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Abstract- Ant algorithms have generated significant re- veloped the choice function approach for use with multi-
search interest within the search/optimisation commu- objective problems [5].

nity in recent years. Hyperheuristic research is con- Burke et al. [4, 7] and Petrovic and Qu [20] developed
cerned with the development of ‘heuristics to choose a case-based hyperheuristic approach to timetabling prob-
heuristics’ in an attempt to raise the level of general- lems which suggested heuristics to use based on their per-
ity at which optimisation systems can operate. In this formance in previous similar situations which were stored
paper the two are brought together. An investigation of in a case base.

the ant algorithm as a hyperheuristic is presented and A more detailed overview of hyperheuristic methods can
discussed. The results are evaluated against other hyper- be seen in [1].

heuristic methods, when applied to a real world schedul- As far as the authors are aware, Ant Colony Optimisa-

ing problem. tion has not been explored elsewhere within the context of
hyperheuristics. The approach was introduced by Dorigo

1 Introduction [13] and was inspired by the behaviour of real ants in na-
ture.

Hyperheuristic research has emerged in recent years as arAnt colony techniques have been successfully applied
approach to increase “the level of generality at which opto many problems including the Travelling Salesman Prob-
timisation systems can operate” [1]. This increase in them [14], Quadratic Assignment Problem [14], Job-Shop
level of generality could underpin a new generation of deciScheduling Problems [15], generic constraint satisfaction
sion support systems which are applicable across a rangepsbblems [21], University Course Timetabling Problems
problems rather than the current state of the art which tenf4], cutting and packing [2] and graph colouring problems
to focus on bespoke tailor-made systems. [9]. The standard technique is a constructive one: A colony
We can achieve this by using a framework with a built-of ants begins with no solutions. Each ant constructs a solu-
in level of abstraction. A set of “low-level” heuristics aretion by making decisions stochastically, using existing prob-
developed which interact with a given solution to a problem constraints and heuristics combined with experience
lem, and explore its neighbourhood in the solution spacéwhich is analogous to a substance called pheromone). The
A higher level search method, termed a hyperheuristicolony then reinforces decisions in the construction process
manages “the choice of which lower-level heuristic methodccording to their successes by adding pheromone, which
should be applied at any given time, depending on the chaalso decays to mitigate against poorer decisions.
acteristics of the region of the solution space currently under Our purpose in this paper is to investigate the ant al-
exploration” [11]. gorithm technique as a means of constructing effective se-
Recent hyperheuristic research has focused on expl@uences of heuristic moves.
ing the use of existing techniques and metaheuristics as hy- Some parallels can perhaps be drawn with the genetic al-
perheuristics. Terashima-Marin et al. developed a construgerithm hyperheuristic technique [10, 18, 19, 23, 26]. This
tive hyperheuristic based on the genetic algorithm technigu®nstructs a population of chromosomes in which genes
to find indirect ways to solve exam timetabling problemgepresent heuristics, and therefore chromosomes represent
[26]. Ross et al. developed constructive hyperheuristics usequences of heuristics. Our ant algorithm hyperheuristic
ing learning classifier systems and genetic algorithms révolves a population of ants each of which produces a se-
spectively in order to learn, for a given stage of bin-packinguence of heuristics stochastically.
problems, which heuristics were more useful than others We may also draw parallels from an unusual application
[22, 23]. Genetic algorithm approaches have also been ext ants to the graph colouring problem [8, 9]. In [9] a stan-
plored by Cowling et al. [10] and Han and Kendall [18, 19]dard ant colony constructs complete solutions and learns
Other approaches have included tabu search (Burke et gibm its group efforts as to how to create better solutions.
[3]), and simulated annealing (Dowsland et al. [16]). AHowever, in [8] a colony of ants is released upon an ex-
graph-based hyperheuristic (Burke et al. [6]) and a custorating (and not necessary feasible) solution and traverses
choice function hyperheuristic (Cowling et al. [11, 12], Gawthe graph, making local-search repair efforts to improve
et al. [17] and Soubeiga [25]) have been developed foria In the same way, we equip a colony of ants with pre-
variety of optimisation problems. Continued work has deeonstructed solutions and let them collectively learn about



the heuristic space, using this knowledge to guide their se-h; The same a%, but presentation is that for which
lection of appropriate low level heuristics to improve their the sum of presentations involving all three involved
given solutions. lecturers is smallest of all sessions.

We test our ant algorithm hyperheuristic on the Project
Presentation Scheduling Problem which is described in sec-l6
tion 2. The algorithm itself is described in section 3. Section
4 presents our results and analysis of our experiments, with

comparisons to other hyperheuristics, and conclusions arey,_ swap the 2nd marker of one presentation with the ob-
presented in section 5. server of another (a supervisor may not be removed).

The same ags but the new session is one in which
at least one of the involved lecturers is already sched-
uled to mark presentations.

2 The Project Presentation Scheduling Prob- hsg Swap the 1st marker of one presentation with the 2nd
lem marker of another (a supervisor may not be removed).

The Project Presentation Scheduling Problem is introducq%-l—he problem is formulated as a minimisation problem.

in [12]. Students on the Computer Science course at th is formulation, the constructive heuristic used to create
) P Ife initial feasible solution and the eight iterative heuristics

Univ_ersity of Nottingha_lm are required tp undertake a SuPresented here are all the same as those used in [12, 25].
pervised year-long project as part of their undergraduate fi-

nal year. The problem is concerned with the scheduling of

an individual ten-minute presentation (with five minutes fo Méethodology

guestions) which is given before at least three members %

. r network in which verti represent heuristi
academic staff (known as the 1st Marker, the 2nd Marker ec 'eate.a etwo . ch ve tpes epresent eu .St cs
. and directional transitional arcs exist between heuristics if
and the Observer), preferably one of whom is the supervi-. . . .
. : . it is possible to apply one immediately after the other. We
sor of the project. Presentations are grouped into hour-lon .
. . tAen create a number of ants, each of which represents a
sessions. The problem was formulated and hyperheurlsuﬁs

applied to the task of assigning presentations to sessions prerheunsuc agensupplied with an initial solution in the

. . ) lution space and access to the heuristics and evaluation
available rooms with the three members of academic st . .
. . . L unctions. The ants are scattered uniformly among the ver-
with the (soft constraint) aims of distributing an equal num:

. ; . . tices of the network.
ber of presentations, sessions dradl sessions (i.e. the 9- The ants then construct a sequence of heuristipaid
10am and 5-6pm sessions) to each academic staff memqsar N st

o . I){’traversing the network. At each decision point, each ant
maximising the number of students assessed by their ow o
selects the next vertex it will visit, traverses the arc to that

supervisor and also maximising the amount of interest thveertex and applies the heuristic represented by that vertex
trio of staff members would have in the presentations th ' P b y

ey . : X
) . ; th its current solution. Vertices and arcs may freely recur
have to mark in a particular session.

Three real-life instances of this problem are available é’f"thm the path.

) S After each ant has visited a certain number of heuristics,
http://www.cs.nott.ac.ukérob/ppsproblem.html, which in- the ant pauses to analvse the path it has iust traversed and
crease in difficulty, labelled csit0, csitl and csit2 [12, 25] P Y P J

In csitO there are 151 students, 26 staff members, 80 avatl?- lay an amount. of pheromoqe on each. edge in that path
. . : ccording to the improvement in the quality of the solution
able sessions and 2 rooms; in csitl there are 240 studenals

24 staff members, 36 sessions and 2 rooms, and csit2 is ¢ uring the entire path. Each ant proceeds to generate its next

€ : -
same as csitl but with two staff members declared abs j th. We term the time taken between all ants beginning
during the presentation timetable. In the latter problem

eir paths and all ants completing their paths egcde and
. . : . . Igorithm contin for as man I is required.
(csitl and csit2) the constraints are tighter, with more pre- € algorithm continues fo as many cycles as 1S requ ed
. o -~ In the standard ant algorithm each successive veriex
sentations to fit into less rooms and less staff members bein N .
available s€lected from an ant on vertéxsing a probability calcu-
" L ._..lated by employing the pheromone value on the arc from
A feasible solution is created, and the hyperheuristic ) . : . .
I . - vertexi to vertexj, which we will write asr;;, and some
makes use of eight iterative heuristics to explore the soly- o : . X
. . orm of heuristic information known in advance (in the
tion space thereafter:

Travelling Salesman Problem this is caliédibility) about

hi Replace one random lecturgrin a random session Vertex j, which we will write n; (illustrated in Figure 1).

in which he/she is scheduled for presentations with &ince the hyperheuristic method has no knowledge of each
second random lecturgs. low-level heuristic’s potential in advance, and since this po-

_ tential will vary as the colony traverses the solution space,
hs The same ad, but j; has the largest number of the visibility function must be initially impartial and contin-
scheduled sessions. ually adaptive.

. . At the end of each cycle all of the ants relocate in the
hs The same as%s but the session chosen is the one . . )
; . solution space to the best solution found during that cycle.
wherej; has the smallest number of presentations. = . . ) -
This step does not involve updating visibility or pheromone

hs Move a random presentati@jr[rom its current room- information but is instead Specifically intended to restrict
session assignment to another. exploration and keep the ants in roughly the same area of



Fork :=1tomdo

Visibility n(j) represents how well a heuristic works - Provide a copy of solutio§, Sy, to each ant.

- Apply heuristicj, where vertey is antk’s cur-
rent location, taSy,.

- Update thekth ant's location in the solution
space to the resultingj,, and update; accord-
ing to equation 1.

Pheromone 1(i,j)
represents how well

i heuristics work together, Sett .=t + m.

For every edgéi, j) set an initial value;; (¢) = 0.

2. Heuristic Exploration

Figure 1: The information available at each decision point. Fork :=1tom do

- Choose the heuristitfor antk to move to, with
the solution space during a cycle in order to keep the col- probability probabilitys ;. (t) given by equation
lective visibility and pheromone information as relevant as 7 {at decision point thekth ant is on vertex}.
possible. - Apply heuristicj to solutionSy, to produces),.

For the same reason, the system starts again at the vertex
in the network whose heuristic discovered that best solution, )
i.e. if heuristich, causes an ant to find the best solution then Rejectsy.
of the cycle, all ants will begin the next cycle at vertex else Accepts;.
in order that if the first heuristié, of an a_nt's new tour If (S}, is accepted)
produces an improvement, pheromone will be laid on the
arc(z,y).

At the decision level an ant may choose to reject a new - SetSy 1= 5.
solution it discovers if it is poorer than the ant’s current so- If (.S}, is better tharf),)
lution. If a solution is rejected, we punish the visibility of - SetS, = g
the heuristic which caused the detriment of solution qual- b7 Pk
ity but for the purposes of laying pheromone we ignore the 3. visibility Update
arc. Thatis, if an ant performs heuristizs and h,,, and
h,, leads to a worse solution, the solution is rejected and the - Fork :=1tomdo
V|S|b|l|ty of heuristic hy is punished. If a third heuristihz - Updaten] according to equation 1.
is chosen and leads to a better solution, pheromone will be . SetLP = LP + 1
laid on edg€z, z) and not(x, y) or (y, z). T :

Without this criterion the ant algorithm hyperheuristic is - Sett:=t+m.
effectively an Any Moves (AM) Hyperheuristic, i.e. the hy-
perheuristic accepts any heuristic move, regardless of any
improvement, at the decision level. With this criterion the - If (LP =n)
ant algorithm hyperheuristic is an Only Improving (Ol) Hy-

If (Only Improvement &S, is worse tharfy,)

- Move antk to vertexj.

4. Pheromone Update

perheuristic, i.e. at the decision level the hyperheuristic ac- - SetLp:=0.

cepts only new solutions which are better than the current } Upd?‘teﬂj (t) for ?‘” accepted arc§, j) ac-
solution. Previous research [25] indicates that Ol hyper- cording to equation 2.

heuristics may be more restricted and more likely to be - SetS := S, {5} is the best solution found
trapped within local optima, while at the decision level there during this cycle).

is nothing to prevent AM hyperheuristics from exploring ar-

eas of the solution space of progressively lower quality.
The ant algorithm hyperheuristic is outlined in the fol- - 1 (¢ < timaz)

lowing pseudo-code:

5. Stopping Condition

- Goto step 2.
1. Initialise else
Sett := 0. {t is the heuristic calls countgr - Output best solutiors,.
SetLP := 0. {LP is the length of a path - Stop.

For every vertex set an initial value); = 0.
Scatter then ants uniformly on the: vertices.
Initialise a solutionS, and best solutionS.
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Figure 2: Three ants are distributed among four vertices,
each with a copy of an initial solutio§. To provide an
initial visibility value, each ant applies the heuristic corre- T , ‘
sponding to their location to their copy 6f (\h3 —{ ha )
- g2\

The overall approach is illustrated in Figures 2, 3, 4 & Skigyre 3: Ant 1 chooses to remain at vertex/heuristic
We use a visibility function inspired by the choice func-h1 Ants 2 and 3 respectively choose to move to ver-
tion hyperheuristic [11, 12, 25], which uses informationces/heuristicsi, andh,. The ants apply these heuristics

based on solo and sequential performance of the differepf ieir respective current solutions and update the visibility
heuristics. As pheromone corresponds to the sequential pg&y es of heuristica,, hy andhs,.

formance, we use a visibility function; corresponding to B \
heuristic;’s individual performance, and update this value (m\‘ £3 £2/7

X { h2 )
after all ants have completed their moves: AL N
et A
e P
m N el
I (t) ~
() =i (t—m)+ T . 0 1) N
L kj ;21 / .
g NN
wherem is the number of ants in the colony (i.e. the num- ( h3 ) { ha )
\\J N A

ber of heuristic calls made since the last updatg}) is
the improvement produced by heuristicon antk’s cur-
rent solution at decision poirt(which could be negative), Figure 4: Ants 1, 2 and 3 respectively choose to move to
Ti;(t) is the number of CPU seconds heurisfitook to  vertex/heuristicshs, h, andhy. As in Figure 2, visibility
run on antk’s current solution at decision pointandy isa values for these three heuristics are updated.

constant weight valued between 0 and 1 which emphasises

recent performance as a weight emphasising recent perfor- N

mance. (The notation is sometimes used (e.g. [25]) within (3) /7 B

the solo factor of the choice function. However, since both \\*4/\ \ 71 o (2\\) |
the choice function hyperheuristic and ant algorithm tech- {\1j\ (\ ) }/\J\(’Z\)
nigue make use of the symbaisand3 to weigh contribut- 3 — L S
ing aspects, we use for the aspect of the choice function (/;\) (’//3\\] ‘ I\
hyperheuristic given here and usandg for aspects of the \\J\\{/E\//\\v,/ ¥2 N ? /“
ant algorithm technique given below.) oty i

Our visibility function draws upon the fact that all ants

moving to a specific vertex or traversing a specific arc addigure 5: A representation of the solution space, \Sitiep-

their visibility contributions together and with equal weight.resenting the ants’ solution at the beginning of the cycle, and
The choice function hyperheuristic [25] also usually ineach ant having traversed their own path. Pheromone will

cludes a diversification contributor which encourages thgow be laid on the arcél, 1), (1,3), (2,4), (4,2), (3,2)

use of heuristics which have not been recently used. Singﬁd@’ 1) in proportion to the improvement between the fi-

we use several ants, a probabilistic selection procedure afgl solutions and'. Assuming the best solution of the cycle

not many heuristics (in this case, eight) we have anticipateghs discovered as Ant 2 applied heuristig the ants will

that there will already be sufficient diversity. adopt this best solution, which will be the neéiin the next
The ants share their confidence in the sequences @gfcle.

heuristics using pheromone, which also decays to clear
away older preferences and emphasise recent performance
of low-level heuristics. Once all ants have completed their
paths (i.e. when the cycle is completed; thereratesuris-

tics and therefore: heuristic calls in a path for each ant,

so this occurs everyn - n heuristic calls), the amount of



pheromone on each arc (denotedy(t) for the arc be- If none of the heuristics are performing well, i@.= 0, we
tween heuristiad and heuristi¢j at decision point) is ad- set allPV values to 1, such that all heuristics have an equal
justed as follows: probability of selection. Finally, the probability of any arc

Py(t)) - I(Py(t)) (i, j) being selected is
T(Px(t))

o~ #is(

7ij(t) = (1= p)rij(t —m-n) + Z 2 PV;;(t)
@ probability; k. (t) Sy PVn(D)
wherep is the pheromone evaporation coefficieRt,(t) is
the path ant traversed during the cycle ending at decision} Experiments and Results
pointt, #;;(Px(t)) is the number of times the af¢, j) oc-
curs during pathP,(t), I(P(t)) is the improvement pro- All algorithms were coded in Microsoft Visual C++ version
duced by the heuristics aktused during its last path (i.e. -NET 2003 and all experiments were run on a PC Pentium
the difference between the best solution quality found dutY 1.8GHz with 256MB RAM running under Microsoft
ing this path and the best solution quality found at the end/indows 2000 version 5. The stopping condition used in
of the previous cycle), and( P, (t)) is the duration of that [12, 25] was 600 seconds of CPU time on PC Pentium IlI
path in CPU seconds. Thus, for a given ant’s path, an alcOGHz with 128MB RAM. This equated to approximately
traversed twice in that path receives twice the amount ¢000 heuristic calls, which we use as our stopping condi-
pheromone as an arc traversed once in the same path.  tion; this equates to approximately 30-40 seconds using our
The ant’s actual decision-making process requires the durrent framework.

gorithm to combine the visibility and pheromone values for We use the same constructive heuristic as in [12, 25],
each of the arcs the ant could potentially traverse into a sikthich includes random elements. In order to keep our work
gle positive value, in order to be properly used in a rouletteonsistent with the results in these papers, 50 solutions were
probability system. This becomes an issue when it is po§reated for each of the three problem instances and the 5
sible for one or more heuristics to find a solution of poorepearest to the initial solution in [12, 25] selected.
quality to the current solution, whether to escape local op- As we are using 8 low level heuristics in the Project
tima or otherwise encourage a diverse search of the solutiGtiesentation Scheduling Problem, our ant algorithm hyper-
space. The issue is concerned with negative valueg of heuristics use a graph with 8 vertices. Our correspond-
or ;;. Our conversion process is borrowed from the choic#d path length is 8 heuristic calls. We consider the num-
function variant “RouletteFunction” [11]. We first calculateber of ants to be a parameter, and we experiment with be-
a valueV for each heuristig, from the previous heuristic  tween 3 and 5 ants. This range is deliberately smaller than

(7)

using the formula: might typically be considered for an approach based on Ant
Colony Optimisation. The necessity of this range is that we
Vij(t) = am;(t) + Bri;(t) () understand our exploration of the solution space to be un-
From this we calculate a positive valuB') using the for- predictably dyngmic and non-deterministic. Our values are
mula chosen to provide enough ants to demonstrate a collective
PVi;(t) = maz{Vi;(t), Qo5 ()} 4) behaviour but not so many that we have too few cycles with
which to learn within the stopping condition of 1000 heuris-
where S maz{0, Vin(t) + €} tic calls.
Q=%=n 10’. Tzh (5) Every hyperheuristic was run 10 times, twice using each

initial solution, on each of the three problem instances de-

whereh € H, the set of low-level heuristics, and = . . . . o
|(H|) and e and o are constants included to ensure thaicnbed in section 2. In all ant algorithm hyperheuristics,
' ach ant begins with the same initial solution.

poor-performing heuristics have a small non-zero proba- The hyperheuristics are the Choice Function Hyper-

b;l;}ty c;:c be.'nttq selected,f proportlon?IIyler:hancliadﬁyﬁ i heuristic (CF) and a Simple Random Hyperheuristic (SR)
other heunstics are periorming particuiarly wetl. We &€ presented in [12, 25] for comparative purposes and our Ant

t_o (;) 'OOE totg“ieo‘é 1srtnall boost ttr? Te_urlstlcs wtr10§e value Algorithm Hyperheuristic with 3-5 ants (AA3-AA5). The
= U, ando 1o 1. 0 ensure tha _'S a monotonic ConVerﬁyperheuristics were also distinguished by their solution
sion of V' values to positivd” values: negativ®” values to

. acceptance criteria: either the hyperheuristic accepts An
the range 0 to 1, zero values to 1, and positive values to ”ﬂ?ovep(AM) or it accepts only imp):gving moves (Ol) P Y
range 1 to 8. ' .

. We assign tav, 3, v respectively the values 0.7, 0.7,
. we mcIuQe.two further safeguards to promotg the choo%)-]’ since early experiments did not show any discernable
ing of heuristics and to promote the exploration of arc

hich tveth b lected: Eatterns but 0.7 appeared to be generally good.
which may not yet have been selected. - The results presented in Table 1 show the worst, mean
If arc (4, 7) has not yet been selected, iBV;;(t) = 0,

. X average and best results from each algorithm applied to the
we temporarily assign tdPV;;(t) the value of PV;(t), . S : .
whereh € H and(i, h) is the current highest-ranking arc inthree problem instances. The mean initial solution quality

th t of arcs beainning at verteand having been previ is supplied at the top of the respective problem instance’s
€ set ot arcs beg g atverien aving been Prevl- -, jumn. The best result from each column is highlighted in
ously selected.

bold.
PV, (t) = maz{mazney PVin(t),0} (6) It is immediately evident that in the Any Moves (AM)



Table 1: Results of hyperheuristic experiments (best results for each column are in bold).

case, our Ant Algorithm Hyperheuristics outperform botrencedby the end of the run, and the selection of each new
the Simple Random and the Choice Function Hyperheuritsw-level heuristic is still more significantly decided by ran-

In the Only Improvement (Ol) case the Ant Algo-dom probabilities than by the functions which decide those
rithm Hyperheuristic is merely competitive, though it doegrobabilities. This would explain why the Simple Random

perform better on average in two of the three problem inHyperheuristic (Only Improving) produced a solution better
stances. Specifically, in two of the three problem instancekan that of the Ant Algorithm Hyperheuristics in instance

(csitl and csit2) the Ant Algorithm Hyperheuristic with 3 csitO.
ants performs better than the Ant Algorithm Hyperheuris-
tics with 4 or 5 ants in the average case. However, in botihe results of our experiments are superior to those pub-
problem instances the Ant Algorithm Hyperheuristic with Sished in [12, 18, 25].
ants performs better than the Ant Algorithm Hyperheuris-

tics.

tics with 3 or 4 ants in the best case, and in instance csitg Conclusions

produces the best solution of all experiments.
We note that on average the Ant Algorithm Hyperheuriswe have introduced a new hyperheuristic technique which
tic results worsen as the number of ants increases. Afthas been shown to be competitive or better compared
each cycle the colony adopts the best solution found by ttegainst other hyperheuristics in the context of an established
colony during that cycle. Each cycle is thus an exploratioproblem from the literature. We have also provided a basis
of the local area around the previous best solution. Thier exploring the idea of using a population of “ant” hy-
more ants that are used, the broader and more intense tpatheuristic agents which learn from each other to improve
exploration becomes, and also the greater the number of gheir explorations of the solution and heuristic spaces.
lutions to select from. Larger colonies effectively consider
the local problem for longer, and may make better decisionechnique, and the work described in this paper also gener-
per cycle, but at the cost of making slower progress througites a number of future research directions. For example,
the solution space. We speculate that in more difficult prota more effective visibility function might be explored. At
lem instances larger colonies may be preferable, but that present the method includes manually set parameters but
the problem instances explored here 3 ants are sufficient.it would be possible to explore self-adaptive parameters.
It was difficult to establish any other particular trendsSince the number of ants used by the hyperheuristic was
During our experimentation we considered a number of vishown to have an effect on the final solution quality, an
ibility functions and ways of updating the pheromone levelsnvestigation on the scalability of our approach, that is, to
but no significant differences in results were reached. It ind the relation between the number of active hyperheuris-
possible that this could be attributed to our stopping cortic agents (ants) and the problem size would also appear to
dition of 1000 heuristic calls. With 8 low-level heuristicsbe a useful research direction.
there are 64 arcs upon which the ants can lay pheromone, Ongoing research will investigate each of these ideas in
and some heuristic calls will initially be used providing ini-the contexts of a wider range of real-world problems.
tial visibility information, so on average each arc will only
be used 15.625 times per run, which may be too few to a%cknowledgements
equately learn the dynamics of the search space. Equally
since each ant explores 8 arcs per cycle, there will only bg/e would like to thank David Redrup, who originally
= 24.8-41.3 cycles, and so perhaps pheromone imelped develop the Ant Algorithm Hyperheuristic concept;
formation is updated too infrequently to make a differencejulie Greensmith, for her support; Dr. Matthew Hardy and

1000—8

If this is the case then the colony may still imexperi-

It can be noted, however, that despite tinisxperience

The Ant Algorithm Hyperheuristic shows promise as a

Dr. Steven Bagley, for assistance in programming, and

InstancecsitO Instancecsitl Instancexcsit2

Initial solution quality: -895.5 | Initial solution quality: -2428.4 Initial solution quality: ~ -940.39

Worst Average Best Worst Average Best Worst Average Best
CF (AM) | -1421.1 -1515.17 -1620.48 -2524.6 -2715.79 -2894.8 -1179.6 -1403.5 -1529.26
CF (Ol) | -1074.37 -1555.46  -1669.64 -2854.6 -2959.85 -3058.7 -1650.6 -1712.19 -1794
SR (AM) | -1105.5 -1346.91  -1503.1B -2372.2 -2542.84  -2712.6 -1039.4 -1194.35 -1351.2
SR (Ol) | -1598.08 -1672.44 -1757.39 -2861.3 -2999.02 -3062.3| -1661.4 -1733.76  -1783.16
AA3 (AM) | -1547.28 -1628.31 -1669.39-2816.15 -2903.66 -3001.8-1566.85 -1655.39 -1721.9p
AA4  (AM) | -1541.6 -1589.54  -1657.06 -2827 -2912.9 -3010.6 -1560.15 -1642.98 -1725.6
AA5 (AM) | -1534.53 -1594.32 -1679.81 -2838.1 -2913.53 -2998.6 -1634.6 -1669.93 -1698.8
AA3  (OIl) -1639.2 -1665.02 -1707.29 -2943.75 -3004.55 -3051.5| -1691.3 -1758.1 -1809.4
AA4  (Ol) | -1577.75 -1645.53 -1705.1p -2894.2 -2993.17 -3049.8 -1676.8 -1754.37 -1788.8
AA5 (Ol) | -1579.83 -1642.03 -1681.7 -2913.35 -2995.07 -3059.8 -1665.2 -1751.38 -1835.45
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