 9
ks2 750 15 16 17 19
ks3 250 16 26 40 38
ks3 500 29 84 118 133
ks3 750 46 177 172 181
ks4 250 47 156 357 315
ks4 500 112 602 1025 972
ks4 750 163 870 1784 1807

Table 16: Generational distance
(binary encoding)

External Population Extracted Population
Instance hv1 hv100 mo/t mo/w hv1 hv100 mo/t mo/w
ks2 250 3.91 3.78 4.47 7.28 3.91 3.78 4.54 7.29
ks2 500 11.42 11.03 15.53 17.39 11.42 11.03 15.53 17.39
ks2 750 26.86 27.10 34.07 34.88 26.86 27.10 34.07 34.88
ks3 250 3.26 4.08 4.77 4.57 10.18 12.28 14.33 14.01
ks3 500 10.67 10.69 12.18 10.15 24.41 31.16 37.44 32.18
ks3 750 22.54 22.11 23.62 19.32 38.93 53.36 64.60 52.75
ks4 250 3.26 4.46 4.08 3.63 16.27 26.40 21.17 19.24
ks4 500 9.37 11.80 10.06 8.09 35.47 69.12 49.77 44.30
ks4 750 18.56 20.13 16.93 12.85 57.80 114.62 80.97 71.23

Table 17: Inverted generational distance
(binary encoding)

External Population Extracted Population
Instance hv1 hv100 mo/t mo/w hv1 hv100 mo/t mo/w
ks2 250 14.55 13.88 2.78 5.35 14.55 13.88 2.79 5.35
ks2 500 17.97 17.91 5.36 7.37 17.97 17.91 5.36 7.37
ks2 750 81.69 81.09 33.08 35.57 81.69 81.09 33.08 35.57
ks3 250 16.31 8.36 5.22 8.37 16.36 8.93 7.41 9.67
ks3 500 41.47 25.90 17.05 24.17 41.50 26.38 20.07 25.59
ks3 750 61.05 42.30 30.87 34.95 61.08 42.67 33.83 36.71
ks4 250 14.87 6.95 6.10 8.84 14.97 10.12 11.59 10.91
ks4 500 34.46 19.55 17.22 19.04 34.53 24.15 24.86 22.39
ks4 750 56.85 36.89 32.02 32.62 56.92 41.66 43.02 36.28

Table 18: Running time in seconds (binary)

Instance hv1 hv100 mo/t mo/w
ks2 250 8 8 5 5
ks2 500 18 19 13 13
ks2 750 32 33 25 25
ks3 250 25 35 18 18
ks3 500 39 56 39 40
ks3 750 56 74 59 57
ks4 250 55 139 113 87
ks4 500 82 285 359 342
ks4 750 110 427 536 538

evaluations than any other MOEAs which could
lead to a better performance. HVEA is slightly
worse than but competitive to MOEA/D.
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Fig. 7: The percentage of hypervolume (binary encoding).

Table 19: Generational distance
(te binary encoding)

External Population Extracted Population
Instance hv1 hv100 mo/t hv1 hv100 mo/t
ks2 250 4.40 4.43 2.83 4.41 4.45 3.05
ks2 500 16.33 16.60 9.88 16.33 16.60 10.03
ks2 750 44.67 43.98 23.54 44.67 43.98 23.63
ks3 250 5.39 6.09 4.54 14.62 15.61 14.80
ks3 500 16.66 15.73 10.49 37.71 42.51 37.10
ks3 750 35.66 30.38 19.88 66.81 77.08 65.21
ks4 250 4.91 5.75 3.61 22.65 34.78 20.41
ks4 500 14.45 14.45 8.09 52.51 83.35 46.14
ks4 750 30.20 24.54 13.47 93.91 141.43 65.90

Table 20: Inverted generational distance
(te binary encoding)

External Population Extracted Population
Instance hv1 hv100 mo/t hv1 hv100 mo/t
ks2 250 3.06 2.93 1.52 3.06 2.93 1.53
ks2 500 6.88 6.80 3.69 6.88 6.80 3.69
ks2 750 44.16 42.82 26.22 44.16 42.82 26.22
ks3 250 10.22 6.18 5.03 10.66 7.68 7.45
ks3 500 30.69 19.09 15.73 30.86 20.57 18.94
ks3 750 47.42 35.89 31.87 47.63 37.57 35.11
ks4 250 10.89 7.15 5.52 11.17 12.61 12.42
ks4 500 29.43 22.33 16.88 29.56 29.20 24.87
ks4 750 49.19 42.32 32.32 49.37 50.01 42.92
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Fig. 8: The percentage of hypervolume (te binary encoding).

Table 21: Running time in seconds (te binary)

Instance hv1 hv100 mo/t
ks2 250 14 13 9
ks2 500 33 32 25
ks2 750 62 59 51
ks3 250 26 42 24
ks3 500 58 81 60
ks3 750 102 126 105
ks4 250 49 164 98
ks4 500 92 331 424
ks4 750 157 527 769

Table 22: Generational distance
(ws binary encoding)

External Population Extracted Population
Instance hv1 hv100 mo/w hv1 hv100 mo/w
ks2 250 1.91 1.85 1.81 2.01 1.95 1.96
ks2 500 6.13 6.07 3.74 6.13 6.07 4.23
ks2 750 16.53 16.38 8.10 16.53 16.38 9.08
ks3 250 2.61 3.24 1.84 9.82 10.42 10.28
ks3 500 7.64 8.11 3.15 21.95 25.21 18.53
ks3 750 14.23 14.80 5.15 33.44 41.42 27.36
ks4 250 3.02 3.66 1.56 17.80 24.37 16.10
ks4 500 7.42 9.11 2.72 35.33 54.99 30.81
ks4 750 14.49 16.17 4.34 58.33 93.31 44.10
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Fig. 9: The percentage of hypervolume (ws binary encoding).

Table 23: Inverted generational distance
(ws binary encoding)

External Population Extracted Population
Instance hv1 hv100 mo/w hv1 hv100 mo/w
ks2 250 3.80 3.39 1.20 3.80 3.40 1.21
ks2 500 7.02 6.62 1.66 7.02 6.62 1.66
ks2 750 41.14 40.31 10.29 41.14 40.31 10.31
ks3 250 10.80 4.31 2.85 11.13 6.13 8.32
ks3 500 31.98 14.04 6.71 32.08 15.44 13.18
ks3 750 48.87 24.76 11.37 48.95 25.93 21.12
ks4 250 11.45 4.99 2.97 11.66 10.52 13.93
ks4 500 30.56 14.94 6.90 30.66 21.67 31.76
ks4 750 50.08 29.11 12.00 50.20 36.67 47.92

Table 24: Running time in seconds (ws binary)

Instance hv1 hv100 mo/w
ks2 250 9 13 8
ks2 500 21 30 22
ks2 750 39 55 43
ks3 250 21 44 33
ks3 500 41 82 107
ks3 750 66 124 137
ks4 250 47 180 339
ks4 500 75 326 885
ks4 750 111 500 1377
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Table 25: Running Time (in seconds) for The Multiple
0/1 Knapsack Problem

Instance Mumford [12] Jaszkiewicz [13]
& Zitzler [11]

ks2 250 5 10
ks2 500 15 30
ks2 750 30 60
ks3 250 15 30
ks3 500 30 60
ks3 750 45 90
ks4 250 30 60
ks4 500 45 90
ks4 750 60 120

5. Conclusions

In this paper we proposed a multi-objective
evolutionary algorithm called Hyper-volume
Evolutionary Algorithm (HVEA) which
incorporates distinctive mechanisms for fitness
assignment, ranking and crowding. The
algorithm uses hyper-volume, Pareto dominance
and distance between neighbouring solutions
in order to drive improvement of the current
Pareto front. Experiments conducted in this
paper using the multiple 0/1 knapsack problem
show that HVEA outperforms or remains very
competitive against other MOEAs including
NSGS2, SEAMO2, SPEA2, IBEAε+ , IBEAHV

and the high-performing MOEA/D. HVEA
proposes a new individual fitness assignment
strategy using the hyper-volume of an individual
without the requirement of determining the
reference point for the hyper-volume calculation.
HVEA assesses the crowding of an individual by
considering all individuals in its neighbourhood.
By tuning the only parameterω, the neighbouring
area radius, the performance of the algorithm
can be driven to attain a non-dominated set with
specific characteristics. That is, the HVEA can be
tuned to perform better on convergence, diversity
or coverage and this could be useful in different
applications when solving multi-objective
optimisation problems.

The paper also extensively studied the multiple
0/1 knapsack problem using different greedy

repair methods. In order to assess the
performance of MOEAs fairly, the same greedy
repair method should be used. Furthermore, we
suggest that the greedy repair method proposed
by Mumford [12] should be deployed while
assessing the performance of MOEAs on the
multiple 0/1 knapsack problems in order to
minimise the effect of the greedy repair method
on the overall performance.

For future work, it would be interesting
to investigate the incorporation of the steady-
state selection, deployed by SEAMO2 and
MOEA/D, into fitness and/or ranking assignment
population-based MOEAs. The reason behinds
this it that the steady-state selection allows
strong offspring to immediately participate in the
recombination of the current generation which
could lead to a better convergence whereas the
fitness and/or ranking assignment population-
based MOEAs consider the whole population
during the environmental selection which could
lead to a better diversity.
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