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ABSTRACT. 
A hybrid population-based metaheuristic for the space 
allocation problem in academic institutions is presented 
that is based upon previous experiments using a range of 
techniques including hill-climbing, simulated annealing, 
tabu search and genetic algorithms. The proposed 
approach incorporates the best characteristics of each 
technique, makes an automatic selection of the 
parameters according to the problem characteristics and 
surpasses the performance of these standard techniques 
in terms of the solution quality evaluated with a penalty 
function. This approach incorporates local search 
heuristics, adaptive cooling schedules and population-
based techniques. Our experiments show that this 
technique produces competitive solutions for the space 
allocation problem. In this problem, it is often desirable 
to obtain a set of candidate solutions so that the decision 
maker can select the best among them. By controlling a 
common cooling schedule for the whole population in the 
simulated annealing component, it is possible to find one 
excellent solution or to produce a population of good 
solutions. 
 
1   Introduction 
 

Space allocation problems are a class of complex 
combinatorial optimisation problems, which can be defined 
as follows: the distribution of the available areas of space 
among a number of objects with different sizes so as to 
ensure the optimal space utilization and the satisfaction of 
additional requirements and/or constraints [5]. 

An investigation of the space allocation problem is being 
carried out in the Automated Scheduling, Optimisation and 
Planning Research Group (ASAP) at the University of 
Nottingham in the UK. The aim is to develop a 
comprehensive study of this problem to construct a 
complete model and to produce a robust framework for 
obtaining high quality solutions. A space allocation 
questionnaire was sent to 96 universities in the UK in 1996. 
An analysis of these results which highlights the 
complexity, diversity and scope of the space allocation 
problem was presented in [3]. In [5], we investigate the 
neighbourhood exploration in this problem using three 
techniques: hill-climbing, simulated annealing and a genetic 

algorithm. An initial prototype of the space allocation 
software was presented in [6]. Here, we propose a hybrid 
population-based metaheuristic that produces competitive 
results for space allocation and that might also be successful 
in other combinatorial optimisation problems.  

In the proposed technique, we combine local heuristics 
(such as hill-climbing), adaptive cooling schedules in 
simulated annealing, tabu lists, list of favourable moves and 
mutation operators. The parameters for the hybrid 
metaheuristic are automatically selected depending on the 
characteristics of the specific space allocation problem. The 
incorporation of a population in the simulated annealing 
component provides interesting results since it is possible to 
adapt the cooling schedule to favour either the generation of 
one good quality solution in short time or a set of good 
quality individuals at the expense of more computation time. 

In section 2 we give a brief description of the space 
allocation problem. Some real-world instances arising in 
academic institutions that we use as test problems are also 
presented. In section 3, we describe the hybrid metaheuristic 
and provide comparative results for our test problems. In 
section 4 we analyse the effect of incorporating a population 
in order to produce an improved approach. In section 4, we 
also analyse the control of the cooling schedule in the 
simulated annealing component of the hybrid population-
based metaheuristic to find one single high quality 
allocation or a set of very competitive solutions. In section 5 
some additional comments and conclusions are presented. 
 
2 The Space Allocation Problem 
 

2.1 A Model of the Problem 
 

We have a set of n objects and a set of m available areas of 
space, where each object O1,O2,…,On has a size given by 
S1,S2,…,Sn respectively, and each area of space A1,A2,…,Am 
has a capacity given by C1,C2,…,Cm respectively. Smax is the 
size of the largest object(s) and Cmax is the capacity of the 
largest area(s) of available space. The total area of space 
required to allocate all the objects and the total area of space 
available are given by respectively: 
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Note that the size of the objects may be changed, area 
can be added or removed, two or more areas may be merged 
and the available area may be changed through 
reconstruction‡. Then the problem is to find the optimal 
allocation of the n objects into the m available areas of 
space, given by f : O → A, where 
 
f (Oi) = Aj, if the object Oi has been allocated to the area Aj  
f (Oi) = 0, if the object Oi has not been allocated  
 

This should maximize the k objectives g1, g2, g3,…, gk 
subject to z constraints Ri  for i = 1,2,…,z, where each Ri is a 
specific constraint that affects either the location of one or 
more objects, the utilisation of a certain area(s) of space or 
both. The types of constraints or restrictions include but are 
not limited to the following: 
 
� Oi together with Oj , i.e. both objects should be allocated 

in the same area 
� Oi adjacent to Oj , i.e. the objects should be allocated in 

adjacent areas 
� Oi grouped with Oj , i.e. the objects should be allocated 

close each other 
� Oi not sharing, i.e. no other object should be sharing the 

same area of space with the object Oi 
� Oi away from Oj , i.e. these objects should be allocated far 

away from each other 
� Oi located in Aj , i.e. this object should be allocated in the 

specific area Aj 
 

The mapping function f : O → A is not usually bijective, 
e.g. more than one object might be allocated to the same 
area of space if there is enough available space and no hard 
constraint is violated. Each objective gi for i = 1,2,…,k is a 
measure of the solution’s fitness according to a specific 
evaluation criterion. For example, we may have the sum of 
penalties associated with the violated constraints. Other 
objective functions could be defined for each specific 
instance of the space allocation problem to evaluate costs, 
profits, disturbance, functionality, etc. 
 
2.2 Real-World Space Allocation Problem 
 

In the context of academic facilities, the space allocation 
problem is the allocation of resources (staff, students, 
meeting rooms, lecture rooms, special rooms, etc.) to areas 
of space such as rooms, satisfying as many 
requirements/constraints as possible. In general, the real 
instances of the space allocation problem in universities can 
be classified as one of the following: reorganisation of the 
existing allocation or construction of a complete solution. 

Reorganisation is defined as the rearrangement of the 
current space distribution among the objects and it is 
performed when either there is a requirement to improve the 
existing solution or the specifications (constraints, number 
of objects to be allocated, number of areas of space, size of 
                                                           
‡ Recostruction refers to building work to alter existing rooms. 

the objects, capacities of the areas, etc.) of the problem have 
been modified. The construction of a complete allocation is 
defined as the generation of a solution to distribute all the 
available areas of space among all the objects in the 
problem. In this paper we consider the construction of 
complete solutions. Some other similar or related real-world 
problems and the techniques used to tackle them can be 
found in [1], [2], [8] and [11]. 
 
2.3 Construction of an Allocation 
 

In many universities there exists a centralised office that 
regulates the space distribution and assigns areas of space to 
faculties, schools, departments, etc. Space officers and 
administrators (heads of departments, group leaders, etc.) at 
different levels are in charge of the construction of an 
allocation.  

The manual process to construct a complete allocation in 
academic institutions can be briefly described as follows. 
The space necessary for each resource, the available space 
in rooms, the constraints that must be satisfied (hard 
constriants) and those that are desirable to satisfy (soft 
constraints) are determined. With the aid of floor plans and 
room databases, information about the available areas of 
space is obtained (size, location, proximity, etc.). Resources 
are allocated to rooms in order of importance according to 
the specific situation. The satisfaction of space requirements 
and constraints is verified each time a resource is allocated. 
During this iterative process changes might be necessary in 
order to produce a solution that satisfies as many 
requirements and constraints as possible. The evaluation of 
a solution involves multiple criteria and in some cases this 
criteria may come from different decision-makers. The most 
common evaluation criteria are: number of allocated 
resources, efficient space utilisation, satisfaction of 
constraints and user satisfaction. Due to the nature of this 
manual process, it is common that weeks or months are 
necessary to obtain a final solution. Additional information 
regarding the space allocation process in British universities 
in available in [3]. 
 
2.4 Evaluation of a Solution 
 

In this paper we use the combination of the multiple criteria 
into a single criterion using the aggregating penalty function 
(1) to calculate the total penalty and hence to measure the 
allocation’s fitness. 
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In this function, TP  is the total penalty in the solution, 

UP is the penalty for object (resource) Oi if not allocated, 
WP is the penalty for area (room) Ai if there is space 
wastage, OP is the penalty for area (room) Ai if there is 
space overuse, DP is the penalty for changing the allocation 
of object (resource) Oi in a reorganisation problem, SCP is 
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the penalty for violating a soft constraint for object 
(resource) Oi. 

Given this penalty function, the fitness or quality of an 
allocation increases as the total penalty decreases. We wil 
use the total penalty for comparison among solutions. The 
test problems used in our experiments are described in the 
next section and all refer to the construction of completely 
new allocations. A feasible solution must have all the 
resources allocated and all hard constraints satisfied. This 
means that the penalties due to unallocated resources and 
disturbance must be equal to zero and have no effect in the 
total penalty. An optimal solution is a feasible allocation 
that minimizes the total penalty. Of course, it is usually not 
possible to satisfy all of the soft constraints. In a real space 
allocation problem, more that one optimal solution may 
exist. 
 
2.5 The Solution Structure 
 

We use the structure shown in Fig. 1 to represent an 
allocation in our algorithms. It is a string-to-string mapping 
where the key is the resource to be allocated and the value 
associated to each key is the room in which the resource is 
allocated (bin if unallocated). The constraints (hard and soft) 
are linked to the corresponding resource or room to which 
they apply. A binary constraint is assigned to the first 
resource or room following its description. For example, the 
constraint: A adjacent to B is assigned to the object A. 

 
Fig. 1. Structure of a candidate solution. 

 
2.6 Test Problems 
 

Using real data from the School of Computer Science and 
IT at the University of Nottingham, the following test 
problems (available in [4]) were used in our experiments: 
 

Problem 1. In this problem, there are 55 available rooms 
of different sizes and 55 resources to be allocated. The 
resources are distributed according to their level, indicating 
sharing and space requirements: 6 professors, 1 reader, 5 
senior lecturers, 25 lecturers, 10 secretaries and 8 technical 
staff. There are 7 hard constraints and 18 soft constraints. 

Problem 2. There are 93 resources to be allocated in 55 
available rooms. The resources are distributed as follows: 9 
common rooms, 11 laboratories, 12 meeting rooms, 6 
storage rooms, 6 professors, 1 reader, 5 senior lecturers, 25 

lecturers, 10 secretaries and 8 technical staff. There are 23 
hard constraints and 38 soft constraints. 

Problem 3. This problem consists of 115 resources and 
115 available rooms for the allocation. The resources are: 5 
research staff, 1 teaching assistant, 16 research areas, 9 
common rooms, 11 laboratories, 12 meeting rooms, 6 
storage rooms, 6 professors, 1 reader, 5 senior lecturers, 25 
lecturers, 10 secretaries and 8 technical staff. There are 32 
hard constraints and 35 soft constraints. 

In our experiments, we executed 30 runs of the 
approaches described in this paper for each test problem, but 
here we only present the best results obtained. We also 
discuss the variation between runs in the following sections.  
 
3   Designing a Hybrid Metaheuristic 
 

3.1 Previous Work 
 

Some of the first attempts to automate the space allocation 
process used linear programming techniques, for example 
Giannikos et. al. designed an integer goal-programming 
model to distribute the offices in an academic institution [8]. 
Reeves proposed the combination of Genetic Algorithms 
with simple heuristics to solve combinatorial problems with 
specific attention to the bin-packing problem [10]. More 
recently, Burke et. al. explored the use of Hill-Climbing, 
Simulated Annealing and a Genetic Algorithm to solve the 
space allocation problem in universities [5]. In that paper, 
we investigated the effect of the local search heuristic (for 
neighbourhood exploration) on the performance of these 
three methods when applied to some test instances. 
 
3.2 Conceiving the Hybrid Metaheuristic 
 

3.2.1   The Hybridisation 
 

Osman and Kelly [9] define a metaheuristic as “an iterative 
generation process which guides a subordinate heuristic by 
combining intelligently different concepts for exploring and 
exploiting the search spaces using learning strategies to 
structure information in order to find efficiently high quality 
solutions”. Our proposed hybrid metaheuristic consists of 
the following components: 
 
� Heuristic_Hill_Climbing to initialise the solution and 

achieve a certain level of quality in the initial allocation. 
� Simulated_Annealing with reheating in order to improve 

the initial solution produced by the heuristic hill-climbing 
algorithm and avoid the local optima by exploring 
different areas of the solution space. 
� Heuristic_Feasible_Move_Selection for selecting the 

neighbourhood to be explored and in consequence the 
types of move to be attempted while improving the 
current solution. A move is a modification in the current 
allocation to obtain a different solution. 
� Heuristic_Parameters_Selection to select the algorithm 

parameters according to the problem size. This heuristic 
might not produce the optimal parameter values for each 
problem, but will find a good set of parameters in general. 

sonms
234



� Mutation_Operator to modifiy the current solution by 
removing some resources from the current allocation to 
achieve a better exploration of the solution space. 

 
The pseudocode for the hybrid metaheuristic is shown 

below. Each part of this algorithm is described in more 
detail in the subsequent sections. 
 
1. An initial feasible current solution is constructed 
2. Heuristic_Parameters_Selection according to the problem size 
/***** Heuristic_Hill_Climbing component *****/ 
3. For iterations = 1 to HCC_Iterations 

a. Using Heuristic_Feasible_Move_Selection, search for a feasible 
move to modify the current solution 

b. If a feasible move was found 
i. Accept the feasible move if it improves the current solution, 

otherwise the move is rejected 
c. If no feasible move was found, increment the counter of 

Failed_Move_Attempts 
4. Make best solution = current solution 
/***** Simulated_Annealing component *****/ 
5. While Termination_Criterion not satisfied 

a. Using the control cooling schedule, the temperature is established 
b. Using Heuristic_Feasible_Move_Selection, search for a feasible 

move to modify the current solution 
i. If a feasible move was found and it improves the current 

solution 
1. Accept the move 
2. If the current solution is better than the best solution, 

make best solution = current solution 
ii. If the found feasible move worsens the current solution and the 

temperature is not zero 
1. Random acceptance of the feasible move 

iii. If no feasible move was found  
1. Increment the counter Failed_Move_Attempts 
2. If Failed_Move_Attempts > Max_Failed_Attempts 

implement the Mutation_Operator to modify the current 
solution 

 
3.2.2   Parameter Selection 
 

The component Heuristic_Parameters_Selection examines 
the problem data and sets up those parameters that are 
necessary in the subsequent components. The temperature 
parameters for the Simulated_Annealing component are set 
as follows. The maximum temperature is set to the value in 
which the probability of accepting a non-improving move is 
between 95% and 100%. This acceptance probability 
depends on the value of the variation produced in the 
solution fitness by the attempted move. Then, the maximum 
temperature is a consequence of the type and number of 
constraints in the problem and the associated penalties. For 
the test problems considered here, the maximum 
temperature is set to 1000. The decrement in the 
temperature during the cooling process is set to one fifth of 
the maximum temperature. The number of iterations after 
which the temperature is decremented is equal to the total 
number n of resources to be allocated. Once the temperature 
is equal to zero (the process is cooled), the current 
temperature is again set to be equal to the maximum 
temperature if after a certain number of iterations no 
improvement has been achieved in the solution. This 
number of iterations (called the reheat interval) is set to 10 
times the total number n of resources to be allocated. The 

number of iterations HHC_Iterations for the 
Heuristic_Hill_Climbing phase is set to be equal to the 
reheat interval parameter mentioned above. The value for 
Max_Failed _Attempts is set to one fifth of the total number 
of resources. To establish the termination criterion we note 
that in the majority of the runs with our test problems, the 
best performance of the hybrid metaheuristic is achieved if, 
after three times the reheat interval, no improvement has 
been obtained in the best solution. In our previous work [5] 
we examined the sensitivity of the hill-climbing and 
simulated annealing algorithms to these parameters. Since 
our hybrid metaheuristic is based on these two techniques, 
we used the values that produce the best results for this 
problem. 
 
3.2.3  Selection of a Feasible Move 
 

The pseudocode for Heuristic_Feasible_Move_Selection is 
shown below. This process uses the parameters calculated in 
Heuristic_Parameters_Selection, the state of the current 
solution and a list of tabu moves.  
 

If Not All Resources are Allocated 
          If Failed_Move_Attempts < Max_Failed_Attempts 
 If previous Move_Type is not ALLOCATE 
           Move_Type = Select_Move 
         Else 
 If Previous Move_Type is ALLOCATE 
           Move_Type = Select_Move 
 Else 
           Move_Type = ALLOCATE 
           Failed_Attempts_Counter = 0 
Else 
         Feasible_Move = Select_Move 
feasible move = Find_Move (Move_type) 

 
Basically, this module selects the type of move taking 

into account the number of allocated resources in the 
solution and the number of failed attempts to implement a 
specific type of move. Select_Move performs a random 
selection of the type of move among RELOCATE 
(relocation of an object), INTERCHANGE (interchange 
locations between two objects) and SWAP (swapping 
allocated objects between two areas of space). Once the type 
of move is determined, Find_Move chooses a feasible move 
(a move that keeps the current solution as feasible) of the 
selected type from the solution space. Find_Move uses a 
tabu list that keeps record of the unsuccessful attempted 
moves. The size of this list is fixed to 20 moves in our test 
problems. When the tabu list is full, the last unsuccessful 
move replaces the move that has been in the list for the 
greatest number of iterations. The selection of the move in 
Find_Move is done according to the type of move: 

 
� ALLOCATE. An unallocated object is chosen and an area 

of space is selected to allocate this object. 
� RELOCATE. An allocated object is chosen and an area of 

space is selected to change the location of the object. 
� INTERCHANGE. Two objects are selected and their 

assigned areas of space are interchanged. 
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� SWAP. Two areas of space are selected and all the 
allocated objects in one of the areas of space are allocated 
to the other and vice versa. 

 
3.2.4  Hill-Climbing Initialisation 
 

The Heuristic_Hill_Climbing component takes the initial 
solution and constructs an improved feasible allocation 
using the Heuristic_Feasible_Move_Selection component 
explained in section 3.2.3. Given the improved solution (not 
necessarily local optima) produced by this component, a 
further exploration of the solution space is accomplished in 
the subsequent phases of the hybrid metaheuristic. 
  
3.2.5  Simulated Annealing Component 
 

The Simulated_Annealing phase takes the improved feasible 
current solution obtained in Heuristic_Hill_Climbing and 
uses the cooling schedule and Heuristic_Move_Selection to 
explore the solution space and find a better allocation. Even 
if the quality of the current solution is decreased in this 
process, the best candidate solution is always maintained. 
The cooling schedule initializes the current temperature with 
a value equal to the maximum temperature and decrements 
it after a number of iterations. When the current temperature 
is equal to zero, the cooling schedule maintains this value 
while the searching process produces improvements in the 
best solution. If after a number of iterations (reheat interval), 
no improvement is possible in the best solution, the current 
temperature is again set to be equal to the maximum 
temperature. The values for the parameters in the 
Simulated_Annealing phase were defined in section 3.2.2. 
 
3.2.6  Mutation Operator 
 

The mutation operator disrupts the current solution after a 
number of failed attempts to find a feasible move. The 
disruption consists of removing from their assigned room, 
those allocated resources that contribute the highest penalty. 
This releases the area of space assigned to those resources 
so that new possibilities of allocating them can be explored 
in the Simulated_Annealing component. 
 
3.3   Hybrid Metaheuristic Performance 
 

For each test problem, we have a manually constructed 
solution that is used as a reference to establish the quality of 
the allocations produced by the algorithms. Space 
administrators helped us to construct these manual 
allocations. The total penalty in this manual solution for the 
three problems is only due to space misuse (wastage and 
overuse) since all the constraints are satisfied. To illustrate 
the effect of the hybridisation we compare it with standard 
simulated annealing implementation. Except for 
Heuristic_Hill_Climbing and the mutation operator (not 
included), the standard algorithm has the same structure as 
the Simulated_Annealing component of the hybrid 
metaheuristic (including the local search strategy, the 
cooling schedule and parameters).  

In Fig. 2 we show the results after 10 runs of each 
approach for the three test problems. A limited CPU time 
according to the problem size was given to each run. The 
bars in the graph show the contribution to the total penalty 
due to space misuse and contribution due to violation of soft 
constraints.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Solutions obtained by the standard technique (ST) and the 
hybrid metaheuristic (HM) over 10 runs. A limited CPU time 
according to the problem size was assigned to each run. The 
manually constructed allocation (MA) is shown as a reference. 
 

We observe that regarding space utilisation, it is apparent 
that both approaches achieve acceptable performance 
compared with the manual solution. The difference between 
the performance of both approaches is mostly in constraint 
satisfaction. With the exception of two solutions in test 
problem 1, even the worse solutions produced by the hybrid 
metaheuristic are better that those obtained with the 
standard technique. In all three problems, the hybrid 
metaheuristic finds solutions with a total penalty value 
nearly as low as the manually constructed solutions. 
 
4   The Population-Based Approach 
 

4.1   Adding a Population 
 

We introduce a population for the hybrid metaheuristic, the 
component Heuristic_Hill_Climbing is used to initialise 
each individual. The Simulated_Annealing phase is applied 
to each individual in the population and instead of having a 
set of parameters for each individual (this would be like a 
parallel implementation of the metaheuristic), we establish a 
set of common parameters for the whole population. These 
parameters are defined by the individual that reaches a 
stable state in both the Heuristic_Hill_Climbing and the 
Simulated_Annealing phases. The best solution achieved by 
each individual during the evolution of the population is 
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   PMH-M 

   PMH-S
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  PMH-M

60 seconds 600 seconds     300 seconds 

MH
  MH

  MH 

kept so that a set of best solutions is found. A stable state is 
when: 

 
� while in the heuristic initialisation stage, an individual 

achieves a local optima 
� during the simulated annealing phase, no move produces 

an improvement in the individual 
 
A list of favourable moves is incorporated to the 

Heuristic_Feasible_Move_Selection (in addition to the list 
of tabu moves described in section 3.2.3). This list keeps a 
historic record of the successful moves in the population so 
that the individuals can share this information among them 
and explore these potentially profitable moves. 
 
4.2   Parameters in the Population-Based Approach 
 

In the Heuristic_Hill_Climbing component, HHC_Iterations 
is determined as described in section 3.2.2 and the 
estimation is based on the individual that reaches its local 
optima first. This provides a set of highly improved 
allocations but avoids the situation where each individual 
gets stuck in its local optima.  

In the Simulated_Annealing phase, the individual that 
has not been improved over the greatest number of iterations 
controls the cooling schedule for the whole population. 
Then, the temperature is decreased after one individual 
reaches the number of iterations required (this parameter 
was explained in section 3.2.2). Similarly, when the 
temperature is zero (process cooled) the reheating 
(temperature set to the maximum value) is controlled by the 
first individual to reach the required number of iterations 
without improvement.  

This strategy of controlling the cooling schedule for the 
whole population using one individual, makes it possible to 
have a set of co-operating individuals that have the 
opportunity to react differently to the simulated annealing 
process. Having a different cooling schedule for each 
member in the population would be the same as restarting 
the algorithm, but a common cooling schedule for all 
individuals produces interesting results as discussed below. 
 
4.3 Using the Population to Control the Parameters 
 

The parameters for this population-based approach, and in 
particular the cooling schedule, have an important effect 
when deciding whether to provide one single high-quality 
solution or a set of reasonable quality solutions. Any 
individual in the population may control then the common 
parameters for the whole population. The parameters are: 
HHC_Iterations, the cooling schedule and the termination 
criterion in the Simulated_Annealing phase. We use two 
ways of controlling these parameters: 
 
� the individual that firstly comes into a stable state or 
� the last individual in the population that comes to this 

stable state  
 

Four main parameters (see section 3.2.2) are controlled: 
HHC_Iterations, the number of iterations for the cooling 
phase, the number of iterations after which the process is 
reheated and the termination criterion for the whole 
algorithm. If the parameters are determined using the 
individual that firstly comes to the stable state, then a single 
high quality solution in the population is obtained. In this 
case, the other members in the population that have not 
reached that stable state, contribute to the further 
exploration of other areas in the solution space. On the other 
hand, if the individual that comes to the stable state last is 
used to control the parameters mentioned above, a 
population of good solutions is produced. This is because all 
members in the population are already in a stable state and 
have achieved a local or near local optima. 
 
4.4 Hybrid Population-Based Metaheuristic Performance 
 

In Fig. 3 below we present the results produced by the 
hybrid metaheuristic with and without a population of 
individuals. PMH-S refers to the use of the first individual 
that comes to a stable state while PMH-M uses the 
individual that comes to this stable state last. For each test 
problem, 10 runs of the hybrid metaheuristic were executed 
and a population of 10 was used in the population-based 
approaches. A limited CPU time according to the problem 
size was given to each approach. For the hybrid 
metaheuristic, this time was split between 10 runs and for 
the population-based variants the time refers to a single run. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Solutions obtained by the hybrid metaheuristic (MH) over 
10 runs and the population-based variants (PMH-S and PMH-M) 
with a population size of 10. The CPU time shown was assigned to 
each approach according to the problem size. 

 
We note that the population-based techniques also 

produce very good solutions in terms of space utilisation for 
the three problems. The difference is then in the achieved 
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soft constraint satisfaction.  It is clear from the histograms 
that none of these techniques outperforms the others. In the 
first problem, MH and PMH-M produced the best solutions. 
However, the average performances of MH and PMH-S are 
very similar. In problem 2, both PMH-S and PMH-M offer 
the best solutions. In this case, note that the average 
performances of MH and PMH-M are similar. In the most 
difficult case (problem 3), even when the best observed 
solution is produced by the MH approach, the number of 
good solutions (total penalty about 6000) produced by the 
three approaches is similar. 

From these results it appears that the population-based 
variants offer similar performance to the single-solution 
hybrid metaheuristic and no real advantage is observed. 
However, the strategies to control the algorithm parameters 
as explained in section 4.3 are designed to offer their best 
performance over a maximum number of iterations between 
improvements rather that over the execution time. We 
illustrate the effect of the strategy used in the hybrid 
population-based metaheuristic performance in the 
following section. 
 
4.5 Single High Quality Solution vs. High Quality 
Population 
 

To observe the effect of the strategy selected to control the 
algorithm parameters, a different termination criterion is 
used. A maximum number of iterations between two 
improvements is set for each test problem. In Fig. 4 we 
present the results obtained by 10 runs of the single solution 
hybrid metaheuristic and the population-based approaches 
with a population of 10 solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Solutions obtained by the hybrid metaheuristic (MH) over 
10 runs and the population-based variants (PMH-S and PMH-M) 
with a population of 10 individuals. The indicated number of 
iterations for each problem refers to the maximum between two 
improvements. The manual allocation (MA) for each test problem 
is also shown. 

In the results of Fig. 4, it is clear that using this 
termination criterion, the population of solutions produced 
by PMH-M is effectively the best overall. For the three test 
problems, this approach finds a population of high quality 
solutions. The performance of PMH-S over the three 
problems appears to be similar, i.e. an outstanding high 
quality solution is found. This solution is clearly the best in 
the population, while the rest of the individuals have high 
total penalty values. We observe that the single-solution 
technique is also capable of producing high quality solutions 
for the three problems, but the variation on the results 
produced over several runs is also considerable. 

Populations produced by the hybrid population-based 
metaheuristic for the single high quality solution (PMH-S) 
and the one for a high quality population (PMH-M) are 
different not only with respect to the total penalty as shown 
in Fig. 4. We observe in Fig. 5 that the drawback of 
obtaining a population of good solutions is the computation 
time. It is also stressed that for all the three test problems, 
the quality of the population produced by the PMH-M 
approach is clearly better that the population produced by 
PMH-S. So, while PMH-S finds a good quality solution 
quickly, PMH-M requires more CPU time to achieve a set 
of high quality allocations. 
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Fig. 5. Performance of the hybrid population-based metaheuristic 
for a single quality solution (PMH-S) and for a high quality 
population (PMH-M) over the execution CPU time. Each point 
represents a member of the population. 
 
4.6 Some Results on Reliability 
 

It was mentioned in section 2.6 that 30 runs were executed 
for each approach with all test problems. Here we present 
some preliminary results regarding the robustness observed 
in our experiments. Table 1 shows the mean (m) and 
standard deviation (sd) of the solutions produced (in terms 
of total penalty) by each approach for the test problems (P1, 
P2 and P3). The termination criterion in this comparison is a 
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maximum number of iterations between improvements for 
each test problem. 

We observe that the hybrid metaheuristic (HM) 
overcomes the standard technique (ST). If we compare the 
hybrid population-based approach for a single quality 
solution (PMH-S) and the approach for a high quality 
population (PMH-P), it is clear that the mean and the 
standard deviation for the population are better in the second 
approach. Note also that the standard deviation is better in 
PMH-S than in MH, but the mean is worse in two cases (P1 
and P2). This is because PMH-S produces only one high 
quality solution, but the rest of the population has low 
quality. However, over all the runs the results produced by 
the technique are also reliable as reflected by the standard 
deviation value. 
 

 ST MH PMH-S PMH-P 
 m sd m Sd m sd m sd 

P1 7293 2046 5718 2629 7200 1816 2648 621 
P2 15154 4593 9707 3593 10567 2398 3261 620 
P3 15768 3490 12429 4206 11561 3299 5762 1300 

 
Table1. Comparison of the reliability between the four techniques. 
 
5   Conclusions 
 

We agree with Van Valdhuizen and Lamont in [12] that the 
“selection of an appropriate solution technique must follow 
after a detailed examination of the problem to solve has 
been accomplished to integrate both problem and algorithm 
domains”. We have presented a competitive hybrid 
metaheuristic for the space allocation problem using the best 
features of several heuristics and a certain amount of 
knowledge about the problem domain. 

As with other combinatorial optimisation problems, in 
the real instances of the space allocation problem it is 
usually desirable to present a set of high quality solutions so 
that a human administrator can decide which allocation will 
be finally implemented [7]. In such situations, we suggest 
two possible paths: reinitiate the hybrid metaheuristic to 
find several solutions, or use the population-based 
approaches. 

We propose the combination of adaptive cooling 
schedules in simulated annealing with population-based 
techniques as an alternative technique to tackle this and 
other similar combinatorial optimisation problems. This 
methodology is capable of producing one single high quality 
solution or a population of high-quality allocations as 
discussed in section 4.5.  

Over a limited CPU time, the three approaches have a 
similar performance in our test problems as was shown in 
Fig. 3. The advantage of the population is evident when we 
allow the cooling schedule to be controlled over a maximum 
number of iterations. 

It is worth pointing out that in the three test problems, all 
of the approaches achieved excellent solutions with respect 
to space utilisation, i.e. the reduction of the penalty due to 
space misuse. We contend that it is worth investigating the 

applicability of these techniques to other bin-packing and 
knapsack related problems. 

Future work includes experiments using other space 
allocation problems to establish more specific guidelines for 
the parameters’ values, including the population size. 
Additionally, an investigation of the multiobjective aspect 
of the space allocation problem using the techniques 
proposed in this paper will be carried out. 
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