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Abstract. We are interested in the role of restricted mating schemes in
the context of evolutionary multi-objective algorithms. In this paper, we
propose an adaptive assortative mating scheme that uses similarity in
the decision space (genotypic assortative mating) and adapts the mating
pressure as the search progresses. We show that this mechanism improves
the performance of the simple evolutionary algorithm for multi-objective
optimisation (SEAMOZ2) on the multiple knapsack problem.

1 Introduction

Selection plays an important role within evolutionary algorithms in selecting
individuals for survival and selecting parents for recombination. Here, we are in-
terested in mating schemes, i.e. the selection of parents for recombination within
evolutionary multi-objective (EMO) algorithms. A number of mating schemes
have been proposed in the literature including: fitness proportionate selection,
tournament selection, rank-based selection, ancestry selection and assortative
mating among others. In fitness proportionate selection, parents are chosen based
on a probability proportional to their fitness compared to the rest of the pop-
ulation. In tournament selection, a group of individuals (usually two) is chosen
(usually uniformly) from the population and the fittest individual from this
group is selected as parent. In rank-based selection, individuals are first sorted
according to some criteria (usually fitness) and a mapping function is used to
assign a selection probability to each individual according to its rank in the or-
dering. In ancestry selection individuals are organised in clans and parents are
usually selected from different clans. In assortative mating (inspired on natural
genetics), individuals are selected based on their similarity (in the objective or
the decision space) based on the assumption that recombining parents that ‘look’
alike produces better offspring. Some mating schemes incorporate some form of
restricted mating (proposed by Goldberg [6]) where recombination is allowed
only if parents meet certain criteria. For reviews on mating schemes and their
performance of single-objective evolutionary algorithms see [II7Ig].

Despite the various restricted mating schemes that have been investigated for
single-objective evolutionary algorithms, the emphasis within EMO algorithms
has been mainly on mechanisms to select individuals for survival. In Pareto-
based multi-objective optimisation the goal is to find a set of non-dominated
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solutions that is as close as possible to the Pareto optimal front and also well
spread and distributed over the trade-off surface [2/4]. Therefore, most modern
EMO algorithms incorporate selection mechanisms, like density-based selection
and rank-based selection, in combination with elistism and archiving strate-
gies to ensure the survival of good non-dominated solutions [2/4UT4]. Also, most
EMO algorithms use tournament or other basic selection mechanism for choos-
ing parents and in most cases selection is based on fitness. Some restricted mat-
ing schemes have been investigated in the context of EMO algorithms but to
a lesser extent than for single-objective evolutionary algorithms. In their book,
Coello Coello et al. ([2], p. 201) express that restricted mating has not been fully
investigated for EMO algorithms. They also note that there is no conclusive ev-
idence to support whether restricted mating is beneficial or detrimental for the
performance of these algorithms. Coello Coello et al. also suggest that experi-
ments investigating the issue of restricted mating should benefit the literature
on EMO algorithms. In this paper, we propose an adaptive assortative mating
scheme [3] for evolutionary multi-objective optimisation. That is, parents are
chosen based in their similarity in the decision space and the similarity thresh-
old or mating pressure o,,qting is adapted during the search. In Section [ we give
a more detailed account of related work. In Section [l we describe our proposed
mating scheme and how this is incorporated into SEAMO2 (simple evolution-
ary algorithm for multi-objective optimisation) [I5]. Section[3 also describes the
experimental setting and our results. Final remarks are given in Section @

2 Mating Schemes for EMO Algorithms

We refer to the k-optimisation problem in which the aim is to optimise the
function f(z) = (fi1(x), f2(x), ..., fx(x)) subject to x € X, where x represents
the decision vector, X represents the set of all feasible solutions, f(z) represents
the objective vector and each f;(x) represents the value of the i-th objective.
Within a set S of solutions, solution x is said to be non-dominated if there is no
solution in S that is better than z in each of the k objectives. Then, x is said to
be Pareto-optimal if = is non-dominated with respect to the set X.

Now we briefly review restricted mating schemes that have been implemented
into EMO algorithms. We focus on schemes proposed recently and that restrict
mating based on similarity, i.e. assortative mating. For an overview of previ-
ous mating schemes within EMO algorithms refer to the book by Coello Coello
et al. ([2], p. 201). Restricted mating has been usually implemented using the
Omating Parameter which defines a mating radius or similarity threshold, which
can be perceived as the mating pressure. Individuals are not allowed to mate if
the distance between them (objective or decision space) is larger than opating-
Kim et al. [I3] incorporated neighbourhood crossover into SPEA2 to rank indi-
viduals according to how close they are in the objective space and used binary
tournaments to select parents. Few years ago, Ishibuchi and Shibata started
an investigation into the effect of restricted mating on the performance of the
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well-known NSGA2 and SPEA algorithms. In 2003 they proposed a restricted
mating scheme based on the similarity between parents (assortative mating) [9].
Later, they modified their approach by incorporating a second layer to select
parent A [10]. Their restricted mating scheme works as follows:

1. A set S4 of o candidates is chosen using iterative binary tournaments.

2. The center vector (average solution) f(z) = (fi(z), fo(2)...fx(x)) in the
objective space in Sa is calculated where f;(z) = 1/a Z;":l fi(z;) for i =
1,2,...,k.

3. The solution in S that is most dissimilar (in the objective space) to f(z)
is chosen as parent A.

4. A set Sp of § candidates is chosen using iterative binary tournaments.

5. The solution in Sp that is most similar to parent A (in the objective space)
is chosen as parent B.

In [I0] Ishibuchi and Shibata observed that their modified mechanism was capa-
ble of improving both convergence and diversity in SPEA and NSGA2. However,
they also noted that the parameters o and § needed to be carefully adjusted to
strike the balance between diversity and convergence speed. Note also that in
[10] Ishibuchi and Shibata used similarity in the objective space only. In 2004,
they reported further experiments to investigate the effect of the mating pres-
sure parameters (« and 3) and also the effect of similarity (in the objective
space) when selecting parents A and B [I1]. They tried their restricted mating
mechanism in a number of operation modes resulting from combining different
settings: o = {1,2,3,...}; 8 = {1,2,3,...}; parent A being similar or dissimi-
lar to f(x); parent B being similar or dissimilar to parent A. Once again, they
observed that convergence speed and diversity were affected by the settings of
«a and (. They also expressed that there is a need to set a and § automatically
in their mating scheme. More recently, Ishibuchi and Shibata reported yet more
experiments in which they observed that recombining similar parents (which is
controlled by varying ) had a positive impact on the performance of NSGA2,
although they also observed that recombination seems to be less important than
mutation on that particular algorithm [12]. In [I2] they considered similarity
in the objective and the decision space but only when selecting parent B and
observed no significant difference in their results.

In summary, the investigations by Ishibuchi and Shibata have considered
fitness-based binary tournaments and distance in the objective space to choose
parent A. For selecting parent B, they employed fitness-based binary tourna-
ments and distance both in the objective space and the decision space. The
mating pressure is controlled by the number of tournaments (« and 3) and by
the target similarity to select parent A (with respect to the center vector f(z))
and parent B (with respect to parent A). Their results have shown that although
their mating scheme is able to improve the performance of SPEA and NSGA2,
careful adjustment of the parameters is required to strike the balance between
convergence and diversity according to the problem size.
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3 The Adaptive Assortative Mating Scheme

3.1 The Experimental Setting

We propose an adaptive assortative mating scheme for selecting parents in EMO
algorithms. The proposed mating scheme does not use tournaments, it uses sim-
ilarity in the decision space and changes the mating pressure o,qting @s the
search progresses. Therefore, this scheme differs from those proposed by Kim
et al. [I3] and Ishibuchi and Shibata [I1]. In the proposed dynamic assortative
mating scheme two individuals are considered for reproduction only if their dis-
similarity (difference between their gene structures) is above a threshold oy,ating-
For the experiments in this paper, we incorporate the proposed assortative mat-
ing scheme into the SEAMO2 algorithm [I5] and carry out experiments on the
multiple knapsack problem. We chose SEAMO2 because it is a simple evolution-
ary algorithm for multi-objective optimisation that relies mainly on its replace-
ment strategy and it was shown to outperform more elaborate EMO algorithms
like NSGA2 and SPEA2 on the multiple knapsack problem [I5]. In this pa-
per, with refer as SEAMO2(RM) to the SEAMO2 approach using the proposed
scheme for restricted mating. Then, we focus our experiments in comparing the
performance of SEAMO2(RM) against SEAMO2 [15], SPEA2 [16], NSGA2 [5]
and SEAMO2(I) (the SEAMO?2 algorithm using Ishibuchi and Shibata’s mating
strategy [10]) on the multiple knapsack problem. We use the instances with two,
three and four knapsacks (with population size of 250, 300 and 350 respectively)
and 750 items proposed in [I7]. We carry out short, medium and long runs,
500, 960 and 1920 generations respectively, to investigate the performance of
SEAMO2(RM). Results from 30 independent runs for each experiment are used
for statistical analysis and discussion. We use two metrics, the size of the space
covered S and the coverage of two sets C (see [I7] for details on S and C).

3.2 Similarity Measurement

In this paper, the dissimilarity or distance in the decision space between solu-
tions to the multiple knapsack problem is measured as follows:

Individual s = {g;]¢ : 0..(n — 1)}
where n is the number of genes in the individual representation
|0 :geneiis not in the gene structure of individual s
=11 - gene i is in the gene structure of individual s
the similarity and dissimilarity between individuals s; and so are as follows:

_ H{ilg1; = 1A go; = 1}
[{ilgr; =1V g2, = 1}
diff(s1, s2) = 1 — simil(s1, s2)

stmil(s1, s2)

The recombination of s; and ss is allowed if and only if diff(si, $2) > Omating
(where 0 < opating < 1). Setting the value of the mating pressure o,qting 1S
important and is discussed in the following sections.
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Note that the above definition of similarity is only valid for solutions to the
multiple knapsack problem as encoded in this paper. If the similarity between
two solutions of a problem is measured as a percentage, the proposed mating
scheme can still be implemented as described later in this paper. Therefore, the
generality of the proposed mating scheme is not affected by the encoding of
solutions or the method used to measure similarity.

3.3 Static Setting of the Mating Pressure

We first describe a simple strategy to preset oyqting before starting the search
and this value remains unchanged throughout the evolutionary process. We first
calculate the value of diff(s,, sn) for every pair of individuals s,, and s, in the
population. Then, we calculate the range using the minimum and maximum val-
ues, L.e. diff(range) = (max(diff(sm, $5)) — min(diff(sm, s»))). We preset oumating
to a value in this range. Otherwise, if 0pqating is set to a value smaller than
min(diff(sm, s»)) the selection of parents becomes uniform. Also, if opmating is
set to a value greater to max(diff(sm, $n)) no pair of individuals (s,,, s,) would
satisfy the selection condition for recombination.

In order to set Oymating to an appropriate value within diff(range) we could
let the population to evolve for a limited number of generations and observe
the trend on the values of diff(s, $n) in the whole population. We carried out
a simple experiment on the multiple knapsack problem and allowed the pop-
ulation to evolve for 100 generations recording diff(range) in every generation.
We observed that diff(range) reduces significantly from 60%-70% in the first few
generations to 0%-35% in later generations. Therefore, we set pmqting t0 a value
in the range of (0.0,0.3). Next, we carried out experiments using eleven differ-
ent values of gpqring : 0.050,0.075,...,0.300 in SEAMO2(RM). Results from
30 independent runs are reported in Figure [l Note that we only show results
for six values of oyating Which are representative of all our experimental data.
The box-plots in Figure [l correspond to the percentage of non-covered objective
space, i.e. smaller values indicate better algorithm performance. One box-plot is
given for each algorithm: NSGA2, SPEA2, SEAMO2, and SEAMO2(RM) using
different values of ormating-

Figure [0l shows clearly that with respect to the size of the space covered
S the proposed mating scheme has a positive effect on the performance of
SEAMO2(RM). In general, we can see that the performance of SEAMO2(RM)
using a preset value of oy,qting is consistent over the 30 independent runs (size
of the boxplot). There is a significant improvement by applying a higher mat-
ing pressure (i.e. increasing the value of ymating). However, we can also observe
that there is an upper limit for the mating pressure after which SEAMO2(RM)
starts to perform worse. We can see in Figure [I] that this upper limit is about
25% for the 2-knapsack problem (Figure[T(a)}[L(b)), between 25%-30% for the 3-
knapsack problem (Figure|l(c)} [L(d)]), and slighly above 30% for the 4-knapsack
problem (Figure [I(e)] [1(f)). This is simply because when oating goes above a
given value, no parents can be found that satisfy the restricted mating condi-
tion. We omit full results for the C metric (all experimental results are available
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Fig. 1. Performance of algorithms on the multiple knapsack problem with respect to
percentage of the non-covered objective space. NSGA2, SPEA2 and SEAMO2 are in-
dicated by NS2, SP2 and SE2 respectively while S.xx indicates SEAMO2(RM) with
a given value for oumating. Results are given for 2 (graphs a-b), 3 (graphs c-d) and 4
(graphs e-f ) knapsacks with runs of 500 and 1920 generations.

on request) but we observed that increasing o,,qting Seems to have a negative
impact on convergence and a positive impact on diversity. To illustrate this, we
show in Figure [2] the offline non-dominated fronts after 30 independent runs of
SEAMO2(RM) on the 2-knapsack problem. For better visualisation, we show the
non-dominated fronts in a lower density (only solutions separated by a distance
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Fig. 2. Results of SEAMO2(RM) on the 2-knapsack and 750 items problem for six
values of oyating. The horizontal axis represents profit in knapsack one and the vertical
axis represents profit in knapsack two.

of at least 400 units in the objective space). We can see that higher o,,qting
values reduce the convergence of SEAMO2(RM) but increase diversity (this is
similar to the observations by Ishibuchi and Shibata [9]). Therefore, in the next
subsection we propose to adapt the mating pressure as the search progresses.

3.4 Dynamic Setting of the Mating Pressure

Now we describe how 0yqting is adapted during the evolutionary search. This
allows to improve both convergence and diversity of the population along with
the evolutionary process. To dynamically change the value of o.,4ting, We need
first to establish the diff(range). As discussed in section B3] we select uniformly
a value for omating in every generation within the 5th and 95th percentile of
diff(range). This prevents the restricted mating becoming uniform selection (if
Omating 1S too low) or becoming a non-reproduction scheme (if opating is too
high). Note that the mating pressure oy,ating 1S set in an adaptive manner as
diff(range) is adjusted after every generation to reflect the change of diversity
(in the decision space) in the population. Then, the chosen value of oy,ating Will
adjust as the population diversity changes. For example, in the first few gener-
ations, the population is less ‘stable’ with many randomly generated solutions
provoking a high value of 7,,4¢ing. However, once the population is more ‘stable’,
changes in the value of 0,4ting drive the population to evolve towards improving
diversity (wider diff(range)) or improving convergence (smaller diff(range)).

As before, we carry out 30 independent runs of SEAMO2(RM) using the
dynamic opating. We also include the ‘best results’ obtained using Ishibuchi and
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Shibata’s restricted mating strategy [I0] and using the static mating strategy of
section These ‘best results’ are based on the average of the S metric over
30 independent runs. We used 90 combinations of values o = {1,3,4,...,9,10}
and 8 = {1,2,...,9,10} for Ishibuchi and Shibata’s strategy and 11 different
values of 0jmating in the static mating strategy. These ‘best results’ are indicated
as SE2I and SE2S in Figure Bl while SE2D indicates SEAMO2(RM) using the
dynamic opmating. Figure Blcompares NSGA2, SPEA2, SEAMO2, SEAMO2 with
Ishibuchi and Shibata’s mating strategy, SEAMO2 with the static o,,qting setting
and SEAMO2 with the dynamic o,ating setting, with respect to the S metric.
Table [ shows the comparison with respect to the C metric.

For each knapsack problem, Figure [3] shows the average non-covered objec-
tive space (smaller values indicate better algorithm performance) at generations
500, 960 and 1920 side by side to facilitate comparison. It is clear that the dy-
namic setting of omaring benefits SEAMO2 helping it to outperform NSGA2,
SPEA2 and SEAMO2 as well as SEAMO?2 with Ishibuchi and Shibata’s mat-
ing strategy. Furthermore, both our static and dynamic mating strategies out-
perform Ishibuchi and Shibata’s restricted mating strategy when incorporated
into SEAMO2. In most cases, the dynamic strategy ourperforms the static one
with the exception of the 2-knapsack problem with short and medium runs
(graphs a-b in Figure B]). Table [[] shows the strong performance of SEAMO2D
(the dynamic restricted mating incorporated in SEAMOZ2) particularly on prob-
lems with 3 and 4 knapsacks. From Figure [3] and Table [[] we can see that the
dynamic mating strategy significantly improves diversity but it slightly wors-
ens convergence in the higher dimension problem (4 knapsacks). We also notice
an interesting result in that Ishibuchi and Shibata’s strategy seems to worsen
the performance of SEAMO2 (it was reported in [I0] that Ishibuchi adn Shi-
bata’s strategy improves the performance of SPEA and NSGAZ2). This is more
noticeable in the early stages of the evolutionary search (generations 500 and
960) in low dimension problems (2 and 3 knapsacks). We believe that Ishibuchi
and Shibata’s mating strategy conforms with the selection strategy in SPEA
and NSGA2 where individuals are uniformly chosen using tournament selection.
However, Ishibuchi and Shibata’s mating strategy interferes with the selection
strategy in SEAMO2 (Ishibuchi and Shibata’s mating strategy chooses the first
parent with binary tournaments while in SEAMO2 each individual acts as the
first parent once). Figure Ml shows (in lower density as in Figure ) the non-
dominated fronts over 30 independent runs on the 2-knapsack problem. We can
see that SEAMO2(RM) using the dynamic mating strategy outperforms SPEA2
and NSGA2 but its convergence is just slightly lower than for SEAMO2. Overall,
results in Figure Bl Figure [ and Table [ give evidence that the dynamic setting
of Opmating is beneficial for SEAMO2 on the three multiple knapsack problems.

In Figure [l we compare the proposed assortative mating scheme using the
static setting and using the dynamic setting over 30 independent runs for the
2-knapsack problem with 750 items. The various static settings are indicated by
SE2S.xx and the dynamic setting is indicated by SE2D. We can see that the dy-
namic assortative mating scheme can simultaneously maintain the convergence
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Fig. 3. Performance of algorithms on the multiple knapsack problem with respect to
the percentage of the non-covered objective space. NSGA2, SPEA2 and SEAMO2 are
indicated by NS2, SP2 and SE2 respectively. SE2I indicates SEAMO2 with Ishibuchi
and Shibata’s strategy, SE2S indicates SEAMO2 with the static setting and SE2D
indicates SEAMO?2 with the dynamic setting.

and the diversity of the population but the static setting can only give a positive
effect on the convergence (using lower opqting) or on the diversity (using higher
Omating) but not both at the same time. This shows that adapting the diff(range)
(from where 0ymating is chosen) according to the population diversity during evo-
lution, helps to strike a balance between convergence and diversity. Of course,
more elaborate methods for adapting the mating pressure can be investigated,
but the proposed one points us on the right direction.
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Table 1. Average values (standard deviation) of coverage of two sets C(A > B)

C(A = B)
Algorithm 2 knapsacks 3 knapsacks 4 knapsacks
A B 500 960 1920 500 960 1920 500 960 1920
NSGA2  SEAMO2D 3(7) 12(16) 24(20) 0(0) 0(0) 0(0) 0(0) o0(0) 0(0)
SPEA2 2(3)  8(7) 18(16) 0(0) 0(0) o0(0) 0(0) o0(0) 0(0)
SEAMO2 11(17) 18(20) 26(19) 21(17) 24(16) 26(15) 26(22) 21(18) 19(14)
SEAMO2I 0(0) 0(0) 0(1) 0(0) 0(0) 2(5) 0(0) O0(1) 1(3)
SEAMO2S 2(3) 3(4) 5(5) 0(1) 1(1) 1(1) o(1) 1(1) 1(1)
SEAMO2D NSGA2  89(12) 69(24) 46(27) 92(7) 84(7) T77(8) 100(1) 9(3) 98(3)
SPEA2 89(10) 74(15) 53(22) 88(8) 64(10) 45(9) 95(4) 84(7) 76(7)
SEAMO2 76(34) 60(38) 47(34) 34(29) 24(25) 8(19) 16(20) 15(18) 12(12)
SEAMO21 100(0) 100(3) 92(15) 100(1) 98(2) 82(25) 91(16) 84(23) 65(32)
SEAMO2s 80(8) 82(11) 83(10) 86(6) 83(6) 78(8) 79(6) 75(7) 67(7)

4 Final Remarks

This paper proposes a restricted mating scheme for evolutionary multi-objective
(EMO) algorithms. This mating scheme is assortative because it selects par-
ents based on their similarity in the decision space. Setting the mating pressure
Omating 10 a constant value provokes either convergence or diversity to be neg-
atively affected. Therefore, the proposed scheme is adaptive because it varies
Omating taking into account the population diversity in the decision space. Our
experiments show that the simple mechanism to adapt the mating pressure helps
SEAMO2 (simple evolutionary algorithm for multi-objective optimisation) to
improve its performance while striking a good balance between convergence and
diversity. The proposed mating scheme can be incorporated into different EMO
algorithms because it does not alter their original selection strategy. Future work
contemplates comparison with other mating schemes proposed for EMO algo-
rithms and on other problems such as nurse scheduling and job shop scheduling
problems. We also intend to investigate other strategies to set the threshold
Omating to further improve diversity and convergence of EMO algorithms.
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