
An Ant Algorithm Hyperheuristic for the Project Presentation Scheduling
Problem

Edmund Burke, Graham Kendall, Dario Landa Silva and Ross O’Brien Eric Soubeiga
Automated Scheduling, optimisAtion and Planning (ASAP) Research Group Business Modelling Group

School of Computer Science and Information Technology, KPMG LLP
University of Nottingham, Jubilee Campus, Wollaton Road 1-2 Dorset Rise

Nottingham, NG8 1BB London, EC4Y 8EN
ekb, gxk, jds, rob @ cs.nott.ac.uk eric.soubeiga @ kpmg.co.uk

Abstract- Ant algorithms have generated significant re-
search interest within the search/optimisation commu-
nity in recent years. Hyperheuristic research is con-
cerned with the development of “heuristics to choose
heuristics” in an attempt to raise the level of general-
ity at which optimisation systems can operate. In this
paper the two are brought together. An investigation of
the ant algorithm as a hyperheuristic is presented and
discussed. The results are evaluated against other hyper-
heuristic methods, when applied to a real world schedul-
ing problem.

1 Introduction

Hyperheuristic research has emerged in recent years as an
approach to increase “the level of generality at which op-
timisation systems can operate” [1]. This increase in the
level of generality could underpin a new generation of deci-
sion support systems which are applicable across a range of
problems rather than the current state of the art which tends
to focus on bespoke tailor-made systems.

We can achieve this by using a framework with a built-
in level of abstraction. A set of “low-level” heuristics are
developed which interact with a given solution to a prob-
lem, and explore its neighbourhood in the solution space.
A higher level search method, termed a hyperheuristic,
manages “the choice of which lower-level heuristic method
should be applied at any given time, depending on the char-
acteristics of the region of the solution space currently under
exploration” [11].

Recent hyperheuristic research has focused on explor-
ing the use of existing techniques and metaheuristics as hy-
perheuristics. Terashima-Marin et al. developed a construc-
tive hyperheuristic based on the genetic algorithm technique
to find indirect ways to solve exam timetabling problems
[26]. Ross et al. developed constructive hyperheuristics us-
ing learning classifier systems and genetic algorithms re-
spectively in order to learn, for a given stage of bin-packing
problems, which heuristics were more useful than others
[22, 23]. Genetic algorithm approaches have also been ex-
plored by Cowling et al. [10] and Han and Kendall [18, 19].
Other approaches have included tabu search (Burke et al.
[3]), and simulated annealing (Dowsland et al. [16]). A
graph-based hyperheuristic (Burke et al. [6]) and a custom
choice function hyperheuristic (Cowling et al. [11, 12], Gaw
et al. [17] and Soubeiga [25]) have been developed for a
variety of optimisation problems. Continued work has de-

veloped the choice function approach for use with multi-
objective problems [5].

Burke et al. [4, 7] and Petrovic and Qu [20] developed
a case-based hyperheuristic approach to timetabling prob-
lems which suggested heuristics to use based on their per-
formance in previous similar situations which were stored
in a case base.

A more detailed overview of hyperheuristic methods can
be seen in [1].

As far as the authors are aware, Ant Colony Optimisa-
tion has not been explored elsewhere within the context of
hyperheuristics. The approach was introduced by Dorigo
[13] and was inspired by the behaviour of real ants in na-
ture.

Ant colony techniques have been successfully applied
to many problems including the Travelling Salesman Prob-
lem [14], Quadratic Assignment Problem [14], Job-Shop
Scheduling Problems [15], generic constraint satisfaction
problems [21], University Course Timetabling Problems
[24], cutting and packing [2] and graph colouring problems
[9]. The standard technique is a constructive one: A colony
of ants begins with no solutions. Each ant constructs a solu-
tion by making decisions stochastically, using existing prob-
lem constraints and heuristics combined with experience
(which is analogous to a substance called pheromone). The
colony then reinforces decisions in the construction process
according to their successes by adding pheromone, which
also decays to mitigate against poorer decisions.

Our purpose in this paper is to investigate the ant al-
gorithm technique as a means of constructing effective se-
quences of heuristic moves.

Some parallels can perhaps be drawn with the genetic al-
gorithm hyperheuristic technique [10, 18, 19, 23, 26]. This
constructs a population of chromosomes in which genes
represent heuristics, and therefore chromosomes represent
sequences of heuristics. Our ant algorithm hyperheuristic
involves a population of ants each of which produces a se-
quence of heuristics stochastically.

We may also draw parallels from an unusual application
of ants to the graph colouring problem [8, 9]. In [9] a stan-
dard ant colony constructs complete solutions and learns
from its group efforts as to how to create better solutions.
However, in [8] a colony of ants is released upon an ex-
isting (and not necessary feasible) solution and traverses
the graph, making local-search repair efforts to improve
it. In the same way, we equip a colony of ants with pre-
constructed solutions and let them collectively learn about

the heuristic space, using this knowledge to guide their se-
lection of appropriate low level heuristics to improve their
given solutions.

We test our ant algorithm hyperheuristic on the Project
Presentation Scheduling Problem which is described in sec-
tion 2. The algorithm itself is described in section 3. Section
4 presents our results and analysis of our experiments, with
comparisons to other hyperheuristics, and conclusions are
presented in section 5.

2 The Project Presentation Scheduling Prob-
lem

The Project Presentation Scheduling Problem is introduced
in [12]. Students on the Computer Science course at the
University of Nottingham are required to undertake a su-
pervised year-long project as part of their undergraduate fi-
nal year. The problem is concerned with the scheduling of
an individual ten-minute presentation (with five minutes for
questions) which is given before at least three members of
academic staff (known as the 1st Marker, the 2nd Marker
and the Observer), preferably one of whom is the supervi-
sor of the project. Presentations are grouped into hour-long
sessions. The problem was formulated and hyperheuristics
applied to the task of assigning presentations to sessions in
available rooms with the three members of academic staff
with the (soft constraint) aims of distributing an equal num-
ber of presentations, sessions andbad sessions (i.e. the 9-
10am and 5-6pm sessions) to each academic staff member,
maximising the number of students assessed by their own
supervisor and also maximising the amount of interest the
trio of staff members would have in the presentations they
have to mark in a particular session.

Three real-life instances of this problem are available at
http://www.cs.nott.ac.uk/∼rob/ppsproblem.html, which in-
crease in difficulty, labelled csit0, csit1 and csit2 [12, 25].
In csit0 there are 151 students, 26 staff members, 80 avail-
able sessions and 2 rooms; in csit1 there are 240 students,
24 staff members, 36 sessions and 2 rooms, and csit2 is the
same as csit1 but with two staff members declared absent
during the presentation timetable. In the latter problems
(csit1 and csit2) the constraints are tighter, with more pre-
sentations to fit into less rooms and less staff members being
available.

A feasible solution is created, and the hyperheuristic
makes use of eight iterative heuristics to explore the solu-
tion space thereafter:

h1 Replace one random lecturerj1 in a random session
in which he/she is scheduled for presentations with a
second random lecturerj2.

h2 The same ash1 but j1 has the largest number of
scheduled sessions.

h3 The same ash2 but the session chosen is the one
wherej1 has the smallest number of presentations.

h4 Move a random presentationi from its current room-
session assignment to another.

h5 The same ash4 but presentationi is that for which
the sum of presentations involving all three involved
lecturers is smallest of all sessions.

h6 The same ash5 but the new session is one in which
at least one of the involved lecturers is already sched-
uled to mark presentations.

h7 Swap the 2nd marker of one presentation with the ob-
server of another (a supervisor may not be removed).

h8 Swap the 1st marker of one presentation with the 2nd
marker of another (a supervisor may not be removed).

The problem is formulated as a minimisation problem.
This formulation, the constructive heuristic used to create
the initial feasible solution and the eight iterative heuristics
presented here are all the same as those used in [12, 25].

3 Methodology

We create a network in which vertices represent heuristics
and directional transitional arcs exist between heuristics if
it is possible to apply one immediately after the other. We
then create a number of ants, each of which represents a
hyperheuristic agentsupplied with an initial solution in the
solution space and access to the heuristics and evaluation
functions. The ants are scattered uniformly among the ver-
tices of the network.

The ants then construct a sequence of heuristics (apath)
by traversing the network. At each decision point, each ant
selects the next vertex it will visit, traverses the arc to that
vertex, and applies the heuristic represented by that vertex
to its current solution. Vertices and arcs may freely recur
within the path.

After each ant has visited a certain number of heuristics,
the ant pauses to analyse the path it has just traversed and
to lay an amount of pheromone on each edge in that path
according to the improvement in the quality of the solution
during the entire path. Each ant proceeds to generate its next
path. We term the time taken between all ants beginning
their paths and all ants completing their paths as acycle, and
the algorithm continues for as many cycles as is required.

In the standard ant algorithm each successive vertexj is
selected from an ant on vertexi using a probability calcu-
lated by employing the pheromone value on the arc from
vertex i to vertexj, which we will write asτij , and some
form of heuristic information known in advance (in the
Travelling Salesman Problem this is calledvisibility) about
vertex j, which we will write ηj (illustrated in Figure 1).
Since the hyperheuristic method has no knowledge of each
low-level heuristic’s potential in advance, and since this po-
tential will vary as the colony traverses the solution space,
the visibility function must be initially impartial and contin-
ually adaptive.

At the end of each cycle all of the ants relocate in the
solution space to the best solution found during that cycle.
This step does not involve updating visibility or pheromone
information but is instead specifically intended to restrict
exploration and keep the ants in roughly the same area of

Figure 1: The information available at each decision point.

the solution space during a cycle in order to keep the col-
lective visibility and pheromone information as relevant as
possible.

For the same reason, the system starts again at the vertex
in the network whose heuristic discovered that best solution,
i.e. if heuristichx causes an ant to find the best solution
of the cycle, all ants will begin the next cycle at vertexx,
in order that if the first heuristichy of an ant’s new tour
produces an improvement, pheromone will be laid on the
arc(x, y).

At the decision level an ant may choose to reject a new
solution it discovers if it is poorer than the ant’s current so-
lution. If a solution is rejected, we punish the visibility of
the heuristic which caused the detriment of solution qual-
ity but for the purposes of laying pheromone we ignore the
arc. That is, if an ant performs heuristicshx andhy, and
hy leads to a worse solution, the solution is rejected and the
visibility of heuristichy is punished. If a third heuristichz
is chosen and leads to a better solution, pheromone will be
laid on edge(x, z) and not(x, y) or (y, z).

Without this criterion the ant algorithm hyperheuristic is
effectively an Any Moves (AM) Hyperheuristic, i.e. the hy-
perheuristic accepts any heuristic move, regardless of any
improvement, at the decision level. With this criterion the
ant algorithm hyperheuristic is an Only Improving (OI) Hy-
perheuristic, i.e. at the decision level the hyperheuristic ac-
cepts only new solutions which are better than the current
solution. Previous research [25] indicates that OI hyper-
heuristics may be more restricted and more likely to be
trapped within local optima, while at the decision level there
is nothing to prevent AM hyperheuristics from exploring ar-
eas of the solution space of progressively lower quality.

The ant algorithm hyperheuristic is outlined in the fol-
lowing pseudo-code:

1. Initialise

Sett := 0. {t is the heuristic calls counter}.
SetLP := 0. {LP is the length of a path}.
For every vertexj set an initial valueηj = 0.

Scatter them ants uniformly on then vertices.

Initialise a solutionS, and best solution,Sb.

Fork := 1 tom do

- Provide a copy of solutionS, Sk, to each ant.

- Apply heuristicj, where vertexj is antk’s cur-
rent location, toSk.

- Update thekth ant’s location in the solution
space to the resultingS′k, and updateηj accord-
ing to equation 1.

Sett := t+m.

For every edge(i, j) set an initial valueτij(t) = 0.

2. Heuristic Exploration

Fork := 1 tom do

- Choose the heuristicj for antk to move to, with
probabilityprobabilityijk(t) given by equation
7 {at decision pointt thekth ant is on vertexi}.

- Apply heuristicj to solutionSk to produceS′k.

- If (Only Improvement &S′k is worse thanSk)

then RejectS′k.

else AcceptS′k.

- If (S′k is accepted)

- Move antk to vertexj.

- SetSk := S′k.

- If (S′k is better thanSb)

- SetSb := S′k.

3. Visibility Update

- Fork := 1 tom do

- Updateηj according to equation 1.

- SetLP := LP + 1.

- Sett := t+m.

4. Pheromone Update

- If (LP = n)

- SetLP := 0.

- Updateτij(t) for all accepted arcs(i, j) ac-
cording to equation 2.

- SetS := Sb {Sb is the best solution found
during this cycle).

5. Stopping Condition

- If (t < tmax)

- Goto step 2.

else

- Output best solutionSb.

- Stop.

Figure 2: Three ants are distributed among four vertices,
each with a copy of an initial solutionS. To provide an
initial visibility value, each ant applies the heuristic corre-
sponding to their location to their copy ofS.

The overall approach is illustrated in Figures 2, 3, 4 & 5.
We use a visibility function inspired by the choice func-

tion hyperheuristic [11, 12, 25], which uses information
based on solo and sequential performance of the different
heuristics. As pheromone corresponds to the sequential per-
formance, we use a visibility functionηj corresponding to
heuristicj’s individual performance, and update this value
after all ants have completed their moves:

ηj(t) = γηj(t−m) +
m∑
k

Ikj(t)
Tkj(t)

(1)

wherem is the number of ants in the colony (i.e. the num-
ber of heuristic calls made since the last update)Ikj(t) is
the improvement produced by heuristicj on antk’s cur-
rent solution at decision pointt (which could be negative),
Tkj(t) is the number of CPU seconds heuristicj took to
run on antk’s current solution at decision pointt andγ is a
constant weight valued between 0 and 1 which emphasises
recent performance as a weight emphasising recent perfor-
mance. (The notationα is sometimes used (e.g. [25]) within
the solo factor of the choice function. However, since both
the choice function hyperheuristic and ant algorithm tech-
nique make use of the symbolsα andβ to weigh contribut-
ing aspects, we useγ for the aspect of the choice function
hyperheuristic given here and useα andβ for aspects of the
ant algorithm technique given below.)

Our visibility function draws upon the fact that all ants
moving to a specific vertex or traversing a specific arc add
their visibility contributions together and with equal weight.

The choice function hyperheuristic [25] also usually in-
cludes a diversification contributor which encourages the
use of heuristics which have not been recently used. Since
we use several ants, a probabilistic selection procedure and
not many heuristics (in this case, eight) we have anticipated
that there will already be sufficient diversity.

The ants share their confidence in the sequences of
heuristics using pheromone, which also decays to clear
away older preferences and emphasise recent performance
of low-level heuristics. Once all ants have completed their
paths (i.e. when the cycle is completed; there aren heuris-
tics and thereforen heuristic calls in a path for each ant,
so this occurs everym · n heuristic calls), the amount of

Figure 3: Ant 1 chooses to remain at vertex/heuristic
h1, Ants 2 and 3 respectively choose to move to ver-
tices/heuristicsh4 andh2. The ants apply these heuristics
to their respective current solutions and update the visibility
values of heuristicsh1, h2 andh4.

Figure 4: Ants 1, 2 and 3 respectively choose to move to
vertex/heuristicsh3, h2 andh1. As in Figure 2, visibility
values for these three heuristics are updated.

Figure 5: A representation of the solution space, withS rep-
resenting the ants’ solution at the beginning of the cycle, and
each ant having traversed their own path. Pheromone will
now be laid on the arcs(1, 1), (1, 3), (2, 4), (4, 2), (3, 2)
and(2, 1) in proportion to the improvement between the fi-
nal solutions andS. Assuming the best solution of the cycle
was discovered as Ant 2 applied heuristich4, the ants will
adopt this best solution, which will be the newS in the next
cycle.

pheromone on each arc (denoted byτij(t) for the arc be-
tween heuristici and heuristicj at decision pointt) is ad-
justed as follows:

τij(t) = (1− ρ)τij(t−m ·n) +
m∑
k

#ij(Pk(t)) · I(Pk(t))
T (Pk(t))

(2)
whereρ is the pheromone evaporation coefficient,Pk(t) is
the path antk traversed during the cycle ending at decision
point t, #ij(Pk(t)) is the number of times the arc(i, j) oc-
curs during pathPk(t), I(Pk(t)) is the improvement pro-
duced by the heuristics antk used during its last path (i.e.
the difference between the best solution quality found dur-
ing this path and the best solution quality found at the end
of the previous cycle), andT (Pk(t)) is the duration of that
path in CPU seconds. Thus, for a given ant’s path, an arc
traversed twice in that path receives twice the amount of
pheromone as an arc traversed once in the same path.

The ant’s actual decision-making process requires the al-
gorithm to combine the visibility and pheromone values for
each of the arcs the ant could potentially traverse into a sin-
gle positive value, in order to be properly used in a roulette
probability system. This becomes an issue when it is pos-
sible for one or more heuristics to find a solution of poorer
quality to the current solution, whether to escape local op-
tima or otherwise encourage a diverse search of the solution
space. The issue is concerned with negative values ofηj
or τij . Our conversion process is borrowed from the choice
function variant “RouletteFunction” [11]. We first calculate
a valueV for each heuristicj, from the previous heuristici,
using the formula:

Vij(t) = αηj(t) + βτij(t) (3)

From this we calculate a positive value (PV) using the for-
mula

PVij(t) = max{Vij(t), QσVij(t)} (4)

where

Q =
∑
hmax{0, Vih(t) + ε}

10 · n
(5)

(whereh ∈ H, the set of low-level heuristics, andn =
|H|), and ε and σ are constants included to ensure that
poor-performing heuristics have a small non-zero proba-
bility of being selected, proportionally enhanced byQ if
other heuristics are performing particularly well. We setε
to 0.001 to give a small boost to heuristics whose valueV
= 0, andσ to 1.001 to ensure that is a monotonic conver-
sion ofV values to positiveV values: negativeV values to
the range 0 to 1, zero values to 1, and positive values to the
range 1 to 8.

We include two further safeguards to promote the choos-
ing of heuristics and to promote the exploration of arcs
which may not yet have been selected:

If arc (i, j) has not yet been selected, i.e.PVij(t) = 0,
we temporarily assign toPVij(t) the value ofPVih(t),
whereh ∈ H and(i, h) is the current highest-ranking arc in
the set of arcs beginning at vertexi and having been previ-
ously selected.

PVij(t) = max{maxh∈HPVih(t), 0} (6)

If none of the heuristics are performing well, i.e.Q = 0, we
set allPV values to 1, such that all heuristics have an equal
probability of selection. Finally, the probability of any arc
(i, j) being selected is

probabilityijk(t) =
PVij(t)∑
h∈H PVih(t)

(7)

4 Experiments and Results

All algorithms were coded in Microsoft Visual C++ version
.NET 2003 and all experiments were run on a PC Pentium
IV 1.8GHz with 256MB RAM running under Microsoft
Windows 2000 version 5. The stopping condition used in
[12, 25] was 600 seconds of CPU time on PC Pentium III
1.0GHz with 128MB RAM. This equated to approximately
1000 heuristic calls, which we use as our stopping condi-
tion; this equates to approximately 30-40 seconds using our
current framework.

We use the same constructive heuristic as in [12, 25],
which includes random elements. In order to keep our work
consistent with the results in these papers, 50 solutions were
created for each of the three problem instances and the 5
nearest to the initial solution in [12, 25] selected.

As we are using 8 low level heuristics in the Project
Presentation Scheduling Problem, our ant algorithm hyper-
heuristics use a graph with 8 vertices. Our correspond-
ing path length is 8 heuristic calls. We consider the num-
ber of ants to be a parameter, and we experiment with be-
tween 3 and 5 ants. This range is deliberately smaller than
might typically be considered for an approach based on Ant
Colony Optimisation. The necessity of this range is that we
understand our exploration of the solution space to be un-
predictably dynamic and non-deterministic. Our values are
chosen to provide enough ants to demonstrate a collective
behaviour but not so many that we have too few cycles with
which to learn within the stopping condition of 1000 heuris-
tic calls.

Every hyperheuristic was run 10 times, twice using each
initial solution, on each of the three problem instances de-
scribed in section 2. In all ant algorithm hyperheuristics,
each ant begins with the same initial solution.

The hyperheuristics are the Choice Function Hyper-
heuristic (CF) and a Simple Random Hyperheuristic (SR)
presented in [12, 25] for comparative purposes and our Ant
Algorithm Hyperheuristic with 3-5 ants (AA3-AA5). The
hyperheuristics were also distinguished by their solution
acceptance criteria: either the hyperheuristic accepts Any
Move (AM), or it accepts only improving moves (OI).

We assign toα, β, γ respectively the values 0.7, 0.7,
0.7, since early experiments did not show any discernable
patterns but 0.7 appeared to be generally good.

The results presented in Table 1 show the worst, mean
average and best results from each algorithm applied to the
three problem instances. The mean initial solution quality
is supplied at the top of the respective problem instance’s
column. The best result from each column is highlighted in
bold.

It is immediately evident that in the Any Moves (AM)

Table 1: Results of hyperheuristic experiments (best results for each column are in bold).

Instance:csit0 Instance:csit1 Instance:csit2
Initial solution quality: -895.5 Initial solution quality: -2428.4 Initial solution quality: -940.39

Worst Average Best Worst Average Best Worst Average Best

CF (AM) -1421.1 -1515.17 -1620.48 -2524.6 -2715.79 -2894.8 -1179.6 -1403.5 -1529.25
CF (OI) -1074.37 -1555.46 -1669.64 -2854.6 -2959.85 -3058.7 -1650.6 -1712.19 -1794
SR (AM) -1105.5 -1346.91 -1503.18 -2372.2 -2542.84 -2712.6 -1039.4 -1194.35 -1351.2
SR (OI) -1598.08 -1672.44 -1757.39 -2861.3 -2999.02 -3062.3 -1661.4 -1733.76 -1783.15

AA3 (AM) -1547.28 -1628.31 -1669.39-2816.15 -2903.66 -3001.8 -1566.85 -1655.39 -1721.95
AA4 (AM) -1541.6 -1589.54 -1657.05 -2827 -2912.9 -3010.6 -1560.15 -1642.98 -1725.6
AA5 (AM) -1534.53 -1594.32 -1679.81 -2838.1 -2913.53 -2998.6 -1634.6 -1669.93 -1698.8
AA3 (OI) -1639.2 -1665.02 -1707.29 -2943.75 -3004.55 -3051.5 -1691.3 -1758.1 -1809.4
AA4 (OI) -1577.75 -1645.53 -1705.16 -2894.2 -2993.17 -3049.8 -1676.8 -1754.37 -1788.8
AA5 (OI) -1579.83 -1642.03 -1681.7 -2913.35 -2995.07 -3059.8 -1665.2 -1751.38 -1835.45

case, our Ant Algorithm Hyperheuristics outperform both
the Simple Random and the Choice Function Hyperheuris-
tics. In the Only Improvement (OI) case the Ant Algo-
rithm Hyperheuristic is merely competitive, though it does
perform better on average in two of the three problem in-
stances. Specifically, in two of the three problem instances
(csit1 and csit2) the Ant Algorithm Hyperheuristic with 3
ants performs better than the Ant Algorithm Hyperheuris-
tics with 4 or 5 ants in the average case. However, in both
problem instances the Ant Algorithm Hyperheuristic with 5
ants performs better than the Ant Algorithm Hyperheuris-
tics with 3 or 4 ants in the best case, and in instance csit2
produces the best solution of all experiments.

We note that on average the Ant Algorithm Hyperheuris-
tic results worsen as the number of ants increases. After
each cycle the colony adopts the best solution found by the
colony during that cycle. Each cycle is thus an exploration
of the local area around the previous best solution. The
more ants that are used, the broader and more intense that
exploration becomes, and also the greater the number of so-
lutions to select from. Larger colonies effectively consider
the local problem for longer, and may make better decisions
per cycle, but at the cost of making slower progress through
the solution space. We speculate that in more difficult prob-
lem instances larger colonies may be preferable, but that in
the problem instances explored here 3 ants are sufficient.

It was difficult to establish any other particular trends.
During our experimentation we considered a number of vis-
ibility functions and ways of updating the pheromone levels,
but no significant differences in results were reached. It is
possible that this could be attributed to our stopping con-
dition of 1000 heuristic calls. With 8 low-level heuristics
there are 64 arcs upon which the ants can lay pheromone,
and some heuristic calls will initially be used providing ini-
tial visibility information, so on average each arc will only
be used 15.625 times per run, which may be too few to ad-
equately learn the dynamics of the search space. Equally
since each ant explores 8 arcs per cycle, there will only be
1000−8

8·m = 24.8-41.3 cycles, and so perhaps pheromone in-
formation is updated too infrequently to make a difference.

If this is the case then the colony may still beinexperi-

encedby the end of the run, and the selection of each new
low-level heuristic is still more significantly decided by ran-
dom probabilities than by the functions which decide those
probabilities. This would explain why the Simple Random
Hyperheuristic (Only Improving) produced a solution better
than that of the Ant Algorithm Hyperheuristics in instance
csit0.

It can be noted, however, that despite thisinexperience,
the results of our experiments are superior to those pub-
lished in [12, 18, 25].

5 Conclusions

We have introduced a new hyperheuristic technique which
has been shown to be competitive or better compared
against other hyperheuristics in the context of an established
problem from the literature. We have also provided a basis
for exploring the idea of using a population of “ant” hy-
perheuristic agents which learn from each other to improve
their explorations of the solution and heuristic spaces.

The Ant Algorithm Hyperheuristic shows promise as a
technique, and the work described in this paper also gener-
ates a number of future research directions. For example,
a more effective visibility function might be explored. At
present the method includes manually set parameters but
it would be possible to explore self-adaptive parameters.
Since the number of ants used by the hyperheuristic was
shown to have an effect on the final solution quality, an
investigation on the scalability of our approach, that is, to
find the relation between the number of active hyperheuris-
tic agents (ants) and the problem size would also appear to
be a useful research direction.

Ongoing research will investigate each of these ideas in
the contexts of a wider range of real-world problems.

Acknowledgements

We would like to thank David Redrup, who originally
helped develop the Ant Algorithm Hyperheuristic concept;
Julie Greensmith, for her support; Dr. Matthew Hardy and
Dr. Steven Bagley, for assistance in programming, and

the EPSRC for sponsorship of this research (grant number
GR/N36387/01).

Bibliography

[1] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross and S.
Schulenburg. Handbook of Metaheuristics, chapter 16,
Hyperheuristics: An Emerging Direction in Modern
Search Technology, pp. 457-474. Kluwer Academic
Publishers, 2003.

[2] E. Burke and G. Kendall, Applying Ant Algorithms
and the No Fit Polygon to the Nesting Problem, Pro-
ceedings of 12th Australian Joint Conference on Ar-
tificial Intelligence, Sydney, Australia, December 6-
10, 1999, Lecture Notes in Artificial Intelligence vol.
1747, Foo, N. (Ed), pp. 453-464, 1999.

[3] E. Burke, G. Kendall and E. Soubeiga, A Tabu-Search
Hyperheuristic for Timetabling and Rostering, Journal
of Heuristics volume 9 issue 6, pp. 451-470, 2003.

[4] E. Burke, M. Dror, S. Petrovic and R. Qu, Hybrid
Graph Heuristics in a Hyper-Heuristic Approach to
Exam Timetabling, in The Next Wave in Comput-
ing, Optimization and Decision Technologies (eds.
B.L. Golden, S. Raghavan & E.A. Wasil), pp. 79-92,
Springer 2005.

[5] E. Burke, J.D. Landa Silva and E. Soubeiga, Multi-
objective Hyper-heuristic Approaches for Space Al-
location and Timetabling, to appear in: Ibaraki
T., Nonobe K., Yagiura M. (eds.), Meta-heuristics:
Progress as Real Problem Solvers, Springer, 2005.

[6] E. Burke, A. Meisels, S. Petrovic and R. Qu, A Graph-
Based Hyper Heuristic for Timetabling Problems. Ac-
cepted for publication in the European Journal of Op-
erational Research, 2005.

[7] E. Burke, S. Petrovic and R. Qu, Case Based Heuris-
tic Selection for Timetabling Problems. Accepted for
publication in the Journal of Scheduling, 2005.

[8] F. Comellas and J. Ozn, An Ant Algorithm for the
Graph Colouring Problem, ANTS’98 From Ant
Colonies to Artificial Ants; in proceedings of the First
International Workshop on Ant Colony Optimization,
Brussels, 1998.

[9] D. Costa and A. Hertz, Ants can colour graphs, Journal
of the Operations Research Society 48, pp. 295-305,
1997.

[10] P. Cowling, G. Kendall and L. Han, An investiga-
tion of a Hyperheuristic Genetic Algorithm Applied
to a Trainer Scheduling Problem. Proceedings of the
Congress on Evolutionary Computation 2002, CEC
2002, pp. 1185-1190, 2002.

[11] P. Cowling, G. Kendall and E. Soubeiga, A Hyper-
heuristic Approach to Scheduling a Sales Summit. Se-
lected papers of Proceedings of the 3rd International

Conference on the Practice And Theory of Automated
Timetabling, Springer LNCS vol. 2079, pp. 176-190,
2001.

[12] P. Cowling, G. Kendall and E. Soubeiga, Hyperheuris-
tics: A Tool for Rapid Prototyping in Scheduling and
Optimisation. Proceedings of the 2nd European Con-
ference on EVOlutionary computation for Combinato-
rial OPtimisation. EvoCop 2002, Springer LNCS vol.
2279, pp. 1-10, 2002.

[13] M. Dorigo, Optimization, learning and natural algo-
rithms, Ph.D. Thesis, Politecnico di Milano, Italy,
1992.

[14] M. Dorigo, V. Maniezzo and A. Colorni, The Ant Sys-
tem: Optimization by a colony of cooperating agents,
IEEE Transactions on Systems, Man and Cybernetics
Part B, vol. 26, no. 1, 1996, pp. 1-13.

[15] M. Dorigo, V. Maniezzo and A. Colorni. Distributed
optimization by ant colonies Proceedings of the first
European Conference on Artificial Life Paris, ed. by
FJ Varela and P Bourgine, MIT/Press/Bradford Books,
Cambridge, Massachusetts: pp. 134-142, 1992.

[16] K. Dowsland, E. Soubeiga and E. Burke, Solving a
shipper rationalisation problem with a simulated an-
nealing hyperheuristic. Accepted for publication in the
European Journal of Operational Research, 2005.

[17] A. Gaw, P. Rattadilok and R. Kwan, Distributed
Choice Function Hyper-heuristics for Timetabling and
Scheduling, Proceedings of the 5th International Con-
ference on the Practice and Theory of Automated
Timetabling (PATAT’04), pp. 495-497, 2004.

[18] L. Han and G. Kendall, An Adaptive Length Chromo-
some Hyperheuristic Genetic Algorithm for a Trainer
Scheduling Problem, SEAL2002: pp. 267-271, 2002.

[19] L. Han and G. Kendall, Guided Operators for a
Hyper-Heuristic Genetic Algorithm. In proceedings
of AI-2003: Advances in Artificial Intelligence. The
16th Australian Conference on Artificial Intelligence
(AI’03) (eds Tams D Gedeon and Lance Chun Che
Fung), Perth, Australia, pp. 807-820, 3-5 Dec 2003.

[20] S. Petrovic and R. Qu, Case-Based Reasoning as a
Heuristic Selector in a Hyper-Heuristic for Course
Timetabling Problems, Proceedings of the 6th Inter-
national Conference on Knowledge-Based Intelligent
Information Engineering Systems and Applied Tech-
nologies (KES’02), vol. 82, Milan, Italy, pp. 336-340,
Sep 16-18, 2002.

[21] S. Pimont and C. Solnon, A Generic Ant Algorithm
for Solving Constraint Satisfaction Problems, Abstract
Proceedings of ANTS’ 2000 From Ant Colonies to Ar-
tificial Ants: Second International Workshop on Ant
Algorithms, pp. 100-108, 2000.

[22] P. Ross, S. Schulenburg, J. G. Marin-Blzquez and E.
Hart, Hyper-heuristics: learning to combine simple
heuristics in bin-packing problems. In Proceedings of
the Genetic and Evolutionary Computation Confer-
ence (GECCO’02), pp. 942-948, 2002.

[23] P. Ross, S. Schulenburg, J. G. Marin-Blzquez and
E. Hart, Learning a procedure that can solve hard
bin-packing problems: a new GA-based approach to
hyper-heuristics. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’03),
pp. 1295-1306, 2003.

[24] K. Socha, J. Knowles and M. Sampels, A MAX-MIN
Ant System for the University Course Timetabling
Problem, Proceedings of the Third International
Workshop on Ant Algorithms (ANTS’02), Springer
LNCS vol. 2463, pp. 1-13, 2002.

[25] E. Soubeiga, Development and Application of Hyper-
heuristics to Personnel Scheduling, Ph.D. thesis, Uni-
versity of Nottingham School of Computer Science,
2003.

[26] H. Terashima-Marin, P. Ross and M. Valenzuela-
Rendn, Evolution of Constraint Satisfaction Strate-
gies in Examination Timetabling, Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO’99), vol. 1, pp. 635-642, 1999.

