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Abstract

In this paper we are concerned with finding the Pareto optimal front or a good approximation to it. Since non-dom-
inated solutions represent the goal in multiobjective optimisation, the dominance relation is frequently used to establish
preference between solutions during the search. Recently, relaxed forms of the dominance relation have been proposed
in the literature for improving the performance of multiobjective search methods. This paper investigates the influence
of different fitness evaluation methods on the performance of two multiobjective methodologies when applied to a
highly constrained two-objective optimisation problem. The two algorithms are: the Pareto archive evolutionary strat-
egy and a population-based annealing algorithm. We demonstrate here, on a highly constrained problem, that the
method used to evaluate the fitness of candidate solutions during the search affects the performance of both algorithms
and it appears that the dominance relation is not always the best method to use.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many real-world problems have more than one
objective and sometimes more than one decision-
maker is involved in selecting an appropriate solu-
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tion. At present, three broad typical approaches
can be identified in the literature to deal with mul-
tiple objectives [30,54]:

(1) Optimising one objective at a time while
imposing constraints on the other objectives.

(2) Combining all objectives into a single
objective.

(3) Optimising all objectives simultaneously.
ed.
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Frequently, in the first two approaches, prefer-
ences for the objectives are established a priori
while, in the last one, no preference information
is considered or is available before the search. In
terms of the number of solutions needed, it may
be that only one solution is required or that a set
of solutions should be presented to the decision-
makers so that one of the solutions can be chosen.
In the last case, this set of solutions should repre-
sent a trade-off among the different objectives. It is
also commonly required that this set of solutions
be as diverse as possible. Such diversity may be
in terms of the solution space, the objective space
or both, depending upon the problem domain.
Multiobjective methodologies have been ap-

plied to a wide range of application areas which in-
clude personnel scheduling (e.g. [12,25,31]),
university timetabling (e.g. [9,15,50]), production
scheduling (e.g. [4,5]), engineering optimisation
(e.g. [6,55,57]), and many others. Various different
methods have been applied to tackle multiobjec-
tive optimisation problems over the years. Among
these, the classical methods (also called traditional
methods in some of the literature) include weight-
ing approaches, goal programming, constraint
methods, the Tchebycheff method and others
[7,54]. In recent years, multiobjective metaheuris-
tics have received considerable attention. For
example, adaptations of local search methods
including simulated annealing and tabu search
have been proposed [19,29,32,46,58]. Moreover,
there is a growing interest in applying evolutionary
algorithms to solve multiobjective optimisation
problems [18,22,27,64]. Several surveys on the
application of metaheuristics to multiobjective
problems are available in the literature [17,24,
41,59]. Also, there are several studies that focus
on measuring and comparing the performance of
different algorithms for multiobjective optimisa-
tion [51,56,60,63,65]. In fact, a considerable
amount of the available literature on the applica-
tion of multiobjective metaheuristics concentrates
on the competition between different approaches
to produce the best results for a set of test
problems. As noted by Purshouse and Fleming,
‘‘predictably, the existence of alternative algorithms

has instigated a degree of algorithmic competition

into the EMO (Evolutionary Multi-objective)
arena’’ [51, p. 2]. The results obtained from these
comparisons are not always very conclusive be-
cause the performance of each algorithm is very
dependent on the parameter settings. For example,
Purshouse and Fleming showed that by tuning
their multiobjective genetic algorithm, they could
achieve results that were much better compared
against other evolutionary multiobjective algo-
rithms that had been shown to outperform their
algorithm in previous studies carried out by other
researchers (see [51] for full details). Although the
competition between different multiobjective algo-
rithms is an interesting research direction, in order
to understand the functioning of metaheuristics it
is also important to study their performance and
identify those features that make them succeed or
fail in different problem domains.
In this paper, we contend that one of the issues

that should be investigated is the effect of the
method used for evaluating the fitness of candidate
solutions on the performance of multiobjective
algorithms. The evaluation of solutions in optimi-
sation problems can be considered as a separate
process from the algorithm itself. However, in this
paper we consider the solution evaluation method
as an integral part of the multiobjective metaheu-
ristic. We investigate how different fitness evalua-
tion methods affect the performance of two
multiobjective approaches. Two of these evalua-
tion methods are (1) aggregate the objectives and
directly compare the obtained scalar value or (2)
compare their vectors containing all the objective
values using the dominance relation (see Section
3.2). It is noted that some recent multiobjective
algorithms use aggregation of objectives to assign
fitness to solutions while others apply the domi-
nance relation. It has been claimed by some
authors that the use of aggregating functions to
guide the search in multiobjective optimisation is
not adequate mainly because of the difficulty of
setting appropriate weights for each objective
and instead they suggest that the dominance rela-
tion should be used [18,22]. Other researchers sug-
gest that the use of the dominance relation is not
well-suited for approaches that employ local
search [32]. Furthermore, Kokolo et al. discuss
whether non-dominated solutions represent good
approximations to optimality or not [39], while
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Knowles et al. suggest that by the �multi-objectiv-
ization� of single objective optimisation problems
the number of local optima can be reduced in an
attempt to provide more freedom to explore by
the searching mechanism [36]. Also, relaxed forms
of the dominance relation have been proposed as a
means of improving the performance of some
multiobjective methods [13,39,43,48]. Although
arguments have been put forward in favor of
either aggregating functions or the dominance
relation for multiobjective optimisation, there has
been no previous study to investigate the influence
that different fitness evaluation methods may have
on the performance of multiobjective approaches.
This paper attempts to present such an investiga-
tion in order to have an insight into the circum-
stances in which one or another method for
fitness evaluation is more or less appropriate. Re-
sults are reported for a highly constrained combi-
natorial optimisation problem with two
objectives: the space allocation problem which is
a variant of the class of knapsack problems with
assignment constraints [21,34]. Three ways of deal-
ing with the two objectives are compared: an
aggregation of the objectives, the dominance rela-
tion and a relaxed form of this dominance relation.
The results presented here show that although the
aim is to generate sets of non-dominated solutions,
the use of methods such as the aggregation of
objectives or relaxed forms of dominance can im-
prove the performance of multiobjective methods.
It is observed that this is particularly true for the
highly constrained problem being studied in this
paper.
It should be noted that the aim of this paper is

to investigate the influence of the evaluation meth-
od on the performance of the given algorithms on
the two-objective space allocation problem. We
aim to identify any relationships between the
search strategy used and the problem domain in
order to better understand the functioning of
metaheuristic approaches for multiobjective opti-
misation. Section 2 provides details of the two-
objective space allocation problem and the test
instances used here. Section 3 describes the three
fitness evaluation methods compared in this paper
while Section 4 describes the two algorithms used
for this purpose. Experiments are described and
results presented in Section 5 and further discus-
sion and final remarks are given in Section 6.
2. The two-objective space allocation problem

2.1. Description and formulation

The space allocation problem is used for the
experiments in this paper. In this problem, the
aim is to allocate a set of n entities into a set of
m areas of space in such a way that all the existing
hard constraints are satisfied and two minimisa-
tion objectives are accomplished. These objectives
are (1) to minimise the amount of space misused
and, (2) to minimise the violation of soft con-
straints. Examples of the type of (hard or soft)
constraints that can occur in this problem are:

Be located in—a particular entity can be allocated
only in a subset of the available areas.
Be adjacent to—entities should be allocated in
adjacent areas.
Be away from—entities should be allocated away
from each other or away from certain areas.
Be together with—entities should be allocated in
the same area.
Not sharing—entities should not share the allo-
cated area.
Be grouped with—two or more entities should be
allocated as a group using adjacent areas, shared
areas or areas close to each other.

This problem is formulated as follows:

m = number of available areas of space
n = number of entities to allocate
h = number of hard constraints where

z(k) is assigned value, ‘‘true’’
s = number of soft constraints where
z(r) is assigned value, ‘‘true’’

c(i) = capacity or size of area i

w(j) = space requirement of entity j

x(i, j) = 1 if entity j is assigned to area i, 0
otherwise

Minimise:

F ðxÞ ¼ F1ðxÞ þ F2ðxÞ ð1Þ
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subject to:Xm
j¼1

xði; jÞ ¼ 1 for j ¼ 1; 2; . . . ; n; ð2Þ

zðkÞ ¼ true for k ¼ 1; 2; . . . ; h; ð3Þ
where

F1ðxÞ ¼
Xm
i¼1
ðWPðiÞ þOPðiÞÞ; ð4Þ

F2ðxÞ ¼
Xs
j¼1

SCPðrÞ: ð5Þ

For a solution x, the amount of space misuse and
the penalty due to the violation of soft constraints
are given by F1(x) and F2(x). The penalties due to
the space wasted and the space over used in the ith
area are given by WP(i) and OP(i) respectively,
while SCP(r) is the penalty applied when the rth
soft constraint is not satisfied.
For the ith area, there is space wastage if:

cðiÞ >
Xn
j¼1
ðwðjÞ � xði; jÞÞ; ð6Þ

and the penalty is given by

WPðiÞ ¼ cðiÞ �
Xn
j¼1
ðwðjÞ � xði; jÞÞ: ð7Þ

For the ith area, there is space over used if:

cðiÞ <
Xn
j¼1
ðwðjÞ � xði; jÞÞ; ð8Þ

and the penalty is given by

OPðiÞ ¼ 2 �
Xn
j¼1

wðjÞ � xði; jÞ � cðiÞ
 !

: ð9Þ

The problem formulated above is motivated by
the problem of allocating office space in academic
institutions and it can be seen as a variant of the
class of knapsack problems [44]. Specifically, this
is a variant of the bin-packing problem with vary-
ing bin capacities in which additional constraints
limit the allocation of entities to bins [34]. Other
constrained variants of knapsack type problems
have also been investigated in the literature [21].
Moreover, space allocation problems similar to
the one formulated above occur in forest and geo-
graphic management. For example, an important
resource allocation problem in geographic re-
search is the goal of optimising the allocation of
land use to each of the cells forming an area of
land (e.g. [2,45]. In forest management, the maxi-
mal covering location problem consists of selecting
reserve areas that maximise the coverage of species
with the aim of having enough forest areas for the
conservation of all protected species (e.g. [16]). The
optimal utilisation of physical space is a concern in
many other scenarios that range from industrial
and commercial environments (e.g. [8,28,62]) to
computer systems [53]. For a more detailed
description of the space allocation problem consid-
ered in this paper see [14,40]. A brief discussion
about why this problem is considered as a two-
objective optimisation problem in this paper is
provided in the next section.

2.2. The conflicting objectives

Using the dominance relation when dealing
with a multiobjective optimisation problem makes
sense only if the objectives are partially or totally
conflicting [52]. If the objectives are uncorrelated
or reinforce each other, it is often adequate to
combine all of them into a single scalar value
and approach the problem as a single-objective
one. More than two objectives could be considered
in the space allocation problem described above.
In fact, it can be argued that this problem is an
8-objective optimisation problem, i.e. the satisfac-
tion of each of the six types of constraints listed in
Section 2.1 plus the minimisation of space wastage
and space overuse.
Sets of experiments were carried out in order to

investigate the conflicting nature of the objectives
in the problem considered here (full details are pre-
sented in [40]). For each test problem, eight sets of
ten runs were executed using a simple iterative best
improvement algorithm. In each set of ten runs,
one of the eight objectives was subject to the
search process, i.e. only the value of that objective
was used to assign fitness to solutions while the
values of the other seven objectives were traced
to observe their response. Since, in each set of runs
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one of the objectives is subject to minimisation, it
is possible to calculate the correlation between that
objective and the others. A positive correlation is
an indication that the two objectives are reinforc-
ing each other or moving together, i.e. improve-
ments in one objective are associated with
improvements in the other. A negative correlation
is an indication of the conflict between two objec-
tives, i.e. improvements in one objective are associ-
ated to detriments in the other. A correlation value
close to zero is an indication of the two objectives
being unrelated or not affecting each other. The
correlation values obtained in each set of ten runs
were averaged for each pair of objectives.
The results obtained in our experiments showed

that in general: (1) the minimisation of space mis-
use (wastage and overuse) was in conflict with the
satisfaction of soft constraints and that, (2) the sat-
isfaction of one type of soft constraint was not in
conflict with the satisfaction of another type of
soft constraint. These results allowed us to con-
clude that, at least on the test instances used here,
not all the eight objectives are conflicting. There-
fore, we grouped the eight objectives into two con-
flicting objectives: the minimisation of space misuse

and the minimisation of soft constraints violation. It
should be noted that the conflicting nature of the
objectives will depend very much on the con-
straints that exist in each particular problem in-
stance and hence, an analysis similar to the one
described here would be appropriate in order to
illustrate the multiobjective nature of the problem
in hand.

2.3. Measuring diversity

In some problems, diversity in the solution
space is more important than diversity in the
objective space. For example, it may be that after
obtaining a set of diverse solutions with respect
to the objective space, the actual solution struc-
tures are very similar. Therefore, it is important
to establish which type of diversity is aimed at or
whether both are equally important in the problem
domain. In the context of the space allocation
problem described above, diversity in the solution
space is very important since it is desirable to ob-
tain a set of solutions representing different alloca-
tions. In this paper, the diversity in the solution
space is measured by representing each solution
by an n-dimensional vector Y = [y1, y2, . . . , yn]
where yj is the area of space to which the jth entity
has been allocated, i.e. each yj can have a value be-
tween 1 and m. The similarity between solutions is
measured by comparing their corresponding vec-
tors. Two solutions are completely non-similar if
they differ in all the n values of their vectors. The
non-similarity in the solution space for a popula-
tion of size p is calculated as follows:

V p ¼
Pn

j¼1
Dj�1
p�1

� �
n

� 100: ð10Þ

Dj is the number of different values in the jth posi-
tion for all p vectors. Vp denotes the percentage of
non-similarity for the population and it is used as a
measure of diversity here. For a population of p
allocations, Vp is an indication of how similar
the p n-dimensional vectors are. For example, if
Vp = 100% it means that the jth entity for
j = 1, . . . , n is allocated to a different area of space
in each of the p solutions, i.e. all the solutions are
totally different. If Vp = 0% it means that the jth
entity for j = 1, . . . , n is allocated to the same area
of space in each of the p solutions, i.e. all the solu-
tions are identical.
2.4. Test instances

The three instances of the space allocation
problem summarised in Table 1 were used in the
experiments described in this paper. These in-
stances have been taken from real data sets from
two British Universities. The instance nott1 is the
largest and most constrained one with respect to
hard and soft constraints. The nott1b instance is
a variant of the previous problem which also con-
tains a considerable number of constraints but
which has less areas of space available. This makes
the efficient utilisation of space more difficult to
achieve. The trent1 instance contains many hard
constraints of the not sharing type only. More de-
tails of these test problems can be found in [40] and
at http://www.cs.nott.ac.uk/~jds/re-
search/spacedata.html.

http://www.cs.nott.ac.uk/~jds/research/spacedata.html
http://www.cs.nott.ac.uk/~jds/research/spacedata.html


Table 1
Test instances of the two-objective space allocation problem used in the experiments described in this paper (n is the number of entities
and m is the number of areas of space)

Constraints nott1 nott1b trent1

n = 158 m = 131 n = 104 m = 77 n = 151 m = 73

Hard Soft Hard Soft Hard Soft

Not sharing 100 58 46 58 80 71
Be allocated in 0 35 0 9 0 19
Be adjacent to 5 15 4 10 0 5
Be away from 6 14 1 2 0 0
Be together with 0 20 0 20 0 36
Be grouped with 0 10 0 9 0 0

Total 263 159 211
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3. Assigning fitness to solutions in multiobjective

optimisation

We need to establish the way in which the vari-
ous objectives will be handled in order to assign fit-
ness to candidate solutions during the search and
therefore decide which solutions will survive and
which ones will be discarded. Three ways of doing
this are investigated and studied here: an aggregat-
ing function, the dominance relation and a relaxed
form of the dominance relation. These methods are
described below for the two-objective problem
studied here but they can be extended in the obvi-
ous way when more than two objectives exist.

3.1. Aggregation of objectives

With aggregating functions, the two objective
values are combined into a single scalar value as
shown below:

F ðxÞ ¼ w1 � F1ðxÞ þ w2 � F2ðxÞ: ð11Þ
In this approach, weights (w1 and w2) can be incor-
porated in order to establish preference between the
objectives. Selecting an adequate set of weights that
reflects this preference demands prior knowledge of
the decision-makers� criteria. This is not always
possible and also the preferences may vary which
makes this selection process more complicated.
Here, both weights are set to 0.5, indicating no par-
ticular preference for one of the objectives.With the
aggregating function, the solution with the smaller
value of F(x) is preferred or considered better.
3.2. Pareto dominance

In Pareto dominance, the solution fitness is rep-
resented using a two-dimensional vector contain-
ing the values of F1(x) and F2(x). A solution x

with a fitness vector V is preferred over the solu-
tion x 0 with fitness vector U if and only if the vec-
tor V dominates the vector U. Two types of
dominance are:

Strong dominance. A vector V = [v1, v2] strongly
dominates the vector U = [u1, u2] if V is better than
U in both objectives.
Weak dominance. A vector V = [v1, v2] weakly

dominates the vector U = [u1, u2] if V is better than
U in at least one of the objectives and is as good as
U in the other one.

Dasgupta et al. refer to these two types of dom-
inance as strict dominance and loose dominance

respectively [20]. In both types of dominance, if
neither V dominates U nor U dominates V, then
both vectors are said to be incomparable and no
solution is clearly preferred over the other. In this
paper, strong dominance is used to distinguish a
dominated solution from a non-dominated one,
i.e. only solutions that are strongly dominated are
rejected. This means that solutions that are weakly
dominated are also considered because of the inter-
est in obtaining diversity in the solution space. In
the following, strong dominance is referred to as
dominance. A solution x is said to be non-domi-
nated with respect to a set of solutions S if there
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is no solution in S that dominates x. The Pareto-
optimal front in multiobjective optimisation is the
set of all non-dominated solutions in the whole
solution space [18,22,54]. When there is no knowl-
edge of the localization of the Pareto-optimal set,
the obtained set is referred to as the non-domi-
nated set found. In the instances of the test prob-
lem used in this paper, there is no knowledge of
the localization or shape of the Pareto-optimal
front.

3.3. Relaxed Pareto dominance

Relaxed forms of Pareto dominance have been
proposed by researchers as a means to improve
the performance of multiobjective optimisers.
For example, Kokolo et al. suggested the use of
a-dominance for dealing with what they call dom-
inance resistant solutions, i.e. solutions that are
fairly inferior quantitatively but solutions that
dominate them are scarcely found [39]. This vari-
ant of dominance establishes lower and upper
bounds for tradeoffs between the objectives. In a-
dominance small detriments in one of the objec-
tives are considered acceptable if this leads to an
attractive improvement in the other objective.
Fig. 1 illustrates the concept of a-dominance for

a two-objective minimisation problem and it also
compares it to the other two evaluation methods
considered here: dominance and aggregation of
objectives. Solutions in regions B, C and D all a-
dominate solution x. In region C for example,
buv represents the maximum detriment permitted
in objective u given the minimum improvement
bvu in objective v. In region D, bvu and cuv are de-
fined in a similar way. Solution x is dominated by
all solutions in region B while solution x domi-
nates all solutions in region A. When using the
aggregation of objective values, a line that splits
the objective space into two regions is drawn. All
the solutions above the line are considered worse
than x and all solutions below the line are consid-
ered better that x. A line at 45 degrees of inclina-
tion is used here according to equal weight
values for the two objectives but different slopes
will reflect different preferences. In a-dominance,
given an optimisation problem with k objectives,
the relation between bvu and cuv for each pair of
objectives u 5 v represents the relation between
the detriment permitted in the objective v and the
improvement obtained in the objective u. For the
formal definition of a-dominance see [39]. A simi-
lar form of relaxed dominance called �-dominance
was recently suggested by Laumanns et.al. to
implement better archiving strategies that allows
us to overcome the difficulty of multiobjective evo-
lutionary algorithms to converge towards the Par-
eto-optimal set and maintain a wide diversity in
the population at the same time [43]. The �-domi-
nance has also been proposed to implement spe-
cialised archiving mechanisms for multiobjective
search algorithms [33,48].
In some sense, the relaxed forms of dominance

(a-dominance and �-dominance) are similar to
establishing preferences among the objectives
using weights in an aggregating function. In both
cases, a detriment in one or more of the objectives
is permitted in an attempt to widen the search by
accepting not only dominating solutions. The dif-
ferent perspectives in viewing candidate solutions
affects the way in which surviving solutions are se-
lected. An algorithm may find it difficult to dis-
cover feasible solutions that dominate the current
one(s). This is particularly true in highly con-
strained combinatorial optimisation problems like
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the one considered here. Then, by accepting a-
dominating (or �-dominating) solutions or solu-
tions for which the aggregated value is better, it
is possible to provide the algorithm with a wider
view of the potential ways to approach the
Pareto-optimal front.
The relaxed form of dominance implemented in

this paper follows the same principle as a-domi-
nance and �-dominance but it is slightly different.
Let x be the current solution and x 0 be a candidate
solution with fitness vectors given by V = (v1, v2)
and U = (u1, u2) respectively. If the first objective
in the candidate solution is better than in the cur-
rent solution, i.e. u1 < v1 then the corresponding
gain or improvement proportion is calculated as
gain = (v1 � u1)/v1. The candidate solution x 0 is
considered to be better than the current solution
x if the detriment proportion in the other objective
is at most gain, i.e. if u2 < v2 · (1 + gain). This
calculation is modified in the obvious way in
the case u2 < v2. That is, it can be seen that the re-
laxed dominance is equivalent to the following
relation: 1

u1
v1
þ u2

v2
< 2: ð12Þ
4. The two multiobjective approaches tested

4.1. Justification

The two algorithms used in this investigation
are: an amended version of the population-based
hybrid annealing algorithm previously proposed
by the authors in [11] and the (1 + 1)-Pareto ar-
chived evolutionary strategy proposed by Knowles
and Corne [35]. The first one is a hybrid approach
that has been developed as a result of the previous
research carried out by the authors into investigat-
ing metaheuristic approaches to the space alloca-
tion problem. When this algorithm is applied to
the two-objective space allocation problem, it is
observed that better non-dominated fronts are
produced if the aggregation of objectives or the re-
1 Thanks to the anonymous referee for suggesting this
equation.
laxed concept of dominance is used instead of the
dominance relation to assign fitness to solutions
during the search. In order to investigate whether
this behavior is due to the search strategy used
by the algorithm or due to the problem domain,
a multiobjective search algorithm that has been
well-studied in the specialised literature was also
implemented and tested. The (1 + 1)-Pareto ar-
chived evolutionary strategy is a modern multi-
objective optimisation technique that is simple to
implement, has been tested across a range of prob-
lems and is considered to be competitive with
other modern multiobjective evolutionary algo-
rithms [37,56].
The two approaches above are alike in the sense

that both evolve solutions based on self-adapta-
tion, i.e. the current solution is modified by muta-
tion or local search and no recombination is used.
Algorithms like these are often referred to as tra-
jectory-based methods. The population-based hy-
brid annealing algorithm has been tested on
other instances of the space allocation problem
while the (1 + 1)-Pareto archived evolutionary
strategy is an approach that has been applied to
many other multiobjective optimisation problems
but not to the one tackled in this paper so the effect
of the fitness evaluation method can be further
investigated without being biased by the algorithm
design. Also, the authors�s previous experience is
that the recombination of solutions in this highly
constrained problem almost always produces
infeasible solutions [10,40]. Of course this only
means that good crossover operators or repairing
heuristics need to be designed and therefore the
applicability of recombination-based multiobjec-
tive evolutionary algorithms to this problem can
be considered in the future. Then, since both algo-
rithms use local search as the main operator to
generate candidate solutions, they can be readily
applied to the highly constrained two-objective
space allocation problem. Brief descriptions of
these two algorithms are given below.

4.2. The population-based hybrid annealing

algorithm

The approach described next is based on the
simulated annealing algorithm but it also incorpo-
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rates elements of other metaheuristics such as
tabu search and evolutionary algorithms [47].
Simulated annealing is a local search approach
that attempts to improve the current solution
and in which the acceptance of worse solutions is
controlled by an annealing schedule [1]. Initially,
a high temperature (corresponding to a high
acceptance probability) is set. As the search con-
tinues, this temperature (and hence the acceptance
probability) is reduced gradually. When the
temperature equals zero (corresponding to zero
acceptance probability), only better solutions are
accepted.
The hybrid approach described here is pre-

sented in Pseudocode 1. A previous version of this
algorithm was presented in [11] and the modifica-
tion incorporated here is in the co-operative local
search mechanism described later in Section
4.2.2. The algorithm evolves a population of indi-
viduals using the local search heuristic HLS, a
mutation operator and a common annealing
schedule for the whole population. The heuristic
HLS incorporates a mechanism to induce co-oper-
ation among the individuals in the population (see
sections below). The comparison between the cur-
rent solution xc and a candidate solution xc0 in
steps 6.2 and 6.3 of Pseudocode 1 to establish
which one is better depends on the fitness evalua-
tion method used, which is the main topic of dis-
cussion in this paper. In a typical simulated
annealing implementation, the initial temperature
is usually set to a value which enables a consider-
able proportion of solutions to be accepted in the
first iterations even if these solutions are non-
improving [1]. However, note that in the algorithm
presented here the initial acceptance probability q
is set to 0. That is, the algorithm behaves as a pure
iterative improvement algorithm for g iterations
(step 4) and then the acceptance probability is set
to 1 (step 5). After that, this probability q is de-
creased at each interval of g iterations (step 6.4).
Then, re-heating occurs when this probability is
raised again from 0 (or near 0) to 1 (step 6.3b)
and it takes place if after g iterations with accept-
ance probability equal to zero, no candidate solu-
tion x0c has been found that is better than the
current solution xc. Due to this probability of
accepting non-improving solutions (step 6.3a),
the solutions in PC can eventually be worsened
as the algorithm evolves. Therefore, PB archives
the best solution found by each of the individuals
in the population while PC maintains the current
solution for each individual. Note that although
co-operation between individuals is implemented
(described in Section 4.2.2), PB stores the best
solution found by each individual regardless of
the rest of the population and there is no guaran-
tee that all solutions in PB be non-dominated.
Therefore, an additional archive PND of the non-
dominated solutions found during the search is
maintained. Note that the different evaluation
methods (aggregation of objectives, dominance
and relaxed dominance) only refer to steps 6.2
and 6.3 of the algorithm in Pseudocode 1. The
set PND is always updated using the dominance
relation described in Section 3.2. The algorithm
parameters used in the experiments described in
this paper are given in Section 5.1.

Pseudocode 1. The Population-based Hybrid
Annealing Algorithm.

1. Generate the initial current popula-
tion of solutions PC

2. Copy PC to the population of best

solutions PB

3. Set acceptance probability q 0,

cooling factor 0 < a < 1, decrement

step g, re-heating step u, and re-

heating counter s 0(g, u and s are a

number of iterations)

4. For g iterations, apply the local

search heuristic HLS to each indi-

vidual in PC

5. Set q 1

6. For each XC in PC and its correspond-

ing XB in PB,

6.1. Generate a candidate solution X 0C
using HLS

6.2. If X 0C is better than XC, then

XC  X 0C
(a) If X 0C is better than XB, then

X B  X 0C

6.3. If X 0C is not better than XC, then

(a) if q > 0 and a random generated

number in the normal distri-
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bution [0, 1] is smaller than

q, then XC  X 0C
(b) if q 	 0 (in our setting, if

p < 0.0001), then s s + 1 and

if s P u, then q 1 and s = 0

6.4. If (iterations mod g) = 0, then

q a Æ c
6.5. If X 0C is non-dominated with

respect to PND, update PND

7. Go to Step 8 if no individual has

achieved further improvement for g
iterations, otherwise go to Step 6

8. Apply the mutation operator to each

individual in PC

9. If stopping criterion has not been

satisfied, go to Step 6
4.2.1. The local search heuristic

The heuristic HLS shown in Pseudocode 2 em-
ploys four neighbourhood structures or moves to
carry out local search: allocate, relocate, swap

and interchange. These structures are described be-
low together with their respective size in terms of
the number of entities to allocate (n) and the num-
ber of available areas of space (m).

• Allocate an unallocated entity to an area.
jNAj = n Æ m.

• Relocate an entity to a different area.
jNRj = n Æ (m � 1).

• Swap the areas between two entities.
jNSj = n Æ (n � 1)/2.

• Interchange the allocated entities between two
areas. jNIj = m Æ (m � 1)/2.
Pseudocode 2. The local search heuristic HLS.
This heuristic selects the type of move or neigh-
bourhood structure and then explores the selected
neighbourhood to find a move. The number of
attempts refers to the number of previously con-
secutive failed (i.e. no accepted) moves. The value
maximum attempts refers to the maximum number
of failed attempts permitted.

1. If all n entities are allocated then

1.1. Select the move type at ran-

dom:relocate, swap or interchange
2. If not all n entities are allocated

then

2.1. If the number of attempts > maximum

attempts permitted then

2.1.1. If the previous selected

move type was allocate then

select a move between relocate,

swap and interchange at random

2.1.2. If the previous selected

move type was not allocate then

select the allocate move

2.1.3. Set the number of attempts
equal to zero.
2.2. If the number of attempts < maxi-
mum attempts permitted then

2.2.1. If the previous selected

move type was not allocate

then select a move between

relocate, swap and interchange at

random
3. Explore the neighbourhood and return
a move of the selected type
To select the type of move, the heuristic HLS

takes into account the current state of the
allocation and the history of success in applying
each type of move. The type that is under-
taken in each iteration is determined by the
number of allocated entities and the number of
prior failed attempts to find a feasible move of
the selected type. That is, if all entities are
allocated in the current solution, only the moves
relocate, swap and interchange are explored. In
the case that not all entities are allocated, a cer-
tain number of maximum attempts normally
set to n/10 (decided by preliminary experimenta-
tion) is given to either of the three move types.
For example, suppose that in the current solu-
tion there are still 5 unallocated entities from a
total of 200 in the allocation problem. If after
20 failed attempts, none of these entities have
been successfully allocated, the algorithm exam-
ines the feasibility of modifying the solution using
the relocate, swap and interchange moves up to a
maximum of 20 failed attempts. The number
of failed modification attempts is set to zero when
a move has been accepted by the driving
metaheuristic.
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4.2.2. Co-operative local search

The heuristic HLS selects the best from a subset
of candidate solutions in the neighborhood of the
current solution. Since a set of individuals is
evolved, memory structures are implemented in
order to take advantage of the collective searching
process. Two matrices MT and MA of size n · m

are used and in both of them the cell (j, i) corre-
sponds to the allocation of the jth entity to the
ith area, for j = 1, . . . , n and i = 1, . . . , m. The ma-
trixMT stores those (entity, area) pairs that will be
considered as tabu for a number of iterations
while the matrix MA stores those (entity, area)
pairs that will be considered attractive during the
search. The tabu matrix MT is updated each time
a move suggested by the heuristic HLS produces a
detriment in the fitness of the current solution
while the attractive matrix MA is updated each
time the move produces an improvement. Updat-
ing a cell in MT refers to setting the value in the
cell to the value of the current iteration + tenure
so that a move involving the (entity, area) pair
corresponding to that cell is set as tabu for tenure
number of iterations. Preliminary experiments
showed that a tenure value of around n and which
is kept constant throughout the search produced
good results. Updating a cell MA refers to in-
crementing the value in the cell in one unit, i.e.
MA(j, i) =MA(j, i) + 1. In each type of move, the
cells that are updated are the ones corresponding
to the (entity, area) pairs after implementing the
move. For example, if the 6th entity is relocated
from the 2nd to the 4th area, the cell MA(6, 4) is
incremented by 1 if the move produced a better
solution but if the move generated an inferior
solution, the cell MT (6, 4) is set to current

iteration + tenure.
The tabu matrix acts as the short-term memory

component while the attractive matrix acts as the
long-term memory component. Since both matri-
ces store (entity, area) pairs, this mechanism can
be regarded as a way of memorising parts of allo-
cations or genes that come from bad solutions
(MT) or good solutions (MA). The two matrices
are shared by all individuals in the population as
a mechanism for interchanging local search infor-
mation. Within the local search heuristic HLS the
moves in MT are avoided while the moves in MA
are used when no suitable move can be found for
an individual. The local search heuristic HLS used
in the population-based hybrid annealing algo-
rithm also searches until a feasible solution is
found. Again, previous work on this problem
showed that using various neighbourhood struc-
tures works well [10,40].
4.2.3. The mutation operator

The mutation operator in this algorithm (step 8
in Pseudocode 1) disturbs the solutions in a con-
trolled way in order to explore other areas of the
solution space. In the context of the space alloca-
tion problem, this disruption consists of removing
from their assigned area, those allocated entities
that contribute the most to the total penalty. This
operation releases the space assigned to those enti-
ties so that new possibilities of allocating them can
be explored. A maximum number of entities to be
unallocated is determined according to the size of
the problem instance. The allocated entities are
sorted in decreasing order of their associated pen-
alty, i.e. the violation degree of the soft constraints
associated to each of them. Then, starting from the
most penalised one, entities are unallocated up to
the maximum specified. Once the current alloca-
tion is disrupted in this way, the algorithm reallo-
cates the unallocated entities using the heuristic
HLS until all entities are allocated again. The pur-
pose of this heavy mutation operator is to modify
the current allocation after the algorithm gets
stuck but this modification is directed so that only
bad parts of the solution (penalised entities) are
disturbed.
4.3. The Pareto archive evolutionary strategy

Several variants of the Pareto archived evolu-
tionary strategy have been proposed but this paper
refers to the (1 + 1)-Pareto archived evolutionary
strategy [35]. The pseudocode for this algorithm
is given in Pseudocode 3.

Pseudocode 3. The (1 + 1) Pareto archived evo-
lutionary algorithm. This algorithm was proposed
by Knowles and Corne [35]. For each of the k

objectives in a problem, the space is divided into l

bisections. That is, the objective space is divided
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into 2l·k regions. The number of solutions in each
region is recorded as an indication of how crowded
the region for each solution is.

1. Generate initial random solution xc

and add it to the archive

2. Repeat until a termination criterion
has been reached

• Mutate xc to produce x0c and evaluate

x0c
• If xc dominates x0c then discard

• Else if x0c dominates xc, xc  x0c and
add x0c to the archive
– Else if x0c is dominated by any

member of the archive, then dis-

card x0c
* Else apply test (xc, x0c,

archive) to determine which

becomes the new current solu-

tion and whether to add x0c to

the archive
This algorithm starts with one initial solution xc
and in each iteration, one candidate solution x0c is
generated by means of mutations. For the problem
domain considered here, when a mutated solution
is infeasible, successive mutations are tried until a
feasible solution is generated. This is a very fast
operation and it worked well in this implementa-
tion. An external archive (of limited size) is main-
tained to collect non-dominated solutions.

Pseudocode 4. Subprocedure test (xc, x0c, archive).

If the archive is not full then

• Add x0c to the archive

• If x0c is in a less crowded region of

the archive than xc, accept x0c as

the new current solution

• Else maintain xc as the current

solution

Else

• If x0c is in a less crowded region of

the archive than x for some member

x of the archive
– Add x0c to the archive, and remove

a member of the archive from the

most crowded region
– If x0c is in a less crowded region

of the archive than xc, accept x0c
as the new current solution

– Else maintain xc as the current

solution

• Else

– If x0c is in a less crowded region

of the archive than xc, accept x0c
as the new current solution

– Else maintain xc as the current

solution
An adaptive grid that divides the objective
space is used to evaluate how crowded the region
in which each solution lies is. The candidate solu-
tion is discarded if it is dominated by the current
solution or any other solution in the external ar-
chive. The candidate solution is added to the ar-
chive and becomes the new current solution if it
dominates the old current solution. If none of
them dominates the other, the decision on which
solution becomes the current solution and whether
to add or not the candidate solution to the archive
is made using the Subprocedure test (xc, x0c, archive)
shown in Pseudocode 4.
5. Experiments and results

5.1. Experimental settings

Solutions are initialised with the following pro-
cedure: one unallocated entity is selected at ran-
dom, then a free area is also selected at random
to allocate the entity. If no free area is available,
another area is selected at random from those that
are already occupied by another entity or entities
regardless of the amount of space available. This
process continues until all entities are allocated.
Next, the solution is fixed to satisfy the hard con-
straints that are violated at that point. This fixing
procedure moves entities to areas so that the hard
constraints are satisfied regardless of the space uti-
lisation and soft constraint objective values (F1
and F2).
For each test instance and each fitness evalua-

tion method (aggregation of objectives, dominance
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and relaxed dominance) 10 repetitions of the
experiments (which we describe next) were exe-
cuted. An initial population of size 20 was gener-
ated as described above. The population-based
hybrid annealing algorithm was executed for a
number of maximum solutions evaluations de-
noted by eval. Since the Pareto archived evolution-
ary strategy evolves a single solution, one run of
the algorithm corresponds to 20 executions for
eval/20 solution evaluations, one with each of the
20 initial solutions. That is, the same initial popu-
lation was used in each set of runs comparing the
three evaluation methods in the two algorithms,
i.e. 10 different populations were generated and
in total 90 runs were executed for each algorithm.
Below, we discuss the offline and the online results
obtained in these experiments. The offline set of
non-dominated solutions for each algorithm is ob-
tained after merging all the sets produced in each
of the 10 experiment repetitions and filtering this
set to eliminate all dominated solutions. An online
set of non-dominated solutions is obtained by each
algorithm in each of the 10 experiment repetitions.
That is, for each algorithm there are ten online sets
and one offline set of non-dominated solutions.
For the population-based hybrid annealing

algorithm, the parameters were set as follows:
jPCj = jPBj = 20, a = 0.95, g = n and u = 10 Æ n.
The number of maximum solution evaluations eval
was set to 100,000, 80,000 and 50,000 for the nott1,
nott1b, and trent1 test instances respectively. The
number of non-dominated solutions in the exter-
nal archive PND was limited to 30 in both algo-
rithms although in some cases fewer solutions
were obtained in the final set. In the rest of this pa-
per, the population-based hybrid annealing algo-
rithm and the Pareto archived evolutionary
strategy are referred to as PBAA and PAES
respectively for simplicity. The above experiments
were carried out on a PC with a 700 MHz proces-
sor and 132MB of RAM running under the Win-
dows 2000 operating system. The algorithms
were coded using MS Visual C++ version 6.0. In
these conditions, the execution time for each run
was similar for the two algorithms (PBAA and
PAES). The times for each test instance were: nott1
around 120 seconds, nott1b around 70 seconds and
trent1 around 135 seconds.
5.2. The offline non-dominated sets

For each set of 10 runs corresponding to the
same triplet (algorithm, problem instance, fitness
evaluation method) the offline non-dominated sets
were collected and these are presented in Figs. 2–4.
It is observed from Fig. 2 that for the nott1 prob-
lem, the non-dominated sets obtained with both
algorithms using the relaxed dominance and the
aggregating function are better than those sets pro-
duced using the standard dominance relation. For
both algorithms, the relaxed dominance clearly
produces better results than the dominance rela-
tion. Also for both algorithms, a considerable sec-
tion of the front obtained using the relaxed
dominance is dominated by the front obtained
using the aggregating function with the exception
of a few solutions at the top end of these fronts.
That is, using the aggregating function seems to
benefit the performance of the algorithms in find-
ing more solutions with low violation of soft con-
straints (small values of F2) but none of the
solutions obtained have values of space misuse
(F1) as low as some of the solutions obtained using
the relaxed dominance relation.
For the problem nott1b, Fig. 3 shows that the

non-dominated sets obtained using the standard
dominance and the relaxed dominance are compa-
rable for the two algorithms. That is, none of
these two fitness evaluation methods appears to
clearly outperform the other. With PBAA some
of the solutions obtained using dominance have
better space utilisation while with the PAES many
solutions obtained using relaxed dominance are
better with respect to the satisfaction of soft con-
straints. It is noticeable that for both algorithms,
none of the solutions obtained using the aggregat-
ing function is dominated by solutions produced
with the other two fitness evaluation methods.
However, as in the nott1 problem, using the
aggregating function produces solutions that excel
with respect to F2 but solutions with very low val-
ues of F1 are not found. Fig. 4 shows that for the
trent1 problem, the comparison between the non-
dominated sets obtained using the standard dom-
inance and the aggregating function is very tight.
In the case of PBAA the aggregating method out-
performs the dominance relation with respect to
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the solutions in the bottom half of the front, i.e.
solutions with low values of soft constraint viola-
tion (F1). But in the case of the PAES, using the
dominance relation generates a few solutions that
dominate a section in the middle of the front pro-
duced with the aggregating method. Note that the
results obtained using the relaxed dominance are
very poor for both algorithms. Only a few solu-
tions in the top end of the front produced with
the relaxed form of dominance are competitive
with those produced by the other two evaluation
methods.
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It seems that when the relaxed dominance is
used in problem trent1, both algorithms have diffi-
culty in finding solutions with low values of soft
constraint violation (F2). One of the reasons for
this behavior might be the level of compromise
established between improvement in one of the
objectives and the corresponding detriment in the
other. That is, as described in Section 3.3, the det-
riment permitted in objective u cannot be greater
that the gain obtained in objective v. However, it
may be that this level of acceptance is not adequate
if improvements in one of the objectives are more
difficult to achieve than for the other objective.
Perhaps smaller or greater levels of detriment in
one objective should be considered as acceptable
after obtaining an improvement in the other objec-
tive. This is further investigated later in Section 5.5
of this paper.

5.3. The online non-dominated sets

With respect to the online performance, the
non-dominated populations obtained in the runs
using the same algorithm on the same test instance
but with the three different fitness evaluation meth-
ods were compared by using the metric proposed
by Zitzler et al. [63]. This metric was selected be-
cause it directly compares the quality of two
non-dominated sets, it is not required to know
the Pareto optimal front and it is simple to com-
pute (various metrics are described in
[3,26,38,49]). This metric is described by Eq. (13),
where A, B are sets of non-dominated vectors.

CðA;BÞ ¼ jfb 2 B; 9a 2 A : a � bgj
jBj : ð13Þ

With the above metric, a value of C(A, B) = 1
indicates that all solutions in set B are dominated
by at least one solution in set A while a value of
C(A, B) = 0 indicates that no solution in set B is
dominated by a solution in set A. In our experi-
ments, ten values of C(D, A), C(A, D),
C(D, RD), C(RD, D), C(A, RD) and C(RD, A)
were computed for each set of runs comparing
the three fitness evaluation methods using the
same algorithm and test problem. The average of
these 10 values is presented in Table 2 for each test
instance and each algorithm. By observing the
comparison between the aggregating function re-
sults and the two other evaluation methods, it
can be seen that in general, the aggregating func-
tion helps the approach to obtain the best results
in the case of both algorithms or at least it is as
competitive as the relaxed dominance. Only for



Table 2
Comparison of the online performance using the three evalu-
ation methods: A is the aggregating function, D is the
dominance relation, and RD is the relaxed dominance

PBAA PAES

nott1 nott1b trent1 nott1 nott1b trent1

C(D,A) 0.13 0 0.39 0.08 0.17 0.28
C(A,D) 0.99 0.76 0.23 0.96 0.81 0.32

C(D,RD) 0 0.58 0.94 0 0.51 0.92
C(RD,D) 1 0.49 0.14 0.98 0.64 0.21

C(A,RD) 0.65 0.54 0.97 0.77 0.62 0.96
C(RD,A) 0.41 0.43 0.10 0.26 0.35 0.17
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the PBAA method on the trent1 instance is the
average coverage C(D, A) slightly better than
the average coverage C(A, D). When comparing
the results obtained with standard dominance
and relaxed dominance, it is clear that for the nott1
instance the relaxed dominance is better. In the
case of the nott1b instance both strategies appear
to be comparable across the ten runs. However,
as mentioned above, in the trent1 instance the per-
formance of both algorithms when using the re-
laxed dominance is very poor and beaten clearly
by the standard dominance too. The following sec-
tion presents and discusses results in terms of the
population diversity.

5.4. Results on diversity

Table 3 shows the results with respect to the
diversity Vp (Eq. (10)) of the non-dominated sets
obtained in the experiments described above.
Again, for each set of 10 runs corresponding to
Table 3
Results on diversity Vp for the online and offline non-dominated sets ob
evaluation methods: A is the aggregating function, D is the dominan

PBAA

nott1 nott1b

Online (average) A 71.3 75.7
D 72.1 76.9
RD 72.5 78.2

Offline A 32.2 53.8
D 27.0 39.1
RD 26.3 34.6
the same triplet (algorithm, problem instance, fit-
ness evaluation method), the values of Vp were
averaged and these are shown as the online results
in Table 3. The values of Vp were also calculated
for the offline populations collected after each set
of 10 runs and these are shown as the offline results
in the same table. It can be observed that with re-
spect to the online performance, both algorithms
obtain non-dominated sets with very similar diver-
sities for the three fitness evaluation methods in
the three test problems. In all cases, the relaxed
dominance helps both algorithms to achieve
slightly more diverse populations but the difference
with the other methods is almost insignificant. In
the case of the offline non-dominated sets,
although the results obtained with the three fitness
evaluation methods are still very similar, greater
differences between the diversity values obtained
can be observed. For example, the aggregating
function benefits PBAA in problems nott1 and
nott1b and PAES in problem nott1b. The relaxed
dominance method favors PBAA in the trent1

problem and PAES in the nott1 problem. The
standard dominance relation helps PAES to ob-
tain a slightly more diverse offline population in
problem trent1. In general it can be said, from
these results, that none of the three fitness evalua-
tion methods seems to be clearly more beneficial
than the others with respect to the population
diversity that the two algorithms achieve. In the
next section, further experiments are carried out
in order to investigate the reasons why the relaxed
dominance appears to adversely affect the per-
formance of both algorithms in the trent1 instance
as noted in Section 5.2.
tained with each algorithm when using the three different fitness
ce relation, and RD is the relaxed dominance

PAES

trent1 nott1 nott1b trent1

81.9 71.2 75.7 82.9
81.5 73.6 75.9 81.8
84.4 73.8 77.5 83.6

32.0 28.1 48.8 30.5
32.8 29.7 30.5 33.6
40.0 32.5 32.3 23.5
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5.5. Compromise between objectives in

relaxed dominance

As described in Section 3.3, in the relaxed dom-
inance relation used here, the detriment propor-
tion acceptable in one of the objective values
cannot be greater than the gain or improvement
proportion obtained in the other objective value.
If improvements for one of the objectives are more
difficult to achieve than for the other, then the
above compromise may not be as beneficial as
thought. This appears to be the case in the trent1
problem instance as revealed in the experiments
and results presented next. Given the results ob-
tained with the relaxed dominance as evaluation
method in the trent1 problem, it was decided to
carry out more experiments with different levels
of compromise between the two objectives. Con-
sider the current and candidate solutions x and
x 0 with fitness vectors V[v1, v2] and U = [u1, u2]
respectively. Four levels of trade-off between the
two objectives were considered:

Relaxed dominance. In this case the compromise
is set as described in Section 3.3. In the three cases
below gain is calculated as before.

Relaxed dominance variant A. Here, a greater
detriment proportion is permitted in F1 given an
improvement in F2. That is, when u2 < v2 then x 0

is considered better than x if u1 < v1 Æ (1 + 10 Æ
gain). When u1 < v1, the detriment permitted in
v2 is as before.

Relaxed dominance variant B. In this case, a
greater detriment proportion is permitted in F2 gi-
ven an improvement in F1. That is, when u1 < v1
then x 0 is considered better than x if u2 < v2 Æ
(1 + 10 Æ gain). When u2 < v2, the detriment per-
mitted in v1 is as before.

Relaxed dominance variant C. Now, the detri-
ment proportion permitted in F2 given an
improvement in F1 is less than in the previous
case. That is, when u1 < v1 then x 0 is considered
better than x if u1 < v2 Æ (1 + 5 Æ gain). When
u2 < v2, the detriment permitted in v1 is as before.
The variant A refers to the case in which an

improvement in the satisfaction of soft constraints
(F2) is more desirable and therefore more detri-
ment in space misuse (F1) is permitted. The other
two variants reflect the case in which the improve-
ment in space misuse (F1) is considered more
attractive and the detriment permitted in the soft
constraints satisfaction (F2) is greater. Sets of runs
were executed as described in Section 5.1 but using
only the above four variants of the relaxed domi-
nance relation on the trent1 instance. The results
(offline non-dominated sets) of these experiments
are presented in Fig. 5. It is clear that the level
of compromise between the objectives has an influ-
ence on the performance of both algorithms when
solving the trent1 instance. Among the levels of
compromise considered here, the best results are
obtained when greater detriments in the satisfac-
tion of soft constraints (F2) are allowed given an
improvement in the space misuse (F1). This can
be interpreted in two ways. It may be that
improvements in F1 are difficult to achieve so they
are highly welcomed regardless of the detriment
caused in F2. The other possibility is that improve-
ments in F2 are the ones which are difficult to
achieve so that this objective is permitted to dete-
riorate sometimes in order to find improvements
later in the search. In order to find out which of
the above possibilities is occurring here, counters
were maintained for the number of times in which
the combination of improvement in one objective
and detriment in the other led to the candidate
solution being considered to be better. The results
given next correspond to the relaxed dominance
variant B (the one producing better results).
In the case of PBAA, out of the total number of

times in which an improvement in at least one of
the objectives was achieved, F1 was improved for
70% of the times and F2 was improved for 32%
(the sum is greater than 100% since sometimes
both objectives are improved). Out of the number
of times in which F1 was improved, in 30% of
these the detriment in F2 was acceptable and the
new solution considered to be better than the cur-
rent one. Out of the number of times in which F2
was improved, in 35% of these the detriment in F1
was acceptable and the new solution considered to
be better than the current one. For PAES the re-
sults are as follows: out of the total number of
times in which an improvement in at least one of
the objectives was achieved, F1 was improved
61% of the times and F2 was improved 41% of
the times. Out of the number of times in which
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F1 was improved, in 43% of these the detriment in
F2 was acceptable and the new solution considered
to be better than the current one. Out of the num-
ber of times in which F2 was improved, in 35% of
these the detriment in F1 was acceptable and the
new solution considered to be better than the cur-
rent one. The above results suggest that finding
candidate solutions with lower values of soft con-
straint violation (F2) than the current solution is
more difficult in general. It seems that by relaxing
the acceptance of solutions with higher values of
F2 in the trent1 problem, the algorithms are pro-
vided with a wider view and these solutions may
lead to better ones later on in the search. Finally,
Fig. 6 compares for the trent1 instance, the offline
non-dominated sets obtained with the relaxed
dominance variant B and the other two evaluation
methods (shown in Fig. 4). Although the non-
dominated sets obtained with both algorithms
using the relaxed dominance variant B are much
better than the ones obtained with the original re-
laxed dominance, still the two other fitness evalua-
tion methods help to obtain better results in both
algorithms. In the next section, more results are
presented in an attempt to investigate the effect
of the fitness evaluation method on the evolution
of the objective values.
5.6. The evolution of objective values

To investigate the effect of the fitness evaluation
method on the evolution of the objectives, the val-
ues of F1(x), F2(x) and F(x) = F1(x) + F2(x) for
each individual x in the PB populations of PBAA
were recorded. The same was done for the current
solution in PAES. Only a sample of the results are
presented here, but the graphs shown below are
typical of the observations made in all the runs
of the experiments for both algorithms and the
three test problems. Figs. 7–9 show for the nott1
instance and the PBAA, the evolution of F1(x),
F2(x) and F(x) for one individual in PB when each
of the evaluation methods was used. As expected,
the values of F1(x) or F2(x) when using the aggre-
gating function are sometimes worsened in favor
of improving the aggregated value but frequently
that detriment is temporal and the previous value
is recovered or improved later on in the process.
Similar observations can be made when the re-
laxed dominance is used to evaluate solution fit-
ness. This, of course, cannot happen when using
the standard dominance relation since the candi-
date solution is accepted only if at least one of
the objectives is improved without worsening the
other.
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6. Further discussion and final remarks

There is an increasing interest by researchers in
various fields on the application of metaheuristics
to multiobjective optimisation problems. Most of
the published research on this subject has been fo-
cused on the development of new algorithms or
extending existing single-objective methods toward
multiobjective approaches. As noted in the intro-
duction, a considerable number of papers report
on the comparison between multiobjective optim-
isers on test and real-world problems. It is also
fundamental to investigate the reasons why meta-
heuristics for multiobjective optimisation succeed
or fail in certain problem domains to gain a better
understanding of their functioning in order to de-
sign more effective and efficient approaches.
Although some research has been published on
the effect that some strategies have on the perform-
ance of some metaheuristics for multiobjective
optimisation (e.g. [23,42,48]), we believe that more
research on this subject is required. The research
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presented in this paper aims to be a contribution to
the better understanding of the mechanisms and
conditions that influence the performance of multi-
objective search algorithms. The subject of study
here has been the effect of the method used to as-
sign fitness to solutions on the performance of
multiobjective methods. The fitness evaluation
methods considered here were: the aggregation of
objectives, the dominance relation and a relaxed
form of this dominance relation. Arguments can
be found in the literature both in favor and against
the use of aggregating functions or the use of dom-
inance within metaheuristics for multiobjective
optimisation. For example:

• Some researchers have expressed the view that
Pareto-based evolutionary algorithms are more
suitable for multiobjective optimisation than
local search methods using aggregation of
objectives [18,22] while other researchers have
shown that approaches that use local search
and aggregating functions are suitable for deal-
ing with various multiobjective optimisation
problems [19,29,32,46,58].

• Knowles proposed and evaluated several
approaches for multiobjective optimisation
based on a form of local search: mutation oper-
ators and using the dominance relation to eval-
uate solutions [37].

• Jaszkiewick said ‘‘ . . . Pareto ranking is not well

suited for hybridization with local search’’ and
found that weighted linear functions had better
ability than Tchebycheff functions in finding
potential non-dominated solutions within a
genetic local search algorithm [32, p. 54].

• Knowles et al. suggested that using the domi-
nance relation can be beneficial even in single-
objective optimisation for reducing the number
of local optima [36].

• Kokolo et al. illustrated the difficulty that
approaches using dominance selection may
exhibit in finding Pareto optimal solutions and
suggested the use of a-dominance (relaxed dom-
inance) [39].

• Some researchers have used �-dominance (simi-
lar to a-dominance) to implement better
archiving strategies that attempt to help multi-
objective evolutionary algorithms to converge
towards the optimal Pareto front and maintain
a wide diversity in the population at the same
time [33,43,48].

• The use of subcost guided search was proposed
by Wright to deal with compound-objective
timetabling problems [61]. An improvement of
a sub-cost (objective) is preferred even if the
overall cost or solution fitness is not improved
at all or it is worsened. The hope is that the det-
riment suffered will be repaired later in the proc-
ess since the improvement in one aspect of the
solution (the subcost) enables a kind of guided
diversification towards promising areas of the
solution space.

The above points show the various opinions
(some of these conflicting) that researchers have
expressed when referring to the fitness evaluation
method used when implementing algorithms for
multiobjective optimisation. In relation to this,
we have demonstrated in this paper that, although
an approximation to the Pareto optimal set is the
aim here, the (standard) dominance relation is
not the best method to assign fitness to solutions.
The results from the experiments described in this
paper suggest that the performance of the multiob-
jective metaheuristics investigated here is very
much influenced by the method used to evaluate
the fitness of solutions during the search process.
The test problem used here is a highly constrained
combinatorial optimisation problem and the exist-
ence of constraints seems to be a reason for the dif-
ference observed in the performance of both
algorithms when using different fitness evaluation
methods. It is apparent that if it is more difficult
to achieve improvements in one of the objectives
(F2 here) than in the other (F1 here), then a com-
promise that allows detriments in the objectives
should be made so that the algorithms are pro-
vided with better mechanisms to explore other
areas of the solution space. In terms of both online
and offline performance, the inferiority of the
dominance evaluation method is evident. Between
the aggregating function and the relaxed domi-
nance it seems that the first one helps to achieve
better values of F2 while with respect to F1 the re-
laxed dominance benefits the most. It also appears
that the relaxed dominance evaluation method
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helps to achieve a better coverage of the intended
compromise surface. However, the distance be-
tween the obtained non-dominated fronts and
the intended compromise surface is shorter when
using the aggregating method. In terms of diversity
in the solution space for the obtained sets, the
three methods seem to be competitive with each
other but a small inferiority with respect to the
dominance relation can be observed. In terms of
the computation time, we did not observe a signif-
icant difference in any of the runs as a result of
using the different fitness evaluation methods con-
sidered here.
In multiobjective optimisation non-dominated

solutions are sought, but there is a question about
the circumstances (problem domain and search
strategy) under which the use of the dominance
relation to identify improvement during the search
is the best alternative. As shown in this paper,
sometimes it might be more beneficial to use a
combination of objectives or a relaxed definition
of dominance. Considering these alternative ways
for assessing solutions during the search in Pareto
optimisation is worthwhile. We have a few sug-
gested directions for further research. It would be
interesting to investigate if the observations made
here hold for other multiobjective approaches
and other problem domains. The space allocation
problem formulated here is just one example of
many other similar problems that refer to the opt-
imisation of space resource utilisation. Therefore,
we also suggest the investigation of the issues stud-
ied in this paper on similar problems like land allo-
cation [2,16,45], shelf space allocation [62],
multiple knapsack problems [21] and others. An-
other issue worth investigating is the use of differ-
ent fitness evaluation methods within the same
population. For example, some solutions in the
population can be evaluated using dominance
while others could use an aggregated function
and others might employ relaxed dominance or
perhaps even other methods.
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