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Summary. We present a multi-objective approach to tackle a real-world nurse
scheduling problem using an evolutionary algorithm. The aim is to generate a few
good quality non-dominated schedules so that the decision-maker can select the
most appropriate one. Our approach is designed around the premise of ‘satisfying
individual nurse preferences’ which is of practical significance in our problem. We
use four objectives to measure the quality of schedules in a way that is meaningful to
the decision-maker. One objective represents staff satisfaction and is set as a target.
The other three objectives, which are subject to optimisation, represent work regu-
lations and workforce demand. Our algorithm incorporates a self-adaptive decoder
to handle hard constraints and a re-generation strategy to encourage production of
new genetic material. Our results show that our multi-objective approach produces
good quality schedules that satisfy most of the nurses’ preferences and comply with
work regulations and workforce demand. The contribution of this paper is in present-
ing a multi-objective evolutionary algorithm to nurse scheduling in which increasing
overall nurses’ satisfaction is built into the self-adaptive solution method.

1 Introduction

Producing good quality nurse schedules helps to provide better healthcare
service, to improve overall job satisfaction and to make more efficient use of
workforce. We are interested in tackling the nurse scheduling problem in a
multi-objective fashion using an evolutionary algorithm. According to Ernst
et al., the tendency in the modern workplace is to focus on individuals rather
than on teams and hence, personnel schedules should cater to individual pref-
erences [1]. This is particularly true in nurse scheduling because it is common
that each nurse indicates his/her preference schedule. In our multi-objective
approach, we set a target for nurse preference satisfaction and attempt to
minimise the violation of soft constraints related to work regulations and
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workforce demand. We refer to nurse scheduling as the construction of rosters
for a ward of nurses over a short scheduling period (typically a few weeks). A
roster can be defined as an assignment of personnel to specific shifts and/or
duties. Here, a nurse schedule is a roster in which a line of work, made of
shifts and days off, is assigned to each nurse in the ward over the scheduling
period. For a discussion of other phases in the overall personnel scheduling
process (e.g. demand modelling, task assignment, etc.) see [2]. Many health-
care institutions use some kind of software to aid the construction of nurse
schedules but in many other cases this is still done manually [3]. For problems
of considerable size, the non-automated construction of nurse schedules is time
consuming, difficult and prone to errors. As Burke et al. note, “the automatic
generation of high quality nurse schedules can lead to improvements in hos-
pital resource efficiency, staff and patient safety, staff and patient satisfaction
and administrative workload” [3].

Research into automated nurse scheduling has been very active in the
last three decades or so. Methods applied to nurse scheduling include math-
ematical programming, goal programming, constraint programming, knowl-
edge based systems, heuristics and meta-heuristics including evolutionary al-
gorithms. Cheang et al. provide a brief literature review on the main models
for nurse scheduling including types of constraints [4]. Burke et al. give a
more comprehensive survey of the literature on automated nurse scheduling
and classify papers with respect to nurse scheduling models and solution ap-
proaches [3]. Ernst et at. present surveys considering a wide range of personnel
scheduling problems [1, 2].

Nurse scheduling problems are typically over constrained and tackling
them with exact optimisation methods is difficult because considering all con-
straints leads to complex models. Therefore, approximation algorithms have
been used in many of the nurse scheduling papers in the literature. In particu-
lar, heuristics and meta-heuristics have been very popular in recent years [3].
Reasons for this are that these methods can deal with the great number of
existing constraints, they can be adapted to a wide range of problems and no
mathematical models are required for their implementation. Nurse scheduling
is a multi-criteria problem in which typically, work regulations, workforce de-
mand, staff preferences and efficiency of service are in some kind of conflict.
Most of the research on automated nurse scheduling has been conducted in
the single-objective case using an aggregating penalty function to assess the
quality of schedules. Several goal programming approaches in which criteria
are prioritised and targets are set for each criterion, have been reported in
the literature (e.g. [5, 6]). Not many applications of modern multi-objective
meta-heuristics to nurse scheduling can be found in the literature (see surveys
on the topic [1, 3, 4, 7]). One of the few examples is the Pareto simulated an-
nealing algorithm for nurse scheduling in Polish hospitals [8]. That algorithm
is a population-based method in which neighbourhood exploration is carried
out as in the classical simulated annealing, but the search is guided using a
weighted function in order to approach the trade-off surface [9].
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In this paper, we apply a multi-objective evolutionary algorithm to tackle
the problem of constructing schedules for a ward of nurses in the ophthal-
mological unit of the QMC hospital in Nottingham, UK. Our algorithm in-
corporates a re-generation strategy and a self-adative schedule decoder. The
re-generation strategy replaces dominated solutions with new offspring in or-
der to maintain diversity and re-activate the generation of high-quality solu-
tions when the evolutionary process stagnates. The decoder is self-adaptive
because it incorporates a self-mutation operator that adapts itself to the de-
coding process in order to repair hard constraint violations. Section 2 describes
the QMC nurse scheduling problem and outlines previous work on this prob-
lem. Section 3 gives details of the solution encoding and its relation to the
nurse’s preference schedule. Section 4 describes our multi-objective approach
in which nurse’s preferences play a central role. Section 5 gives details of
the self-adaptive schedule decoder incorporated in our algorithm. Section 6
presents experiments and results while final remarks are given in Section 7.

2 The QMC Nurse Scheduling Problem

2.1 Problem Description

The problem is to construct schedules for a ward of nurses in the Queens
Medical Centre (QMC) in Nottingham, UK. The scheduling period is 28 days
long. A ward typically consists of 20 to 30 nurses. Cover is required on a 24
hour basis, 7 days a week. Each nurse works either on a part-time or a full-
time basis. Nurses are classified in a hierarchy according to their qualifications.
Some nurses receive special training according to their ward. There are three
types of shift: early, late and night. The early shift is from 07:00 to 14:45
counting for seven and a half hours (7.5 hours). The late shift is from 13:00
to 21:15 counting for seven and a half hours (7.5 hours). The night shift is
from 21:00 to 07:15 counting for ten hours (10 hours). Occasionally, nurses
indicate in their preference schedules the starting and finishing time that they
prefer to work instead of one of the above ‘normal shifts’. In that case, the
‘unusual shift’ is considered as the ‘normal shift’ (early, late or night shift)
that covers most of the hours of the ‘unusual shift’. For example, an ‘unusual
shift” from 09:00 to 17:00 is considered as an early shift. If the ‘unusual shift’
is equally spread over two adjacent ‘normal shifts’, one of these ‘normal shifts’
is uniformly chosen at random. For example, an ‘unusual shift’ from 17:00 to
01:15 can be considered as a late or as a night shift. The coverage demand,
i.e. the required number of nurses with specific qualifications and training,
is different for each shift. Nurses specify their individual working preferences
(e.g. days off, preferred shifts, etc.) for each scheduling period. A number of
working regulations (including nurses’ annual leave) must be satisfied. Then,
the problem is to construct a schedule that meets the workforce demand,
satisfies all regulations and meets as many individual preferences as possible.
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The QMC nurse scheduling problem includes the most common constraints
in nurse scheduling literature as identified in [4]. We formulate this problem
as the ordered pair:

NRP = (Nurses, C))

where Nurses = {N; : 1 < ¢ < n} is a set of n nurses and C is a set of
constraints. Constraints in C' can be hard (must be satisfied) or soft (should
be satisfied). A nurse N; is defined as follows:

N; = (NurseDetail;, NursePreference;, NurseSchedule;, GeneSequence;)
NurseDetail; = { Contract;, Qualification;, Trained;, Hours;)

Contract; € { FullTime, PartTime} nurse N; is full-time or part-time.

Qualification, € {RN, EN, AN, SN} nurse N; belongs to one of four
qualification categories: registered (RN), enrolled (EN), auxiliary
(AN) and student (SN). RNs and ENs are classified as quali-
fied (QN) while QNs and ANs are both employed (PN). Qualified
nurses, QNs, can receive additional training specific to the ward
that they work in.

Trained; € {NoTrained, Trained} in the ophthalmological ward, a nurse
can receive eye-training.

Hours; € INT is the number of contracted hours for nurse Nj;, for full-
time nurses Hours; is 75 hours per fortnight, for part-time nurses
Hours; is per week and as specified in their individual contract.

NursePreference; = {p;; : 1 < j < NoOfDays} is the nurse’s preference
schedule for the scheduling period, where NoOfDays is the length of the
scheduling period, 28 in the QMC problem, and p; ; € {AnnualLeave,
Any, DayOff, Early, Late, Night} is the nurse’s preference for day j, Any
indicates no specific preference.

NurseSchedule; = {s;; : 1 < j < NoOfDays} is an individual nurse’s
schedule, i.e. a string containing the assigned shift for each day in the
scheduling period, where s; ; € {AnnualLeave, DayOff, Early, Late, Night}.
A ward schedule for the QMC problem is a collection of n individual nurse
schedules.

GeneSequence; = Permutation{shift : 1 < shift < NoOfShifts} is the gene
representation used in the evolutionary algorithm implemented in this pa-
per, where NoOfShifts = NoOfDays= 3 i.e. the total number of shifts in the
scheduling period. This representation is illustrated in detail in Section 3.

2.2 Hard Constraints

OneShiftADay A nurse works at most one shift (Late, Early, Night) per day.

MazHours Nurses can work a maximum number of hours (given by Hours;)
over a period of time according to their individual contract.

MazDaysOn The maximum number of consecutive days that a nurse can work,
which is 6. This constraint guarantees regular breaks for nurses.
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MinDaysOn The minimum number of consecutive days that a nurse can work.
This value is normally 2 for full time nurses. It is not applicable for most
part time nurses because of the fewer number of shifts that they work.

Succession Defines illegal shift combinations for nurses. A Night shift must
not be followed by an Early shift.

HardRequest Defines nurses’ requests that must be satisfied. For example, an-
nual leave requests in the preference schedule are considered hard requests.

2.3 Soft Constraints

SoftRequest Defines nurses’ requests that are desirable but might be violated.
In the QMC problem, these requests are typically for working on specific
shifts (Farly, Late, Night, DayOff and ‘unusual shifts’).

SingleNight A nurse should not be assigned an individual Night shift. Nurses
at the QMC ward prefer to work night shifts in blocks of two or more.
This applies to all full time nurses and certain types of part time nurses
whose individual contracts are at least 20 hours a week.

WeekendSplit Nurses prefer to work both days of the weekend or none at all.

WeekendBalance The maximum number of weekends that nurses may work
over the scheduling period. In the QMC ward, nurses may not work more
than 3 out of 4 consecutive weekends.

Coverage A certain number of nurses with specific qualifications and specific

training should be assigned to particular shifts as shown in Table 1.
It should be noted that it is not necessary to assign 6 different nurses
to the Farly shift to meet the Coverage requirements. This demand can
be satisfied with only 4 nurses if all of them are qualified, one of them is
registered and one of them has received eye-training.

CoverageBalance The number of nurses assigned to each shift over the schedul-
ing period should be evenly distributed. Any surplus/shortage of nurses
over the scheduling period should be kept to a minimum. This constraint
prevents an excessive number of nurses being assigned to a particular shift
while having a shortage of nurses in other shifts.

Table 1. Coverage demand Table 2. Measurement of
of nurses in each shift. CoverageBalance.
Early|Late|Night QNs Early|Late|Night
QNs| 4 3 2 Demand 4 3 2
RNs| 1 1 0 Assigned 4 4 1
ETs| 1 1 1 Difference| 0 1 -1

All hard constraints must be satisfied for a schedule to be feasible. We
assess the quality of a feasible schedule by measuring the violation of the six
soft constraints but always taking into account the preferences expressed by
each nurse. To measure the satisfaction of soft constraints (with the exception
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of CoverageBalance), we simply count the number of violations of each soft
constraint type. However, the violation of a soft constraint is not penalised if
the shifts assigned to the nurse’s schedule comply with the nurse’s preferences
expressed in NursePreference;. More precisely, we measure the violation of
soft constraints as follows.?

SoftRequest(ps,j, si,;) if the assigned shift s; ; is not as the nurse’s preferred
shift p; ;, a penalty of 1 is applied. No penalty is applied if a working shift
pi,; (Early, Late, or Night) is requested and a DayOff s, ; is assigned.

SingleNight(N;, D) if a Night shift is assigned to nurse N; on day D, and shifts
different to Night are assigned on adjacent days (D—1 and D+1), and the
assigned shifts are not as in NursePreference;, a penalty of 1 is applied.

WeekendSplit(N;, D) if nurse [V; is assigned to work only on one of days D or
D +1 of a weekend, and the assigned shifts are not as in NursePreference;,
a penalty of 1 is applied.

WeekendBalance(N;) if nurse NN; is assigned to work at least one day in each
of the four weekends in the scheduling period, and the assigned shifts are
not as in NursePreference;, a penalty of 1 is applied.

Coverage(shift) if the number of nurses with specific qualifications and training
assigned to a given shift is less than the coverage demand, a penalty equal
to the deficit in the number of nurses assigned is applied.

CoverageBalance we measure the satisfaction of this constraint using statistical
variation on the difference between the number of qualified nurses assigned
to each shift and the coverage demand for qualified nurses. For example,
for a schedule of 1-day and 3 shifts (Farly, Late, Night), the difference
between coverage demand and assigned nurses is calculated as in Table 2.
Then, CoverageBalance is measured as the variation on the Difference set
of 3x NoOfDays shifts. In this example, the penalty of the CoverageBalance
constraint has a value of 2 (0.667).

We split the six soft constraints into four groups and each group corre-
sponds to an objective function. Group 1 consists of the SoftRequest constraint
measuring the level of nurse preferences satisfaction. Group 2 consists of Sin-
gleNight, WeekendBalance, and WeekendSplit constraints measuring satisfac-
tion of work regulations. Group 3 consists of the Coverage constraint measur-
ing shortfalls in workforce demand. Group 4 consists of the CoverageBalance
constraint measuring the distribution of nurses in the schedule to ensure a bal-
anced coverage for the whole scheduling period. In the QMC problem, nurses
satisfaction is at the centre of the scheduling process due to the shortfall of
staff in hospitals recently. Therefore, when constructing a schedule with our
multi-objective approach, we pre-set a target value for objective 1 to guar-
antee a minimum level of staff satisfaction. Moreover, nurses’ preferences are

3 Full description of the QMC nurse scheduling problem, examples of how the
violation of soft constraints is measured and data sets are available at the following
url http://www.cs.nott.ac.uk/~kxl/research/QMC/gqme.html
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also taken into account when dealing with the other three objectives which are
subject to optimisation (this is explained in detail in the following sections).
The aim is to produce a set of schedules in low computational time, all with
the required level of staff satisfaction but representing a set of compromise
alternatives with respect to the other three objectives. Then, the decision-
maker (typically a senior nurse) can select the most appropriate schedule for
the given planning period.

2.4 Previous Work on the QMC Problem

The QMC nurse scheduling problem was also tackled by Beddoe and Petrovic
using a combination of case-based reasoning and tabu search concepts [10, 11].
Our results are not easily comparable to those obtained by Beddoe and Petro-
vic because of two reasons. One is that they tackled the QMC problem in a
single-objective manner attempting to find one feasible solution, while we seek
a set of alternative schedules. The other reason is that they tackled a simpli-
fied version of the problem. In their study, Beddoe and Petrovic considered
constraints OneShiftADay, MazHours, MaxDaysOn, MinDaysOn Succession,
Coverage, HardRequest and SoftRequest only. However, we applied our ap-
proach to the data sets used by Beddoe and Petrovic and results are reported
in Section 6.

3 Schedule Encoding and Construction

We represent a solution (ward schedule) to the QMC nurse scheduling problem
as a set of n sub-solutions. Each sub-solution is a list of NoOfShifts shifts
corresponding to an individual nurse’s schedule. In many nurse scheduling
papers, the approach is to start from an empty schedule. Instead, we take the
set of preference schedules into account. Nurses indicate their preferred shifts
in the preference schedule (NursePreference;) while the constructed schedule
(NurseSchedule;) indicates the actual shifts assigned. Figure 1 illustrates a
preference and a constructed schedule for one nurse on a 7-day scheduling
period where E, L, N, O correspond to Farly, Late, Night, and DayOff shifts
respectively. An empty cell in the preference schedule indicates no preference
for that day. In the constructed schedule, an empty cell represents a DayOff .
In this example, the nurse has to work in days 1 to 5 and only one of the
preferred shifts (for day 2) was satisfied. We use an indirect representation in
our evolutionary algorithm in which a permutation list of integers from 1 to
3% NoOfDays is decoded to create an individual nurse schedule. Figure 1 also
illustrates a permutation list for a 7-day scheduling period.

Starting from the left, the decoder reads a shift « from the permutation
list (1 <z < 3% NoOfDays) and decodes it to the corresponding day and
shift (Early, Late, Night correspond to 0, 1, 2 respectively) in the constructed
schedule as follows: day D = (x — 1) div 3 + 1, shift S = (z — 1) mod 3. For
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Constructed Schedule Preference Schedule
1 2 3 4 5 6 7 1 2 3 4 5 6 7
[ NTL[ETJTETE] I | | [ L ] [ N T o] | |
[7T3] 1 s[13]2]15]412]17]18]14]21] 5 J16]10]19]20] 9 [ 6 [11]

The permutation list of shifts

Fig. 1. Constructed Schedule, Preference Schedule and Permutation List

example, x = 7 in the permutation list represents an Farly shift (S = 0) in
day 3 (D = 3). When assigning shifts, the decoder ensures the satisfaction of
all hard constraints (see Section 5). The decoder stops assigning shifts to the
nurse’s schedule when the end of the permutation list is reached or the total
number of working hours is within a threshold 7 given by:

MaxHours — MinShiftLength < T < MazHours

where MaxHours is as defined in Section 2 and MinShiftLength is the length
of the shortest shift (7.5 hours in the QMC problem).

4 The Proposed SEAMO-R Algorithm

SEAMO, the Simple Evolutionary Algorithm for Multi-Objective Optimisa-
tion was proposed by Valenzuela who also showed that this algorithm out-
performs other state-of-the-art Pareto-based evolutionary algorithms on the
multiple knapsack problem [12] with respect to the size of space covered S and
the coverage of two sets C indicators (S and C are defined in [13]). SEAMO
uses a steady-state population and a simple elitist replacement strategy. The
algorithm chooses each member of the population, in turn, to be the first
parent and a second parent is chosen at random. Offspring is produced by
applying cycle crossover [14] on the two parents followed by a single muta-
tion. If the offspring’s objective vector improves on any best-so-far objective
function, it replaces one of the parents and the objective’s best-so-far is up-
dated. Otherwise, if the offspring dominates one of the parents, it replaces
that parent (unless it is a duplicate, then the offspring is deleted). SEAMO2,
an updated version of SEAMO was presented later and it was observed that
a more elaborate replacement strategy improved the performance of the al-
gorithm on both combinatorial and continuous multi-objective problems [15].
SEAMO?2 is different from SEAMO in that SEAMO?2 allows the offspring to
replace an individual in the population that it dominates if the offspring and
both parents are mutually non-dominated while in SEAMO the offspring was
discarded in this case.

We implemented both versions of SEAMO on the QMC problem and ob-
served that a major drawback was that no good offspring was generated after
only few generations. Therefore, we designed a re-generation strategy that
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Fig. 2. The SEAMO-R algorithm

activates the production of high-quality offspring to tackle this stagnation is-
sue. In this paper, we exploit the SEAMQO’s concept and propose SEAMO-R
(simple evolutionary algorithm for multi-objective with re-generation), a vari-
ation of the SEAMO approach, to tackle the QMC nurse scheduling problem.
Figure 2 illustrates the SEAMO-R algorithm.

The population re-generation strategy (Regenerate population in Figure 2)
re-activates the generation of high-quality offspring when the evolutionary
process stagnates. Improving the population in SEAMO-R relies entirely on
the replacement strategy and the re-generation strategy. The purpose of the
re-generation strategy is to maintain diversity in the population and to pro-
duce good offspring. This strategy replaces a portion of dominated solutions
with new solutions. The Regeneration-Probability parameter controls the rate
of replacing a dominated solution with a new solution. A probability of 1
means that all dominated solutions will be replaced. A probability of 0 means
that no dominated solutions will be replaced and the re-generation mechanism
is deactivated. This replacement process is triggered if after a number of eval-
uations given by Regeneration-Rate, there is no replacement of solutions in
the population with offspring. The Regeneration-Rate parameter is important
on the performance of SEAMO-R. If the Regeneration Rate is too high, the
population will be frequently re-generated and the population hardly evolves.
If the Regeneration-Rate is too low (or zero as in SEAMO), the evolutionary
process falls into stagnation and is very difficult to produce offspring to re-
place solutions in the population. The Regeneration-Rate is highly dependant
on the Population-Size and the Regeneration-Probability (we describe later
how we set these parameters in our experiments). Full details of SEAMO-R
are given in the pseudocode below:
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Procedure SEAMO-R
Begin
Regeneration-Rate = (pre-defined by user)
Regeneration-Probability = (pre-defined by user)
Population-Size = P
non-improve-counter = 0
Soft-Request-Probability = (pre-defined by user)
Generate a random population of P schedules
Evaluate the objective vector for each schedule and store it
Record the best-so-far for each objective function
Repeat
For each schedule in the population (1st parent)
Select a second schedule at random (2nd parent)
Apply crossover to produce offspring
Decode permutation list for each nurse’s schedule in the offspring
Evaluate the objective vector for the offspring
If offspring’s objective vector improves on any best-so-far
Then the offspring replaces one of the parents and best-so-far is updated
non-improve-counter = 0
Else If the offspring is not duplicate and dominates 1st parent (or 2nd parent)
Then the offspring replace that parent
non-improve-counter = 0
Else non-improve-counter = non-improve-counter + 1
EndIf
EndIf
If non-improve-counter > Regeneration-Rate (**Re-generation Starts Here**)
Then replace all dominated schedules in the current population
with probability of Regeneration-Probability
by schedules generated uniformly at random
non-improve-counter = 0
EndIf
Endfor
Until stopping condition satisfied
Print all non-dominated solutions in the final population
End

5 Decoder and the Hard Constraints

5.1 Self-adaptive Schedule Decoder

The performance of SEAMO-R on the QMC nurse scheduling problem is
significantly better than the performance of SEAMO and SEAMO2 because of
our re-generation strategy. The performance of SEAMO-R on the QMC nurse
scheduling problem is further improved by using a self-adaptive decoder to
handle hard constraints. SEAMO-R also incorporates a self-mutation operator
that works according to the current state of the decoding process. The decoder
chooses, from either the preference schedule or the offspring’s genetic material,
a shift S’ to assign to day D. The self-mutation operator swaps the shift S’
with the left-most shift in the offspring’s gene sequence which is associated to
day D. If the shift S’ chosen from the preference schedule is a DayOff, there is
no self-mutation and the decoder moves to the next shift in the gene sequence.
During the decoding process, the Soft-Request-Probability indicates the rate
at which a shift in the preference schedule is used by the decoder rather than
the current shift in the offspring’s genetic material. A probability of 0 means
that the decoder uses the offspring’s genetic material without considering
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the preference schedule. A probability of 1 means that the decoder uses the
preferred shift first and if this shift is not suitable, the decoder then uses the
offspring’s genetic material. Details of the self-adaptive decoder are shown in
the following pseudocode:

Procedure QMC-Decoder
Begin
Repeat
Select a nurse schedule at random
Assign all hard requests to that nurse’s constructed schedule
For each shift S in the permutation list of this nurse
If the nurse schedule is fully assigned (depended on nurse’s MazHours constraint)
Then terminate the decoding process (terminate the For loop)
EndIf
If day D associated with this shift S is not yet assigned
Then
If assign(S, D) violates Succession constraint
Then choose shift S’ from Preference Schedule
with probability Soft-Request-Probability or from permutation list
(assign(S’, D) does not violates Succession)
If assign(S’, D) does not violate MazDaysOn, MazHours, HardRequets
and the Coverage demand for shift S’ of day D is not exceeded
Then assign S’ to D, and apply the self-mutation process on S’
EndIf
Else
If assign(S, D) violates MinDaysOn constraint
Then choose shift S’ from Preference Schedule with
probability Soft- Request- Probability or from permutation list
to assign to day D’ adjacent to day D
(assign(S, D) and assign(S’, D’) does not violates Succession)
If assign(S, D) and assign('S’, D’) do not violate
MaxDaysOn, MaxHours, HardRequets and Coverage demands
for shift S of day D and shift S’ of day D’ is not exceeded
Then assign S to D, S’ to D’
and apply the self-mutation process on S’
EndIf
Else
If the Coverage demand for shift S of day D is not exceeded
Then assign S to D
EndIf
EndIf
EndIf
EndIf
EndFor
Evaluate objective functions
Until all nurse schedules are decoded
End

The adaptive strategy in our decoder aims to guide the construction of
schedules taking into account all nurses’ preferences. There is no guarantee
that a given permutation, once decoded, will always produce the same sched-
ule. This is because our decoder incorporates stochastic elements that help to
explore different possibilities. In general, there are two ways to satisfy hard
constraints when constructing a nurse schedule. One is to only accept the as-
signment of shifts that maintain feasibility. The other is to repair an infeasible
schedule by changing the shift assigned to day D or changing the shift assigned
to an adjacent day. In this paper, we use the first approach to deal with the
OneShiftADay, MaxHours, MazDaysOn and HardRequest hard constraints.
We use the second approach to deal with the Succession and MinDaysOn
hard constraints. We repair a violation of the Succession hard constraint by
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changing the shift assigned to day D such that a Night shift is not followed
by an Farly shift. We repair a violation of the MinDaysOn hard constraint
by assigning a working shift to an adjacent day. We take care to ensure that
the Succession hard constraint is not violated while repairing the MinDaysOn
hard constraint.

A number of self-adaptive approaches have been proposed in the context
of evolutionary algorithms. Most approaches focus mainly on adjusting pa-
rameter settings (such as the probability of mutation and recombination) and
selecting the evolutionary operators (from a range of operators available) to
be applied at different times during the search. For example, Meyer-Nieberg
and Beyer proposed a self-adaptive punctuated crossover that adapts the num-
ber and location of crossover points [16] while Sereni et al. proposed a self-
adaptive recombination approach in which the crossover operator is chosen
at random [17]. For reviews on adaptation and self-adaption in evolutionary
algorithms see [16, 18, 19, 20]. Note that our self-adaptive mutation opera-
tor adjusts its characteristics throughout the search process by adapting the
rate of mutation, the position of mutation points and the number of mutation
points. That is, our mutation strategy ‘learns’ the gene sequence of individuals
in order to identify good genes and appropriate positions for those good genes
in the gene sequence. The mutation strategy does this by shifting genes that
violate hard constraints to the end of the gene sequence, and shifting genes
that provoke less violations to the beginning of the gene sequence. As the
search progresses, the mutation strategy gradually shifts ‘promising genes’ to
the beginning of the gene sequence leading to a quicker decoding process and
subsequently a reduction in the number of mutation points and the mutation
rate. In the rest of this Section we give more details on how the self-adaptive
mutation operator works.

5.2 Handling Succession

We illustrate how the decoder deals with the Succession hard constraint. The
decoder assigns shifts to the constructed schedule as in Figure 3. The decoder
reads shifts in the permutation list and assigns each shift to the corresponding
day unless that day is already occupied or the Succession hard constraint is
violated. Note that in Figure 3, decoding 4 from the permutation list provokes
a violation of the Succession constraint (a Night shift is followed by an Early
shift). The decoder repairs this violation using the self-mutation process. The
shift to repair this violation can be chosen from the preference schedule or
from the permutation list according to the Soft-Request- Probability.

Figure 4 illustrates the self-mutation process to repair a violation of the
Succession hard constraint using a shift from the preference schedule. After
assigning Farly shift to day 3, Night shift to day 1, and Early shift to day 5,
the decoder skips shift 2 and shift 15 in the permutation list because day 1 and
day 5 in the constructed schedule are already occupied. Shift 4 is read from
the permutation list. However, assigning shift 4 (Early shift to day 2) violates
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the Succession constraint. A high Soft- Request- Probability forces the decoder
to use the preference schedule and then a Late shift is assigned to day 2. This
corresponds to assigning shift 5 instead of shift 4 from the permutation list.
Therefore, the self-mutation process is applied to the current permutation list
to swap shift 4 and shift 5. In this case, assigning the shift in the preference
schedule does not violate the Succession constraint. However, if assigning the
shift in the preference schedule violates the Succession constraint, the decoder
uses the permutation list as an alternative to find a suitable shift (though the
decoder was forced to consider the preference schedule first). If the decoder
uses a shift DayOff from the preference schedule, no self-mutation is required
and the decoder continues with the next shift in the permutation list.

Constructed Schedule Preference Schedule
1 2 3 4 5 6 7 1 2 3 4 5 6 7
[ N_] [ E | [ E | | | | [ L ] [ N[ o] [ |

[713] 1] s]i3] 2]1s] 4217 18] 14]21] 5 [16]10] 19]20[ 9 ] 6 [ 11]

The permutation list of shifts

Fig. 3. The decoding process

Constructed Schedule Preference Schedule
1 2 3 4 5 6 7 1 2 3 4 5 6 7
LNT LT E] [ B ] | | [ L ] [ N T o] | |
[7]3]1]s |13|;-|\15“[‘4_J 12[17]18]14]21] 5 [16[10[19]20] 9 [ 6 [ 11] before
[7]3]1]s]13] 2]15] 5710] 17|18|14|21T4 [16] 12]19]20] 9] 6 [ 11] after

The permutation list of shifts before and after the decoding process

Fig. 4. Repairing the violation of the Succession constraint using self-mutation

Constructed Schedule Preference Schedule
2 3 4 5 6 7
| [ L ] [ N ] o] | |
21] 5 [16]10]19]20[ 9 [ 6 [ 11] before
[7]3]1]s]13]2]15]s |1ﬁ]”1'7|1§|”17;1|21| 4 [16T12]19]20] 9] 6 [ 11] after

The permutation list of shifts before and after the decoding process

Fig. 5. Repairing the violation of the Succession constraint using self-mutation

Figure 5 illustrates the self-mutation process to repair a violation of the
Succession hard constraint using a shift from the permutation list. The de-
coder attempts to assign shift 12 from the permutation list (Night shift
to day 4). However, this violates the Succession constraint by creating a
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Night-FEarly shift combination in day 4 and day 5. A low value of Soft-
Request-Probability forces the decoder to use the permutation list. The de-
coder searches for the first shift in the permutation list (reading from left to
right) that can be assigned to day 4 without violating the Succession con-
straint. In this case, shift 10 in the permutation list (Farly shift in day 4)
is selected. The decoder assigns shift 10 and self-mutation is applied to swap
shift 12 and shift 10 in the permutation list.

5.3 Handling MinDaysOn

To handle the MinDaysOn hard constraint, the decoder works on the same
principle as for the Succession constraint. The difference is that to repair vi-
olations of the Succession constraint, the decoder searches for a suitable shift
S’ to assign to day D and the shifts assigned to adjacent days are already
known. However, to repair violations of the MinDaysOn constraint, the de-
coder searches for a shift S’ to assign to day D’ which is adjacent to day D and
the shift S assigned to day D is already known. First, the decoder identifies
a list of suitable shifts which do not create a shift combination that violates
the Succession constraint. These shifts are associated with either day D-1 or
day D+1. From this list, the shift that appears first in the permutation list
from left to right, is assigned to its associated day. The self-mutation process
is then triggered. The repair of the MinDaysOn hard constraint is illustrated
in Figure 6. The decoder continues moving to the right of the permutation
list (Figure 7). Shift 12 is then assigned to the constructed schedule causing a
violation of the MinDaysOn constraint. Therefore, the decoder has to search
for an additional shift to repair the violation. The Night shift is assigned to
day 3 in the constructed schedule (shift 9 in the permutation list). The self-
mutation process swaps shift 9 with the left most shift in the permutation list
associated with day 3 (shift 7 in the permutation list). In this case, we still
assume that the Soft-Request-Probability instructs the decoder to select the
additional shift from the permutation list.

Now, assume that the decoder is instructed to select an additional shift
from the preference schedule when repairing violations. In Figure 8 the de-
coder moves right on the permutation list and assigns shift 18 (Night shift to
day 6). An additional shift is required to repair the violation of the MinDaysOn
constraint. The decoder searches in the preference schedule for suitable shifts.
The only suitable shift in the preference schedule is the Late shift in day 7
(shift 20 in the permutation list) because assigning the Early shift to day 5
creates a violation of the Succession constraint ( Night- Early shift combination
in day 4 and day 5). The decoder assigns shift 20 to the constructed schedule
and the self-mutation swaps shift 20 and shift 19 in the permutation list. If
the decoder cannot find any suitable shift in the preference schedule to repair
the violation, the decoder will look at the permutation list to find a suitable
shift. For example, if the preferred shift in day 7 is the FEarly shift, there is
no suitable shift in the preference schedule. Then, the decoder searches in the
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Constructed Schedule Preference Schedule
1 2 3 4 5 6 7 1 2 3 4 5 6 7
LL T N I I I I | [ NT o[ NJTOT]E] [ L]

h:

o [12] 2 ] 1 [us[17]1o]13]21]16]20[ 7] 5 o [ 3 [14] 15[ 4 10] 8]

The permutation list of shifts

Fig. 6. Repairing the violation of the MinDaysOn constraint using self-mutation

Constructed Schedule Preference Schedule
1 2 3 4 5 6 7 1 2 3 4 5 6 7
LL I NTNTNJ [ I | [ NT o[ NJOTE] [ L |
[e]r2] 2 [ui] 18] 17]19] 13|21|16|207I77771775’I19 [3]14]15] 410 8] before
[6]12] 2 [11] 1 [us]17]10] 13]21] 16]20] 5‘|J5\|‘7 [3]14]1s[ 4 ]10] 8] after

The permutation list of shifts before and after the decoding process

Fig. 7. Repairing the violation of the MinDaysOn constraint using self-mutation

Constructed Schedule Preference Schedule
1 2 3 4 5 6 7 1 2 3 4 5 6 7
LI N[NTJTN]J INILY_IINIOINIOIEI [ L]
Lolw2] 2] 1 [1s[17]9]13]21]16[20[ o[ s[ 7] 3 [14]1s] 4 [10[ 8] before
(o[22l 1 [s]7[oo 32 [1e] o] o [ 5[ 7] 3 [ia[is] a 0] 8] afeer

The permutation list of shifts before and after the decoding process

Fig. 8. Repairing the violation of the MinDaysOn constraint using self-mutation

Constructed Schedule Preference Schedule
1 2 3 4 5 6 7 1 R 4 5 6 7
I I [ N ] I I I | [N TCo [ N[ o] E]J [ L]

~—————— e

Fig. 9. Repairing the violation of the MinDaysOn constraint using self-mutation

permutation list and finds shift 21. The self-mutation then swaps shift 21 and
shift 19 in the permutation list.

Note that in the preference schedule there is a combination DayOff-Night-
DayOff from day 2 to day 4 (Figure 9). If at any point the decoder attempts
to assign Night shift to day 3 while day 2 and day 4 are free, then assigning
Night shift to day 3 is not considered a violation of the MinDaysOn constraint.
This is because the DayOff-Night-DayOff shift combination from day 2 to
day 4 is the one indicated in the preference schedule. That is, violations of the
MinDaysOn and Succession constraint are permitted if the nurse’s preferences
indicate so.
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Besides repairing the Succession and MinDaysOn hard constraints, the
decoder also attempts to minimise the number of surplus nurses in each shift.
This is to reduce the number of violations of the Coverage constraint and
equally distribute nurses amongst all shifts. This is achieved by only assigning
shifts to days if the coverage demand has not been exceeded yet. Therefore, the
decoder assigns shifts to days if and only if the above condition is met and the
MazHours, MaxDaysOn and HardRequest hard constraints are not violated.
Satisfaction of OneShiftADay is ensured by the encoding scheme. As indicated
in Section 3, the decoder assigns shifts until the end of the permutation list
is reached or the total number of working hours is within the threshold 7.

6 Experiments and Results

6.1 Experimental Setting

There are 7 data sets for the QMC nurse scheduling problem, one for
each scheduling period from March to September 2001. Our first experi-
ment was to identify appropriate parameter settings for SEAMO-R. We set
RegenerationProbability = 0.75 and SoftRequestProbability = 0.60 using data
from March2001 as a training set. The SoftRequestProbability is set accord-
ing to the required level of nurses’ preferences satisfaction. We performed
30 independent runs. Each run took between 4 and 5 minutes on a 2.2GHz
AMD Opteron x86 64-bit Processor with Linux O/S (SuSe 9.0). We used val-
ues of RegenerationRate set to of 100, 200, 500 and 750. The PopulationSize
was set to values of 100, 200 and 500 with the NumberOfIterations set to
15000, 7500 and 3000 generations respectively. Our preliminary results sug-
gested that SEAMO-R performs the best when using a PopulationSize = 200,
NumberOfIterations = 7500 and RegenerationRate = 500.

6.2 Performance of SEAMO-R

We carried out 30 runs with the above parameter settings for each of the other
6 data sets (April2001 to September2001). We found around 7 non-dominated
schedules in each run. We calculate the similarity between two ward schedules
as follows. Consider shift s; ; in schedule 1 and shift 7 ; in schedule 2, where

i,j
1 < i< n (nis the number of nurses), 1 < j < NoOfDays. Then:

s; ., 82.€{0,E,L,N} (where O is DayOff)

052 Sij
matchedy 5 = |{ (4, 7) | sllj = st A (szlJ 20V 5'}71' #O0)}|

unmatched; 5 = |{(i, j) | sllj # 522] A (s}’j 0V Szl,j #0)}|

matched; o

Similarit =
1.2 matched; o + unmatched 2
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The average similarity for the whole set of non-dominated solutions in the
final population is calculated as the mean of all similarities between each pair
of non-dominated solutions.

Table 3. Average results produced by SEAMO-R for the QMC problem

Period ND |Obj2| Obj3 |Obj4| Objl |AverSimil
March2001 |7.367|4.149] 6.363 |0.274]89.9%]| 78.4%
April2001  |7.700/3.633[10.282[0.276[89.1%| 79.3%
May2001  |7.033(2.924[17.779]0.249]90.3%| 85.2%
June2001  |3.933[1.164[40.619]0.259(92.9%| 91.5%

July2001  |7.900(3.977|41.202(0.300(87.4%| 80.1%
August2001 |7.200[4.171]10.277]0.246]90.2%| 81.8%
September2001|7.467|3.357|21.755|0.267|89.3%| 84.0%

To illustrate the overall quality of the schedules generated with our ap-
proach, we show in Table 3 the ‘average results’ for each data set. ND is the
average number of non-dominated solutions in the final population over the
30 independent runs. Obj! is the level of nurses’ preferences satisfaction and
is measured as a percentage as follows:

Obil Total number of requests - SoftRequest violation
J =

Total number of requests

0bj2 is the total number of violations of the SingleNight, WeekendSplit and
WeekendBalance constraints. Obj3 is the number of violations of the Cov-
erage constraint. Obj4 is the number of violations of the CoverageBalance
constraint. AverSimil is the average similarity over the 30 independent runs
for each data set. Remember that ObjI is set as target while the other three
objectives are subject to optimisation. We computed these results using the
set of all non-dominated solutions obtained in the 30 runs for each data set.
Details of all constructed non-dominated schedules are available from the au-
thors. We note that given the highly constrained nature of nurse scheduling
problems, it is often very difficult to find feasible schedules. This was the case
in the QMC problem too and hence the need for the self-adaptive decoder
and the re-generation strategy. Therefore, it was not surprising that relatively
few non-dominated solutions were obtained by the end of each run. However,
this number of schedules is adequate because it would be very difficult for a
senior nurse to select a ward schedule from a larger set of alternatives. It is
also important to note that the similarity between non-dominated schedules
is high because our approach seeks to match the nurse preference schedules
according to the Soft-Request-Probability set by the user.

Table 3 shows that the average nurses’ preference satisfaction is approx-
imately 90% for all 7 data sets. In our results, the preference satisfaction of
each non-dominated solution in the final population is in the range 90% =+
3%. One can easily realise that the values for 0bj3 (violations of the Coverage
constraint) are quite different amongst the 7 data sets. This value is quite low
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for March2001, April2000 and August2001 whereas for June2001 and July2001
it is noticeably high. A close examination of the data sets reveals that this
is because the number of available staff-hours is quite different amongst the
7 instances. We estimate the number of available staff-hours for each of the
data sets as follows: March2001 (2200), April2001 (2100), May2001 (1950),
June2001 (1700), July2001 (1700), August2001 (2100) and September2001
(1930). Taking into account the coverage demand of qualified nurses (QNs)
(see Table 1), it can be estimated that there must be at least 2030 staff-hours
available to fulfill this demand. However, it is difficult to fulfill this require-
ment with exact 2030 staff-hours due to the existence of other constraints
and individual requests. We estimate that there should be about an extra 150
staff-hours in order to minimise the number of violations. For those months
with a shortage in available staff-hours (e.g. June2001 and July2001), such
shortage affects mainly the provision of qualified nurses to the Night shift and
this contributes to violations of the Coverage constraint. This is because with
a limited number of available staff-hours, the coverage demand in shifts Farly
and Late is satisfied first as these shifts count for 7.5 hours. However, the Night
shift counts for 10 hours and satisfying the coverage demand in this shift re-
quired extra staff-hours. That explains why with about 400 extra staff-hours,
the number of violations of the Coverage constraint (Obj3) in March2001 is
about 35 less than the number of violations in June2001 or July2001. Note
that the number of violations in Obj2 (total violations of SingleNight, Week-
endSplit and WeekendBalance) is very low, only between 2 and 3 violations
within a full schedule.

6.3 Comparison with SEAMO and SEAMO?2

Our next set of experiments was to compare SEAMO-R against SEAMO and
SEAMO2 on the QMC problem in order to assess the contribution of our re-
generation strategy and self-adaptive decoder on the good results obtained.
We incorporated the self-adaptive decoder into SEAMO and SEAMO2 for
these experiments. Average results are presented in Table 4 and it is clear
that SEAMO-R outperforms SEAMO and SEAMO2.

Table 4. Performance of SEAMO, SEAMO2 and SEAMO-R on the QMC problem

Period SEAMO SEAMO?2 SEAMO-R
Obj2| Obj3| Obja| | Obj2]| Obj3] Obj4| | Obj2| Obj3 | Obj4
Mar2001 | 40.274 | 27.320 | 0.734 | | 29.522 | 22.001 | 0.619 | | 4.149 | 6.363 | 0.274
Apr2001 | 40.301 | 33.858 | 0.778 | | 29.045 | 28.018 | 0.666 | | 3.633 | 10.282 | 0.276
May2001 | 32.471 | 44.083 | 0.831 | | 22.076 | 36.695 | 0.672 | | 2.924 | 17.779 | 0.249
Jun2001 | 25.691 | 67.312 | 0.840 | | 8.791 | 51.145 | 0.497 | | 1.164 | 40.619 | 0.259
Jul2001 | 27.824 | 63.776 | 0.844 | | 15.963 | 55.121 | 0.637 | | 3.977 | 41.202 | 0.300
Aug2001 | 38.590 | 34.849 | 0.779 | | 26.796 | 28.996 | 0.658 | | 4.171 | 10.277 | 0.246
Sep2001 | 35.686 | 47.760 | 0.838 | | 21.423 | 30.126 | 0.656 | | 3.357 | 21.755 | 0.267
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We also examined the performance of SEAMO-R, SEAMO and SEAMO2
throughout the search process. We traced the evolution of the average values
for the set of non-dominated solutions at every 50 generations in each of the
30 runs and for all 7 data sets. In Figure 10, we only present graphs for 3 data
sets, March2001, June2001, September2001 which are representative of all our
results. The graphs show that SEAMO-R quickly outperforms SEAMO and
SEAMO?2 and overall, SEAMO-R improves the quality of the non-dominated
solutions very rapidly. While the replacement strategy in SEAMO?2 helped
this algorithm to outperform SEAMO on multi-objective benchmark prob-
lems [15], our experiments show that our re-generation strategy contributes
substantially to the good results obtained on the highly constrained QMC
nurse scheduling problem.
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Fig. 10. Performance of SEAMO-R, SEAMO and SEAMO?2 on the QMC problem

Regarding multi-objective optimisation, we evaluate the Pareto fronts pro-
duced by SEAMO, SEAMO2, SEAMO-R using two metrics, size of the space
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covered S and coverage of two sets C, proposed in [13]. The S hypervolume
metric is scaled as the percentage of the volume created by the origin and
the reference point (100, 100, 3) with respect to (Obj2, 0Obj3, Obji). The
reference point is estimated using the average objective vector’s value of the
non-dominated solutions in the initial population. With respect to the cover-
age metric C, all non-dominated solutions in the final population of SEAMO-R
dominate the ones of SEAMO and SEAMO?2 for all 7 data sets. Figure 11 mea-
sure the percentage of non-dominated objective space. The horizontal axes
present SEAMO, SEAMO2, SEAMO-R. The size of the space covered pro-
duced by SEAMO-R is much better than the one of SEAMO and SEAMO2
for all 7 data sets. As it can be seen, the results for June2001 and July2001
are not as good as March2001 because of the shortage of available staff-hours
which was explained above.
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Fig. 11. Performance of SEAMO-R, SEAMO and SEAMO2 on the QMC problem
based on size of the uncovered space S

6.4 Selecting a Ward Schedule

Although we recorded all non-dominated solutions in the final population
for each run, here we simulate the decision-making process of choosing one
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schedule from the set of alternatives. We assume that a ‘best schedule’ is
chosen based on the following priority:

1. number of violations of SingleNight, WeekendSplit, WeekendBalance (Obj2)
2. number of violations of Coverage (0bj3)

3. the penalty for CoverageBalance (Obj4)

4. the overall nurses’ preferences satisfaction SoftRequest (Obj1)

However, different decision makers could use different priorities and a different
schedule from the obtained non-dominated set would be chosen. We present
the objective values for these ‘best schedules’ in Table 5.

Table 5. A selected ‘best schedule’ for each data set
Period Obj2| Obj3 [Obj4| Objl
March2001 (2.567| 5.8 [0.271(89.7%
April2001  |2.000| 9.767 |0.275|88.9%
May2001 2.267| 16.5 0.231]90.1%
June2001 0.867|39.977(0.261|92.8%
July2001 1.900(39.900(0.318|87.2%
August2001 |3.467| 8.233(0.217/90.0%
September2001|2.567|20.167|0.253|89.2%

6.5 Previous Results on the QMC Problem

As it was mentioned in Subsection 2.4, Beddoe and Petrovic used a simplified
version of the QMC problem and tackled it in a single-objective manner [10,
11]. We applied our SEAMO-R approach to the data sets (March2001 and
April2001) used by Beddoe and Petrovic and results are reported in Table 6.
We can see that the results obtained by SEAMO-R are slightly worse than
those reported by Beddoe and Petrovic. However, note that the number of
violations of the Coverage constraint (Obj8) produced by SEAMO-R on the
Beddoe and Petrovic data sets is only slightly better than the number of
violations on the data sets of this paper (Table 3), although the later data sets
correspond to much more constrained instances. Full details of the comparison
with the work of Beddoe and Petrovic are available in [21]. In order to facilitate
further research and comparison with our results, we make the QMC problem
instances available in the web page mentioned in Section 2.

Table 6. Average results of SEAMO-R on Beddoe and Petrovic data sets [10, 11]

SEAMO-R | | CABAROST(CB-OBJ-TL-R10
Period [ Obj3| Objl | | Obj3 Obj1
March2001 | 2.600 | 88.6% | | 0.100 90.1%
April2001 | 4.900 | 89.3% | | 0.000 90.7%




22 Landa-Silva, Le

7 Final Remarks

We have presented a multi-objective evolutionary approach to tackle a real-
world nurse scheduling problem in which the satisfaction of staff prefer-
ences drives the search for non-dominated solutions. We described an adapta-
tion of the Simple Evolutionary Algorithm for Multi-objective Optimisation
(SEAMO) to tackle a nurse scheduling problem with four objectives. One of
the objectives is set as a target while the other three are subject to optimi-
sation. In our multi-objective approach, we have grouped soft constraints in
a manner that is meaningful to the decision-maker (usually a senior nurse).
The target objective is associated to the satisfaction of nurses’ preferences.
The other three objectives are associated to 1) meeting work regulations, 2)
meeting coverage demand and, 3) ensuring balanced coverage demand for the
whole scheduling period. We developed a re-generation strategy to aid diversi-
fication and a self-adaptive decoder to repair constraint violations. These two
mechanisms are driven by the target level of nurses’ preferences satisfaction
which can be set by the decision-maker. The resulting algorithm is SEAMO-
R, a Simple Evolutionary Algorithm with Re-generation for Multi-objective
Optimisation. The re-generation strategy replaces dominated solutions with
new ones to avoid stagnation. The self-adaptive decoder uses the nurse prefer-
ence schedule, a random permutation of shifts and a self-mutation operator to
construct schedules and maintain feasibility. Our results show that SEAMO-R
produces sets of good quality of feasible and non-dominated ward schedules
for the QMC nurse scheduling problem.
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