
HYBRID POPULATION-BASED METAHEURISTIC APPROACHES
FOR THE SPACE ALLOCATION PROBLEM

E. K. Burke1, P. Cowling2, J.D. Landa Silva3 †

Automated Scheduling, Optimisation and Planning Research Group
School of Computer Science and IT, Jubilee Campus, University of Nottingham

Nottingham, NG8 1BB, UK
1ekb@cs.nott.ac.uk,2pic@cs.nott.ac.uk,3jds@cs.nott.ac.uk

http://www.asap.cs.nott.ac.uk

† The author acknowledges support from Universidad Autonoma de Chihuahua and PROMEP in Mexico.

ABSTRACT.
A hybrid population-based metaheuristic for the space
allocation problem in academic institutions is presented
that is based upon previous experiments using a range of
techniques including hill-climbing, simulated annealing,
tabu search and genetic algorithms. The proposed
approach incorporates the best characteristics of each
technique, makes an automatic selection of the
parameters according to the problem characteristics and
surpasses the performance of these standard techniques
in terms of the solution quality evaluated with a penalty
function. This approach incorporates local search
heuristics, adaptive cooling schedules and population-
based techniques. Our experiments show that this
technique produces competitive solutions for the space
allocation problem. In this problem, it is often desirable
to obtain a set of candidate solutions so that the decision
maker can select the best among them. By controlling a
common cooling schedule for the whole population in the
simulated annealing component, it is possible to find one
excellent solution or to produce a population of good
solutions.

1 Introduction

Space allocation problems are a class of complex
combinatorial optimisation problems, which can be defined
as follows: the distribution of the available areas of space
among a number of objects with different sizes so as to
ensure the optimal space utilization and the satisfaction of
additional requirements and/or constraints [5].

An investigation of the space allocation problem is being
carried out in the Automated Scheduling, Optimisation and
Planning Research Group (ASAP) at the University of
Nottingham in the UK. The aim is to develop a
comprehensive study of this problem to construct a
complete model and to produce a robust framework for
obtaining high quality solutions. A space allocation
questionnaire was sent to 96 universities in the UK in 1996.
An analysis of these results which highlights the
complexity, diversity and scope of the space allocation
problem was presented in [3]. In [5], we investigate the
neighbourhood exploration in this problem using three
techniques: hill-climbing, simulated annealing and a genetic

algorithm. An initial prototype of the space allocation
software was presented in [6]. Here, we propose a hybrid
population-based metaheuristic that produces competitive
results for space allocation and that might also be successful
in other combinatorial optimisation problems.

In the proposed technique, we combine local heuristics
(such as hill-climbing), adaptive cooling schedules in
simulated annealing, tabu lists, list of favourable moves and
mutation operators. The parameters for the hybrid
metaheuristic are automatically selected depending on the
characteristics of the specific space allocation problem. The
incorporation of a population in the simulated annealing
component provides interesting results since it is possible to
adapt the cooling schedule to favour either the generation of
one good quality solution in short time or a set of good
quality individuals at the expense of more computation time.

In section 2 we give a brief description of the space
allocation problem. Some real-world instances arising in
academic institutions that we use as test problems are also
presented. In section 3, we describe the hybrid metaheuristic
and provide comparative results for our test problems. In
section 4 we analyse the effect of incorporating a population
in order to produce an improved approach. In section 4, we
also analyse the control of the cooling schedule in the
simulated annealing component of the hybrid population-
based metaheuristic to find one single high quality
allocation or a set of very competitive solutions. In section 5
some additional comments and conclusions are presented.

2 The Space Allocation Problem

2.1 A Model of the Problem

We have a set of n objects and a set of m available areas of
space, where each object O1,O2,…,On has a size given by
S1,S2,…,Sn respectively, and each area of space A1,A2,…,Am
has a capacity given by C1,C2,…,Cm respectively. Smax is the
size of the largest object(s) and Cmax is the capacity of the
largest area(s) of available space. The total area of space
required to allocate all the objects and the total area of space
available are given by respectively:

∑
=

=
n

i
iT SS

0

 ∑
=

=
m

i
iT CC

0

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

hylith
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

sonms
0-7803-6657-3/01/$10.00 © 2001 IEEE

sonms
232

Note that the size of the objects may be changed, area
can be added or removed, two or more areas may be merged
and the available area may be changed through
reconstruction‡. Then the problem is to find the optimal
allocation of the n objects into the m available areas of
space, given by f : O → A, where

f (Oi) = Aj, if the object Oi has been allocated to the area Aj
f (Oi) = 0, if the object Oi has not been allocated

This should maximize the k objectives g1, g2, g3,…, gk
subject to z constraints Ri for i = 1,2,…,z, where each Ri is a
specific constraint that affects either the location of one or
more objects, the utilisation of a certain area(s) of space or
both. The types of constraints or restrictions include but are
not limited to the following:

� Oi together with Oj , i.e. both objects should be allocated

in the same area
� Oi adjacent to Oj , i.e. the objects should be allocated in

adjacent areas
� Oi grouped with Oj , i.e. the objects should be allocated

close each other
� Oi not sharing, i.e. no other object should be sharing the

same area of space with the object Oi
� Oi away from Oj , i.e. these objects should be allocated far

away from each other
� Oi located in Aj , i.e. this object should be allocated in the

specific area Aj

The mapping function f : O → A is not usually bijective,
e.g. more than one object might be allocated to the same
area of space if there is enough available space and no hard
constraint is violated. Each objective gi for i = 1,2,…,k is a
measure of the solution’s fitness according to a specific
evaluation criterion. For example, we may have the sum of
penalties associated with the violated constraints. Other
objective functions could be defined for each specific
instance of the space allocation problem to evaluate costs,
profits, disturbance, functionality, etc.

2.2 Real-World Space Allocation Problem

In the context of academic facilities, the space allocation
problem is the allocation of resources (staff, students,
meeting rooms, lecture rooms, special rooms, etc.) to areas
of space such as rooms, satisfying as many
requirements/constraints as possible. In general, the real
instances of the space allocation problem in universities can
be classified as one of the following: reorganisation of the
existing allocation or construction of a complete solution.

Reorganisation is defined as the rearrangement of the
current space distribution among the objects and it is
performed when either there is a requirement to improve the
existing solution or the specifications (constraints, number
of objects to be allocated, number of areas of space, size of

‡ Recostruction refers to building work to alter existing rooms.

the objects, capacities of the areas, etc.) of the problem have
been modified. The construction of a complete allocation is
defined as the generation of a solution to distribute all the
available areas of space among all the objects in the
problem. In this paper we consider the construction of
complete solutions. Some other similar or related real-world
problems and the techniques used to tackle them can be
found in [1], [2], [8] and [11].

2.3 Construction of an Allocation

In many universities there exists a centralised office that
regulates the space distribution and assigns areas of space to
faculties, schools, departments, etc. Space officers and
administrators (heads of departments, group leaders, etc.) at
different levels are in charge of the construction of an
allocation.

The manual process to construct a complete allocation in
academic institutions can be briefly described as follows.
The space necessary for each resource, the available space
in rooms, the constraints that must be satisfied (hard
constriants) and those that are desirable to satisfy (soft
constraints) are determined. With the aid of floor plans and
room databases, information about the available areas of
space is obtained (size, location, proximity, etc.). Resources
are allocated to rooms in order of importance according to
the specific situation. The satisfaction of space requirements
and constraints is verified each time a resource is allocated.
During this iterative process changes might be necessary in
order to produce a solution that satisfies as many
requirements and constraints as possible. The evaluation of
a solution involves multiple criteria and in some cases this
criteria may come from different decision-makers. The most
common evaluation criteria are: number of allocated
resources, efficient space utilisation, satisfaction of
constraints and user satisfaction. Due to the nature of this
manual process, it is common that weeks or months are
necessary to obtain a final solution. Additional information
regarding the space allocation process in British universities
in available in [3].

2.4 Evaluation of a Solution

In this paper we use the combination of the multiple criteria
into a single criterion using the aggregating penalty function
(1) to calculate the total penalty and hence to measure the
allocation’s fitness.

)1()()()]()([)(
1111
∑∑∑∑
====

++++=
n

i
i

n

i
i

m

i
ii

n

i
i OSCPODPAOPAWPOUPTP

In this function, TP is the total penalty in the solution,

UP is the penalty for object (resource) Oi if not allocated,
WP is the penalty for area (room) Ai if there is space
wastage, OP is the penalty for area (room) Ai if there is
space overuse, DP is the penalty for changing the allocation
of object (resource) Oi in a reorganisation problem, SCP is

sonms
233

constraint of
resource Z

constraints of
resource V

constraints of room 1B

V W X Y Z

2C bin 1B 1D 2C

resources

rooms

the penalty for violating a soft constraint for object
(resource) Oi.

Given this penalty function, the fitness or quality of an
allocation increases as the total penalty decreases. We wil
use the total penalty for comparison among solutions. The
test problems used in our experiments are described in the
next section and all refer to the construction of completely
new allocations. A feasible solution must have all the
resources allocated and all hard constraints satisfied. This
means that the penalties due to unallocated resources and
disturbance must be equal to zero and have no effect in the
total penalty. An optimal solution is a feasible allocation
that minimizes the total penalty. Of course, it is usually not
possible to satisfy all of the soft constraints. In a real space
allocation problem, more that one optimal solution may
exist.

2.5 The Solution Structure

We use the structure shown in Fig. 1 to represent an
allocation in our algorithms. It is a string-to-string mapping
where the key is the resource to be allocated and the value
associated to each key is the room in which the resource is
allocated (bin if unallocated). The constraints (hard and soft)
are linked to the corresponding resource or room to which
they apply. A binary constraint is assigned to the first
resource or room following its description. For example, the
constraint: A adjacent to B is assigned to the object A.

Fig. 1. Structure of a candidate solution.

2.6 Test Problems

Using real data from the School of Computer Science and
IT at the University of Nottingham, the following test
problems (available in [4]) were used in our experiments:

Problem 1. In this problem, there are 55 available rooms
of different sizes and 55 resources to be allocated. The
resources are distributed according to their level, indicating
sharing and space requirements: 6 professors, 1 reader, 5
senior lecturers, 25 lecturers, 10 secretaries and 8 technical
staff. There are 7 hard constraints and 18 soft constraints.

Problem 2. There are 93 resources to be allocated in 55
available rooms. The resources are distributed as follows: 9
common rooms, 11 laboratories, 12 meeting rooms, 6
storage rooms, 6 professors, 1 reader, 5 senior lecturers, 25

lecturers, 10 secretaries and 8 technical staff. There are 23
hard constraints and 38 soft constraints.

Problem 3. This problem consists of 115 resources and
115 available rooms for the allocation. The resources are: 5
research staff, 1 teaching assistant, 16 research areas, 9
common rooms, 11 laboratories, 12 meeting rooms, 6
storage rooms, 6 professors, 1 reader, 5 senior lecturers, 25
lecturers, 10 secretaries and 8 technical staff. There are 32
hard constraints and 35 soft constraints.

In our experiments, we executed 30 runs of the
approaches described in this paper for each test problem, but
here we only present the best results obtained. We also
discuss the variation between runs in the following sections.

3 Designing a Hybrid Metaheuristic

3.1 Previous Work

Some of the first attempts to automate the space allocation
process used linear programming techniques, for example
Giannikos et. al. designed an integer goal-programming
model to distribute the offices in an academic institution [8].
Reeves proposed the combination of Genetic Algorithms
with simple heuristics to solve combinatorial problems with
specific attention to the bin-packing problem [10]. More
recently, Burke et. al. explored the use of Hill-Climbing,
Simulated Annealing and a Genetic Algorithm to solve the
space allocation problem in universities [5]. In that paper,
we investigated the effect of the local search heuristic (for
neighbourhood exploration) on the performance of these
three methods when applied to some test instances.

3.2 Conceiving the Hybrid Metaheuristic

3.2.1 The Hybridisation

Osman and Kelly [9] define a metaheuristic as “an iterative
generation process which guides a subordinate heuristic by
combining intelligently different concepts for exploring and
exploiting the search spaces using learning strategies to
structure information in order to find efficiently high quality
solutions”. Our proposed hybrid metaheuristic consists of
the following components:

� Heuristic_Hill_Climbing to initialise the solution and

achieve a certain level of quality in the initial allocation.
� Simulated_Annealing with reheating in order to improve

the initial solution produced by the heuristic hill-climbing
algorithm and avoid the local optima by exploring
different areas of the solution space.
� Heuristic_Feasible_Move_Selection for selecting the

neighbourhood to be explored and in consequence the
types of move to be attempted while improving the
current solution. A move is a modification in the current
allocation to obtain a different solution.
� Heuristic_Parameters_Selection to select the algorithm

parameters according to the problem size. This heuristic
might not produce the optimal parameter values for each
problem, but will find a good set of parameters in general.

sonms
234

� Mutation_Operator to modifiy the current solution by
removing some resources from the current allocation to
achieve a better exploration of the solution space.

The pseudocode for the hybrid metaheuristic is shown

below. Each part of this algorithm is described in more
detail in the subsequent sections.

1. An initial feasible current solution is constructed
2. Heuristic_Parameters_Selection according to the problem size
/***** Heuristic_Hill_Climbing component *****/
3. For iterations = 1 to HCC_Iterations

a. Using Heuristic_Feasible_Move_Selection, search for a feasible
move to modify the current solution

b. If a feasible move was found
i. Accept the feasible move if it improves the current solution,

otherwise the move is rejected
c. If no feasible move was found, increment the counter of

Failed_Move_Attempts
4. Make best solution = current solution
/***** Simulated_Annealing component *****/
5. While Termination_Criterion not satisfied

a. Using the control cooling schedule, the temperature is established
b. Using Heuristic_Feasible_Move_Selection, search for a feasible

move to modify the current solution
i. If a feasible move was found and it improves the current

solution
1. Accept the move
2. If the current solution is better than the best solution,

make best solution = current solution
ii. If the found feasible move worsens the current solution and the

temperature is not zero
1. Random acceptance of the feasible move

iii. If no feasible move was found
1. Increment the counter Failed_Move_Attempts
2. If Failed_Move_Attempts > Max_Failed_Attempts

implement the Mutation_Operator to modify the current
solution

3.2.2 Parameter Selection

The component Heuristic_Parameters_Selection examines
the problem data and sets up those parameters that are
necessary in the subsequent components. The temperature
parameters for the Simulated_Annealing component are set
as follows. The maximum temperature is set to the value in
which the probability of accepting a non-improving move is
between 95% and 100%. This acceptance probability
depends on the value of the variation produced in the
solution fitness by the attempted move. Then, the maximum
temperature is a consequence of the type and number of
constraints in the problem and the associated penalties. For
the test problems considered here, the maximum
temperature is set to 1000. The decrement in the
temperature during the cooling process is set to one fifth of
the maximum temperature. The number of iterations after
which the temperature is decremented is equal to the total
number n of resources to be allocated. Once the temperature
is equal to zero (the process is cooled), the current
temperature is again set to be equal to the maximum
temperature if after a certain number of iterations no
improvement has been achieved in the solution. This
number of iterations (called the reheat interval) is set to 10
times the total number n of resources to be allocated. The

number of iterations HHC_Iterations for the
Heuristic_Hill_Climbing phase is set to be equal to the
reheat interval parameter mentioned above. The value for
Max_Failed _Attempts is set to one fifth of the total number
of resources. To establish the termination criterion we note
that in the majority of the runs with our test problems, the
best performance of the hybrid metaheuristic is achieved if,
after three times the reheat interval, no improvement has
been obtained in the best solution. In our previous work [5]
we examined the sensitivity of the hill-climbing and
simulated annealing algorithms to these parameters. Since
our hybrid metaheuristic is based on these two techniques,
we used the values that produce the best results for this
problem.

3.2.3 Selection of a Feasible Move

The pseudocode for Heuristic_Feasible_Move_Selection is
shown below. This process uses the parameters calculated in
Heuristic_Parameters_Selection, the state of the current
solution and a list of tabu moves.

If Not All Resources are Allocated
 If Failed_Move_Attempts < Max_Failed_Attempts
 If previous Move_Type is not ALLOCATE
 Move_Type = Select_Move
 Else
 If Previous Move_Type is ALLOCATE
 Move_Type = Select_Move
 Else
 Move_Type = ALLOCATE
 Failed_Attempts_Counter = 0
Else
 Feasible_Move = Select_Move
feasible move = Find_Move (Move_type)

Basically, this module selects the type of move taking

into account the number of allocated resources in the
solution and the number of failed attempts to implement a
specific type of move. Select_Move performs a random
selection of the type of move among RELOCATE
(relocation of an object), INTERCHANGE (interchange
locations between two objects) and SWAP (swapping
allocated objects between two areas of space). Once the type
of move is determined, Find_Move chooses a feasible move
(a move that keeps the current solution as feasible) of the
selected type from the solution space. Find_Move uses a
tabu list that keeps record of the unsuccessful attempted
moves. The size of this list is fixed to 20 moves in our test
problems. When the tabu list is full, the last unsuccessful
move replaces the move that has been in the list for the
greatest number of iterations. The selection of the move in
Find_Move is done according to the type of move:

� ALLOCATE. An unallocated object is chosen and an area

of space is selected to allocate this object.
� RELOCATE. An allocated object is chosen and an area of

space is selected to change the location of the object.
� INTERCHANGE. Two objects are selected and their

assigned areas of space are interchanged.

sonms
235

� SWAP. Two areas of space are selected and all the
allocated objects in one of the areas of space are allocated
to the other and vice versa.

3.2.4 Hill-Climbing Initialisation

The Heuristic_Hill_Climbing component takes the initial
solution and constructs an improved feasible allocation
using the Heuristic_Feasible_Move_Selection component
explained in section 3.2.3. Given the improved solution (not
necessarily local optima) produced by this component, a
further exploration of the solution space is accomplished in
the subsequent phases of the hybrid metaheuristic.

3.2.5 Simulated Annealing Component

The Simulated_Annealing phase takes the improved feasible
current solution obtained in Heuristic_Hill_Climbing and
uses the cooling schedule and Heuristic_Move_Selection to
explore the solution space and find a better allocation. Even
if the quality of the current solution is decreased in this
process, the best candidate solution is always maintained.
The cooling schedule initializes the current temperature with
a value equal to the maximum temperature and decrements
it after a number of iterations. When the current temperature
is equal to zero, the cooling schedule maintains this value
while the searching process produces improvements in the
best solution. If after a number of iterations (reheat interval),
no improvement is possible in the best solution, the current
temperature is again set to be equal to the maximum
temperature. The values for the parameters in the
Simulated_Annealing phase were defined in section 3.2.2.

3.2.6 Mutation Operator

The mutation operator disrupts the current solution after a
number of failed attempts to find a feasible move. The
disruption consists of removing from their assigned room,
those allocated resources that contribute the highest penalty.
This releases the area of space assigned to those resources
so that new possibilities of allocating them can be explored
in the Simulated_Annealing component.

3.3 Hybrid Metaheuristic Performance

For each test problem, we have a manually constructed
solution that is used as a reference to establish the quality of
the allocations produced by the algorithms. Space
administrators helped us to construct these manual
allocations. The total penalty in this manual solution for the
three problems is only due to space misuse (wastage and
overuse) since all the constraints are satisfied. To illustrate
the effect of the hybridisation we compare it with standard
simulated annealing implementation. Except for
Heuristic_Hill_Climbing and the mutation operator (not
included), the standard algorithm has the same structure as
the Simulated_Annealing component of the hybrid
metaheuristic (including the local search strategy, the
cooling schedule and parameters).

In Fig. 2 we show the results after 10 runs of each
approach for the three test problems. A limited CPU time
according to the problem size was given to each run. The
bars in the graph show the contribution to the total penalty
due to space misuse and contribution due to violation of soft
constraints.

Fig. 2. Solutions obtained by the standard technique (ST) and the
hybrid metaheuristic (HM) over 10 runs. A limited CPU time
according to the problem size was assigned to each run. The
manually constructed allocation (MA) is shown as a reference.

We observe that regarding space utilisation, it is apparent
that both approaches achieve acceptable performance
compared with the manual solution. The difference between
the performance of both approaches is mostly in constraint
satisfaction. With the exception of two solutions in test
problem 1, even the worse solutions produced by the hybrid
metaheuristic are better that those obtained with the
standard technique. In all three problems, the hybrid
metaheuristic finds solutions with a total penalty value
nearly as low as the manually constructed solutions.

4 The Population-Based Approach

4.1 Adding a Population

We introduce a population for the hybrid metaheuristic, the
component Heuristic_Hill_Climbing is used to initialise
each individual. The Simulated_Annealing phase is applied
to each individual in the population and instead of having a
set of parameters for each individual (this would be like a
parallel implementation of the metaheuristic), we establish a
set of common parameters for the whole population. These
parameters are defined by the individual that reaches a
stable state in both the Heuristic_Hill_Climbing and the
Simulated_Annealing phases. The best solution achieved by
each individual during the evolution of the population is

Problem 1 Problem 3 Problem 2

ST ST ST

 MH MH MH

60 seconds 600 seconds300 seconds

MAMA MA

0
2000
4000
6000
8000

10000
12000
14000
16000

18000
20000

22000
24000

To
ta

l P
en

al
ty

Space misuse penalty Soft constraints penalty

sonms
236

0
2000
4000
6000

8000
10000
12000

14000
16000
18000

20000
22000
24000

To
ta

l P
en

al
ty

Space misuse penalty Soft constraints penalty

Problem 1 Problem 3 Problem 2

 PMH-S

 PMH-M

 PMH-S

 PMH-M PMH-S

 PMH-M

60 seconds 600 seconds 300 seconds

MH
 MH

 MH

kept so that a set of best solutions is found. A stable state is
when:

� while in the heuristic initialisation stage, an individual

achieves a local optima
� during the simulated annealing phase, no move produces

an improvement in the individual

A list of favourable moves is incorporated to the

Heuristic_Feasible_Move_Selection (in addition to the list
of tabu moves described in section 3.2.3). This list keeps a
historic record of the successful moves in the population so
that the individuals can share this information among them
and explore these potentially profitable moves.

4.2 Parameters in the Population-Based Approach

In the Heuristic_Hill_Climbing component, HHC_Iterations
is determined as described in section 3.2.2 and the
estimation is based on the individual that reaches its local
optima first. This provides a set of highly improved
allocations but avoids the situation where each individual
gets stuck in its local optima.

In the Simulated_Annealing phase, the individual that
has not been improved over the greatest number of iterations
controls the cooling schedule for the whole population.
Then, the temperature is decreased after one individual
reaches the number of iterations required (this parameter
was explained in section 3.2.2). Similarly, when the
temperature is zero (process cooled) the reheating
(temperature set to the maximum value) is controlled by the
first individual to reach the required number of iterations
without improvement.

This strategy of controlling the cooling schedule for the
whole population using one individual, makes it possible to
have a set of co-operating individuals that have the
opportunity to react differently to the simulated annealing
process. Having a different cooling schedule for each
member in the population would be the same as restarting
the algorithm, but a common cooling schedule for all
individuals produces interesting results as discussed below.

4.3 Using the Population to Control the Parameters

The parameters for this population-based approach, and in
particular the cooling schedule, have an important effect
when deciding whether to provide one single high-quality
solution or a set of reasonable quality solutions. Any
individual in the population may control then the common
parameters for the whole population. The parameters are:
HHC_Iterations, the cooling schedule and the termination
criterion in the Simulated_Annealing phase. We use two
ways of controlling these parameters:

� the individual that firstly comes into a stable state or
� the last individual in the population that comes to this

stable state

Four main parameters (see section 3.2.2) are controlled:
HHC_Iterations, the number of iterations for the cooling
phase, the number of iterations after which the process is
reheated and the termination criterion for the whole
algorithm. If the parameters are determined using the
individual that firstly comes to the stable state, then a single
high quality solution in the population is obtained. In this
case, the other members in the population that have not
reached that stable state, contribute to the further
exploration of other areas in the solution space. On the other
hand, if the individual that comes to the stable state last is
used to control the parameters mentioned above, a
population of good solutions is produced. This is because all
members in the population are already in a stable state and
have achieved a local or near local optima.

4.4 Hybrid Population-Based Metaheuristic Performance

In Fig. 3 below we present the results produced by the
hybrid metaheuristic with and without a population of
individuals. PMH-S refers to the use of the first individual
that comes to a stable state while PMH-M uses the
individual that comes to this stable state last. For each test
problem, 10 runs of the hybrid metaheuristic were executed
and a population of 10 was used in the population-based
approaches. A limited CPU time according to the problem
size was given to each approach. For the hybrid
metaheuristic, this time was split between 10 runs and for
the population-based variants the time refers to a single run.

Fig. 3. Solutions obtained by the hybrid metaheuristic (MH) over
10 runs and the population-based variants (PMH-S and PMH-M)
with a population size of 10. The CPU time shown was assigned to
each approach according to the problem size.

We note that the population-based techniques also

produce very good solutions in terms of space utilisation for
the three problems. The difference is then in the achieved

sonms
237

soft constraint satisfaction. It is clear from the histograms
that none of these techniques outperforms the others. In the
first problem, MH and PMH-M produced the best solutions.
However, the average performances of MH and PMH-S are
very similar. In problem 2, both PMH-S and PMH-M offer
the best solutions. In this case, note that the average
performances of MH and PMH-M are similar. In the most
difficult case (problem 3), even when the best observed
solution is produced by the MH approach, the number of
good solutions (total penalty about 6000) produced by the
three approaches is similar.

From these results it appears that the population-based
variants offer similar performance to the single-solution
hybrid metaheuristic and no real advantage is observed.
However, the strategies to control the algorithm parameters
as explained in section 4.3 are designed to offer their best
performance over a maximum number of iterations between
improvements rather that over the execution time. We
illustrate the effect of the strategy used in the hybrid
population-based metaheuristic performance in the
following section.

4.5 Single High Quality Solution vs. High Quality
Population

To observe the effect of the strategy selected to control the
algorithm parameters, a different termination criterion is
used. A maximum number of iterations between two
improvements is set for each test problem. In Fig. 4 we
present the results obtained by 10 runs of the single solution
hybrid metaheuristic and the population-based approaches
with a population of 10 solutions.

Fig. 4. Solutions obtained by the hybrid metaheuristic (MH) over
10 runs and the population-based variants (PMH-S and PMH-M)
with a population of 10 individuals. The indicated number of
iterations for each problem refers to the maximum between two
improvements. The manual allocation (MA) for each test problem
is also shown.

In the results of Fig. 4, it is clear that using this
termination criterion, the population of solutions produced
by PMH-M is effectively the best overall. For the three test
problems, this approach finds a population of high quality
solutions. The performance of PMH-S over the three
problems appears to be similar, i.e. an outstanding high
quality solution is found. This solution is clearly the best in
the population, while the rest of the individuals have high
total penalty values. We observe that the single-solution
technique is also capable of producing high quality solutions
for the three problems, but the variation on the results
produced over several runs is also considerable.

Populations produced by the hybrid population-based
metaheuristic for the single high quality solution (PMH-S)
and the one for a high quality population (PMH-M) are
different not only with respect to the total penalty as shown
in Fig. 4. We observe in Fig. 5 that the drawback of
obtaining a population of good solutions is the computation
time. It is also stressed that for all the three test problems,
the quality of the population produced by the PMH-M
approach is clearly better that the population produced by
PMH-S. So, while PMH-S finds a good quality solution
quickly, PMH-M requires more CPU time to achieve a set
of high quality allocations.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2000 4000 6000 8000 10000 12000 14000
CPU Time (seconds)

To
ta

l F
itn

es
s

PMH-S Problem1

PMH-S Problem2

PMH-S Problem 3

PMH-M Problem 1

PMH-M Problem 2

PMH-M Problem 3

Fig. 5. Performance of the hybrid population-based metaheuristic
for a single quality solution (PMH-S) and for a high quality
population (PMH-M) over the execution CPU time. Each point
represents a member of the population.

4.6 Some Results on Reliability

It was mentioned in section 2.6 that 30 runs were executed
for each approach with all test problems. Here we present
some preliminary results regarding the robustness observed
in our experiments. Table 1 shows the mean (m) and
standard deviation (sd) of the solutions produced (in terms
of total penalty) by each approach for the test problems (P1,
P2 and P3). The termination criterion in this comparison is a

Problem 1 Problem 3 Problem 2

 PMH-S

 PMH-S

PMH-S

MH

MH

MH

1700 iterations 3500 iterations2800 iterations

MAMA MA

PM
H

-M

 P
M

H
-M

 P
M

H
-M

0
2000
4000
6000
8000

10000
12000
14000

16000
18000
20000
22000
24000

To
ta

l P
en

al
ty

Space misuse penalty Soft constraints penalty

sonms
238

maximum number of iterations between improvements for
each test problem.

We observe that the hybrid metaheuristic (HM)
overcomes the standard technique (ST). If we compare the
hybrid population-based approach for a single quality
solution (PMH-S) and the approach for a high quality
population (PMH-P), it is clear that the mean and the
standard deviation for the population are better in the second
approach. Note also that the standard deviation is better in
PMH-S than in MH, but the mean is worse in two cases (P1
and P2). This is because PMH-S produces only one high
quality solution, but the rest of the population has low
quality. However, over all the runs the results produced by
the technique are also reliable as reflected by the standard
deviation value.

 ST MH PMH-S PMH-P
 m sd m Sd m sd m sd

P1 7293 2046 5718 2629 7200 1816 2648 621
P2 15154 4593 9707 3593 10567 2398 3261 620
P3 15768 3490 12429 4206 11561 3299 5762 1300

Table1. Comparison of the reliability between the four techniques.

5 Conclusions

We agree with Van Valdhuizen and Lamont in [12] that the
“selection of an appropriate solution technique must follow
after a detailed examination of the problem to solve has
been accomplished to integrate both problem and algorithm
domains”. We have presented a competitive hybrid
metaheuristic for the space allocation problem using the best
features of several heuristics and a certain amount of
knowledge about the problem domain.

As with other combinatorial optimisation problems, in
the real instances of the space allocation problem it is
usually desirable to present a set of high quality solutions so
that a human administrator can decide which allocation will
be finally implemented [7]. In such situations, we suggest
two possible paths: reinitiate the hybrid metaheuristic to
find several solutions, or use the population-based
approaches.

We propose the combination of adaptive cooling
schedules in simulated annealing with population-based
techniques as an alternative technique to tackle this and
other similar combinatorial optimisation problems. This
methodology is capable of producing one single high quality
solution or a population of high-quality allocations as
discussed in section 4.5.

Over a limited CPU time, the three approaches have a
similar performance in our test problems as was shown in
Fig. 3. The advantage of the population is evident when we
allow the cooling schedule to be controlled over a maximum
number of iterations.

It is worth pointing out that in the three test problems, all
of the approaches achieved excellent solutions with respect
to space utilisation, i.e. the reduction of the penalty due to
space misuse. We contend that it is worth investigating the

applicability of these techniques to other bin-packing and
knapsack related problems.

Future work includes experiments using other space
allocation problems to establish more specific guidelines for
the parameters’ values, including the population size.
Additionally, an investigation of the multiobjective aspect
of the space allocation problem using the techniques
proposed in this paper will be carried out.

Bibliography

1. Benjamin C., Ehie I., Omurtag Y., Planning Facilities at the

University of Missoury-Rolla, Journal of Interfaces, Vol. 22,
No. 4, pp. 95-105, 1992.

2. Bland J.A., Space-Planning By Ant Colony Optimisation,
International Journal of Computer Applications in
Technology, Vol.12, No.6, pp. 320-328, 1999.

3. E.K. Burke, Varley D.B., Space Allocation: An Analysis of
Higher Education Requirements, Selected papers from the
PATAT ’97 Conference, Toronto, Canada, Lecture Notes in
Computer Science, Springer-Verlag, Vol. 1408, pp. 106-
109, 1998.

4. Burke E.K., Landa Silva J.D., The Space Allocation System
– Test Data, [Online], Available:
www.asap.cs.nott.ac.uk/ASAP/space/spacedata.html, [2001,
February 1st].

5. Burke E.K., Cowling P., Landa Silva J.D., McCollum B.,
Three Methods to Automate the Space Allocation Process in
UK Universities, Proceedings of the 3rd International
Conference on the Practice and Theory of Automated
Timetabling, PATAT 2000, Konstanz, Germany, pp. 374-
393, 2000.

6. Burke E.K., Cowling P., Landa Silva J.D., McCollum B.,
Varley D., A Computer Based System for Space Allocation
Optimisation, Proceedings of the ICC&IE 2000, The 27th
International Conference on Computers and Industrial
Engineering, Beijing, China, 11-13 October 2000.

7. Dasgupta P., Chakrabarti P.P., Desarkar S.C., Multiobjective
Heuristic Search: An introduction to Intelligent Search
Methods for Multicriteria Optimisation, Computational
Intelligence - Vieweg, 1999.

8. Giannikos G., El-Darzi E., Lees P., An Integer Goal
Programming Model to Allocate Offices to Staff in an
Academic Institution, Journal of the Operational Research
Society, Vol. 46, No. 6, pp. 713-720, 1995.

9. Osman I.H., Kelly J.P., Meta-Heuristics: Theory &
Applications, Kluwer Academic Publishers, 1996.

10.Reeves C., Hybrid Genetic Algorithms for Bin-Packing and
Related Problems, Annals of Operations Research, 63,
pp.371-396, 1996.

11.Ritzman L., Bradford J., Jacobs R., A Multiple Objective
Approach to Space Planning for Academic Facilities,
Journal of Management Science, Vol. 25, No. 9, pp. 895-
906, 1980.

12.Van Valdhuizen D.A., Lamont G.B., Multiobjective
Evolutionary Algorithms: Analyzing the State-of-the-Art,
Evolutionary Computation, Vol. 8, No. 2, pp. 125-147,
2000.

sonms
239

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

