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We investigate cooperative local search to improve upon known results of the office-space-allocation prob-
lem in universities and other organizations. A number of entities (e.g., research students, staff, etc.) must

be allocated into a set of rooms so that the physical space is utilized as efficiently as possible while satisfying
a number of hard and soft constraints. We develop an asynchronous cooperative local search approach in which a
population of local search threads cooperate asynchronously to find better solutions. The approach incorporates
a cooperation mechanism in which a pool of genes (parts of solutions) is shared to improve the global search
strategy. Our implementation is single-processor and we show that asynchronous cooperative search is also
advantageous in this case. We illustrate this by extending four single-solution metaheuristics (hill-climbing, sim-
ulated annealing, tabu search, and a hybrid metaheuristic) to population-based variants using our asynchronous
cooperative mechanism. In each case, the population-based approach performs better than the single-solution
one using comparable computation time. The asynchronous cooperative metaheuristics developed here improve
upon known results for a number of test instances.
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1. Introduction
We tackle the office-space-allocation problem, which
arises in universities and other organizations when
distributing office space among staff and other enti-
ties. This is a difficult, highly constrained combinato-
rial optimization problem. Recombination of solutions
is not straightforward because it is very difficult
to maintain feasibility of solutions when applying
recombinative operators (Burke et al. 2001b). This dif-
ficulty motivates our interest in developing hybrid
and cooperative metaheuristics.

We investigate asynchronous cooperative search to
improve upon known results by developing pop-
ulation-based metaheuristics under the principle of
asynchronous cooperative local search. Researchers have
investigated synchronous and asynchronous cooper-
ative search in the context of parallel metaheuris-
tics (Le Bouthillier and Crainic 2005, Crainic 2005,
Crainic and Toulouse 2003, Crainic et al. 2005). Our
implementation has two distinctive aspects. First, it is
a sequential single-processor implementation where
a population of local search threads are allowed to
carry out their individual search and also cooperate
in an asynchronous manner to improve the global
search. Secondly, instead of sharing complete solu-
tions between the threads (as in Le Bouthillier and
Crainic 2005) our approach builds a global memory

using “parts” of solutions collected in a pool shared
by all the local search threads. This pool of genes con-
tains parts of solutions, some of them regarded as
“good” and others regarded as “bad.” The population
of threads uses this shared information in two ways:
to use parts of solutions marked as “good” to improve
their individual solution, and to avoid using parts of
solutions marked as “bad” when reconstructing solu-
tions after a disruption operator is applied as a diver-
sification strategy. By having a population of local
searchers that share the information obtained during
the search, a form of recombination can be achieved
and performance of the local search can be improved.
We extend a range of single-solution local search algo-
rithms toward population-based metaheuristics using
our asynchronous cooperative mechanism. We carry
out experiments to compare performance of the orig-
inal and extended variants of the algorithms when
applied to several test instances.

Section 2 describes the problem domain and test
instances, while Section 3 presents the heuristics
implemented. Section 4 describes in more detail our
asynchronous cooperative local search approach. Section 5
gives details of our experiments and presents and dis-
cusses the results. Section 6 gives final remarks and
proposes future research.
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2. The Office-Space-Allocation
Problem

2.1. The Problem Domain
The office-space-allocation problem in universities
and other organizations refers to the distribution of
rooms among people and other entities such as lab-
oratories, lecture rooms, etc. (Burke and Varley 1998,
Landa Silva 2003). The goal is to find an alloca-
tion that optimizes space utilisation, satisfies all hard
constraints, and satisfies as many soft constraints
as possible. Constraints restrict the relative posi-
tion and grouping of entities. There are proximity/
adjacency, grouping, and sharing constraints. Prox-
imity/adjacency constraints exist when one entity
should be close to certain rooms or to other enti-
ties. Grouping constraints refer to a group of entities
that should be allocated close to each other. Sharing
constraints indicate that entities should not share a
room. An additional goal is very difficult to accom-
plish and to evaluate: satisfaction of each person with
the assigned room. Decision makers (space adminis-
trators) usually require various high-quality solutions
so they can select the most appropriate one (Burke
and Varley 1998).

2.2. Problem Formulation
This is similar to other combinatorial optimization
problems such as bin packing, the knapsack problem,
the general assignment problem, and their variants
(Martello and Toth 1990). However, in our problem
the capacity of rooms can be exceeded (but penal-
ized). Also, there are (hard and soft) constraints that
affect the relative position of entities in the allocation.
We formulate the problem as follows:
n= number of entities with sizes s1� s2� � � � � sn.
m= number of rooms with capacities c1� c2� � � � � cm.
xij = 1 if entity j is assigned to room i, and 0

otherwise.
x is the matrix of 
xij � values.
h= number of hard constraints of the form Z�r�=

true.
g = number of soft constraints of the form Z�r� =

true.
The problem is to minimize over x

F �x�= f1�x�+ f2�x� (1)

subject to
m∑
i=1

xij = 1 for j = 1�2� � � � �n

Z�r�= true for r = 1�2� � � � � h�

where the space-misuse function f1�x� and violation-
of-soft-constraints function f2�x� are

f1�x�=
m∑
i=1

WPi+
m∑
i=1

OPi

f2�x�=
g∑
r=1

SCPr �

SCPr is the penalty for violating the r th soft con-
straint. The constraint types (soft and hard) and asso-
ciated penalties for the problem instances used here
are in Section 2.3. The amount of capacity wasted or
overused for each room i is given respectively by

WPi =max
(
0� ci−

n∑
j=1

xij sj

)

OPi =max
(
0�2

( n∑
j=1

xij sj − ci
))
�

(2)

Note that for each room i only one of WPi or OPi has
a value greater than zero depending on whether the
room’s capacity is wasted or overused. Exceeding the
room’s capacity is considered worse than wasting it
and therefore a multiplication factor of 2 is applied
when calculating OPi.

An allocation or solution is an n-dimensional vec-
tor Y = 
y1�y2� � � � � yn� where the jth �j = 1� � � � �n�
position in the vector corresponds to the jth entity
and the value yj = i �i= 1� � � � �m� means that the jth
entity has been allocated to the ith room. That is,
if the decision variable x35 = 1 then entity j = 5 has
been allocated to the area of space i = 3 and hence,
y5 = 3 in the n-dimensional vector Y . The nonsimi-
larity or diversity in the solution space between two
allocations is evaluated as follows. The two alloca-
tions Y ′ = 
y′1�y′2� � � � � y′n� and Y ′′ = 
y′′1 �y′′2 � � � � � y′′n� are
considered to be completely nonsimilar if y′j �= y′′j �j =
1� � � � �n�, i.e., if each of the n entities has been allo-
cated to a different room in each solution. The diver-
sity of a population of solutions is (3), where dj is the
number of different values in the jth position for all
vectors and p is the population size.

Vp =
∑n
j=1��dj − 1�/�p− 1��

n
100 (3)

A population of solutions using different rooms
to allocate each different entity has a diversity Vp =
100%. If all solutions in the population use the same
room to allocate each entity, then Vp = 0%. Our inter-
est is to obtain a set of solutions that are diverse in
the solution space (high Vp) while their fitness (1)
should be of similar high quality (low F �x�). This is
because the decision makers are usually more inter-
ested in having a set of solutions that represent dif-
ferent allocations.
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Table 1(a) Description of Test Instances

nott1 nott1b nott1c trent1
n= 158 m= 131 n= 104 m= 77 n= 94 m= 94 n= 151 m= 73

Constraints Hard Soft Hard Soft Hard Soft Hard Soft

Not sharing 100 58 46 58 84 10 80 71
Be allocated in 0 35 0 9 0 35 0 19
Be adjacent to 5 15 4 10 5 15 0 5
Be away from 6 14 1 2 5 12 0 0
Be together with 0 20 0 20 0 0 0 36
Be grouped with 0 10 0 9 0 10 0 0

Total 263 159 176 211

Table 1(b) Brief Description of Each Type of Constraint and Penalty Applied

Constraints Penalty Description

Not sharing 50 Entity not to share a room
Be allocated in 20 Entity allocated in a specific room
Be adjacent to 10 Entity adjacent to another entity
Be away from 10 Entity away from another entity or room
Be together with 10 Entities allocated in the same room
Be grouped with 5 Entities allocated close to each other

2.3. Test Instances
Four test instances, prepared using real data supplied
by British universities, are used here; see Table 1(a).
A brief description of each type of constraint and
the penalty applied when one constraint of each type
is violated are also given; see Table 1(b). The nott1
instance is the largest and most constrained. These
and other data sets are available in the Online Sup-
plement to this paper on the journal’s website.

3. Solving the Problem
3.1. Previous Work
Giannikos et al. (1995) applied goal programming to
distribute offices among staff while Ritzman et al.
(1980) used linear programming to automate the
assignment of 144 offices to 289 staff. Benjamin et al.
(1992) also applied linear programming to plan the
layout of a computer-integrated manufacturing labo-
ratory to allocate space. These studies recognized that
it is virtually impossible to allocate space to satisfy all
constraints.

We investigated genetic algorithms in Burke et al.
(2001b). Despite designing specialized genetic opera-
tors to deal with the existing constraints, local search
performed better. Components from various meta-
heuristics were incorporated into one single-solution
hybrid approach with very good results (Burke et al.
2001a), and extended toward population-based vari-
ants via an annealing schedule to control evolution
of the population. We also investigated population-
based approaches as a biobjective optimization (Burke
et al. 2001c, Burke and Landa Silva 2006). For more
detail see Landa Silva (2003).

3.2. Initialization and Neighborhood Search
The following peckish (not-so-greedy) constructive
heuristic HI is used to initialize solutions by allocat-
ing one entity at a time while ensuring satisfaction
of hard constraints. We set k = n/3 by preliminary
experimentation.

HI . Heuristic for initialization of solutions
Step 1. Select an unallocated entity ej uniformly at

random.
Step 2. Select k < m uniformly at random rooms

with adequate remaining space c∗i to allocate ej ; c∗i
should be between 0�5sj and 1�5sj where sj is the size
of entity ej .
Step 3. Select the best of the k rooms to allocate

entity ej , taking into consideration the minimization
of space misuse f1�x� and the satisfaction of hard and
soft constraints f2�x�.
Step 4. Stop if all entities are allocated; otherwise

go to Step 1.

The neighborhood search for feasible candidate
solutions (all entities allocated and all hard con-
straints satisfied) uses three moves:

1. swap the allocation between two entities, i.e.,
swap values between two positions in Y , the
n-dimensional vector representing the solution;

2. interchange the allocated entities between two
rooms, i.e., given two values yj1 and yj2 for j1� j2 ∈
%1�2� � � � �m& in Y , change to yj2 the value of all posi-
tions having the value yj1 and change to yj1 the value
of all positions having the value yj2;

3. relocate or change the room assigned to an entity,
i.e., change the value of a given position in Y to a
different value within %1�2� � � � �m&.
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The heuristic HLS below is used for neighborhood
search. This is a best-of-(n/3) improvement neighbor-
hood search (i.e., k = n/3). Other variations such as
first improvement and best-of-all improvement were
also tried but were less successful.

HLS. Heuristic for neighborhood search
Step 1. Select one type of move (swap, interchange,

or relocate) uniformly at random.
Step 2. Generate and evaluate k neighboring fea-

sible solutions using the type of move selected in
Step 1.
Step 3. Select the best of the k candidate solutions

generated in Step 2.

3.3. Iterative Improvement
After an initial solution is constructed with HI , the
iterative improvement algorithm performs neighbor-
hood search using heuristic HLS until a termina-
tion criterion is satisfied. The pseudocode for this
approach is given below. Note that Step 3.1 is
included here to extend this single-solution approach
to a population-based variant below. The asynchronous
cooperation mechanism is described later.

Iterative improvement algorithm
Step 1. Generate the current solution x using

heuristic HI .
Step 2. Find a feasible candidate solution x′ using

heuristic HLS and if x′ is found,
2.1. Evaluate x′ and if it is better than x then

x← x′.
Step 3. If no feasible solution x′ was found,

3.1. If in cooperative scheme then use the asyn-
chronous cooperation mechanism.
Step 4. Stop if the termination condition is satisfied;

otherwise go to Step 2.

3.4. Simulated Annealing
Simulated annealing attempts to avoid getting stuck
in poor local optima by accepting nonimproving can-
didate solutions (Aarts et al. 2005). The pseudocode
for our implementation of this approach is given
below. Step 4.1 is included here for extending this
approach to a population-based variant below.

Simulated-annealing algorithm
Step 1. Generate the currrent solution x using

heuristic HI .
Step 2. Set T0 ← 1�000, T ← T0, )T ← 200, Riter← 0,

Rstep← 10n, Dstep← n/2, and iter← 0.
Step 3. Find a feasible candidate solution x′ using

heuristic HLS and if x′ is found,
3.1. Calculate the fitness variation )F between x

and x′.
3.2. If x′ is better than x then x← x′.
3.3. If x′ is not better than x and T = 0,

3.3.1. Set Riter←Riter+1 and if �RitermodRstep�=
0 set T ← T0 and Riter← 0.

3.4. If x′ is not better than x and T > 0,
3.4.1. Set accept probability = e−)F /T , if accept

probability > uniform 
0�1� random number then
x← x′.

3.5. iter← iter+ 1.
3.6. If �iter mod Dstep�= 0 then T ← T −)T .
3.7. If T ≤ 0 then make T ← T0.

Step 4. If no feasible candidate solution x′ was
found,

4.1. If in cooperative scheme then use the asyn-
chronous cooperation mechanism.
Step 5. Stop if the termination criterion is satisfied;

otherwise go to Step 3.

3.5. Tabu Search
Tabu search attempts to guide the search in a system-
atic and intelligent way by using adaptive and flex-
ible memory structures and some intensification and
diversification strategies (Glover and Laguna 1997,
Gendreau and Potvin 2005). Our implementation is
below. Step 4.1 is included here for extending this
approach to a population-based variant below.

Tabu-search algorithm
Step 1. Generate the current solution x using

heuristic HI .
Step 2. Initialize the short-term and long-term

memory structures (see below).
Step 3. Explore a set of candidate solutions by gen-

erating each candidate solution using heuristic HLS
and the memory structures. Select the best candi-
date solution and if a feasible candidate solution x′ is
found,

3.1. Evaluate x′ and if it is better than x then
x← x′.

3.2. Update the short-term and long-term mem-
ory structures (see below).
Step 4. If no feasible solution x′ was found,

4.1. If in cooperative scheme use the asynchronous
cooperation mechanism.
Step 5. Stop if the termination criterion is satisfied;

otherwise go to Step 3.

3.5.1. Memory Structures. Two n×m matrices are
used and in both of them the cell �j� i� corresponds
to the allocation of the jth entity to the ith room. The
matrix MT stores those pairs (entity, room) that will
be considered as tabu for a number of iterations while
the matrix MA stores those pairs (entity, room) that
will be considered attractive during the search. The
tabu matrix MT is updated each time a move sug-
gested by the heuristic HLS produces a detriment in
the fitness of the current solution, while the attractive
matrix MA is updated each time the move produces
an improvement. Updating a cell in MT is done by
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setting the value in the cell to iter + tenure so that
a move involving the pair (entity, room) correspond-
ing to that cell is set as tabu for tenure iterations.
We use a tenure = n and kept constant throughout
all the iterations. Updating a cell in MA is done
by incrementing the value in the cell in one unit,
i.e., MA�j� i� ← MA�j� i� + 1. In each type of move
�swap� interchange� relocate�, the cells that are updated
are the ones corresponding to the pairs (entity, room)
after implementing the move. For example, if the 6th
entity is relocated from the 2nd to the 4th room and
the move produced a better solution, then MA�6�4� is
incremented by one. If the move generated an infe-
rior solution, then MT �6�4� is set to iter+ tenure. Note
that in a swap move two cells are updated while in
an interchange move more cells might be updated. The
tabu (resp. attractive) matrix acts as the short-term
(resp. long-term) memory component. Because both
matrices store pairs (entity, room), this mechanism
memorizes parts of solutions or genes that come from
bad or good solutions.

3.5.2. Intensification and Diversification Strate-
gies. MT and MA are used to implement intensifica-
tion and diversification strategies. If the move found
by HLS is considered tabu according to MT , i.e., any
of the pairs (entity, room) in the implemented move
is marked as tabu in MT in the current iteration, then
another move is sought unless the aspiration crite-
rion is satisfied. The aspiration criterion is that the
new candidate solution should be better than the best
solution so far. The maximum number of attempts to
find a feasible non-tabu move is set to n/10. If, after
this, HLS cannot find a move, a relocate move is heuris-
tically created using the information stored in MA.
To do this, an entity j is selected uniformly at ran-
dom and the highest value in the jth row is identified
in MA. This corresponds to the most attractive room
i to allocate the entity j from the perspective of the
current population and the history of the search. If
the entity j is not already allocated to room i then the
move proposed is to relocate the entity to that room.
If this assignment already exists in the current solu-
tion or if the move creates an infeasible allocation,
then another entity is selected uniformly at random
and the same process in carried out for a maximum
of n/10 attempts.

4. Asynchronous Cooperative
Local Search

4.1. Related Work
There are a number of classification schemes describ-
ing evolutionary algorithms and their hybrids with
local search (Hertz and Klober 2000, Calegari et al.
1999, Preux and Talbi 1999, Talbi 2002). Crainic

et al. (1997) presented a taxonomy for parallel tabu
search approaches in which the parallel approach
is classified according to three features: the control
strategy used to guide the search, the information-
sharing mechanism, and the strategies to partition the
search space to be explored by each thread. Simi-
larly to Preux and Talbi (1999), Crainic et al. (1997)
also noted that asynchronous parallel metaheuris-
tics are promising and merit more research. Crainic
and Toulouse (2003) surveyed parallel metaheuristics
concentrating on simulated annealing, genetic algo-
rithms, and tabu search; they noted that asynchronous
cooperative multi-thread metaheuristics (like ours)
appear to be less investigated but more approaches
of this type are being proposed and that further the-
oretical and empirical research is required. Crainic
et al. (2005) surveyed implementations of coopera-
tive tabu search and identified asynchronous search
as promising; they focused on the mechanisms for
asynchronous cooperation in the literature and iden-
tified cooperative multi-thread methods and their
hybrids as the current trend in cooperative heuris-
tic search. In a vehicle routing problem, multiple
search threads cooperating asynchronously and shar-
ing a pool of solutions enhances the overall per-
formance and robustness of the individual threads
(Le Bouthillier and Crainic 2005). An earlier survey on
parallel metaheuristics based on local search is Verho-
even and Aarts (1995).

4.2. The Cooperation Mechanism
The memory structures and intensification/diver-
sification strategies described above for tabu search
successfully direct the search toward high-quality
neighbor solutions. These features are not part of the
iterative-improvement and simulated-annealing algo-
rithms, but we used the memory structures to develop
a cooperation mechanism for population-based asyn-
chronous cooperative local search. Later, the population-
based variants of iterative improvement and simulated
annealing will use the cooperation mechanism, but
this is a feature of our asynchronous cooperative
scheme and not of the local search threads. Having
a population of local search threads, the matrices MA

and MT are used as a global memory structure shared
by the population. This strategy allows storing parts
of attractive solutions in MA and parts of unattractive
solutions in MT . The information stored in MA and
MT is used in the asynchronous cooperative local search
scheme in two ways:

1. Information-Sharing Strategy. Each explorer
performs neighborhood search using heuristic HLS but
MA andMT are now updated by all individuals in the
population. When a single-solution explorer cannot
get a feasible solution from HLS , i.e., when the asyn-
chronous cooperation mechanism is invoked, a heuristic
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is used to modify the solution using the information
stored in MA. This heuristic goes through each row j
in MA and explores the most attractive allocations for
the jth entity. That is, it starts with the cell having
the highest value and continues to the one with the
lowest value and makes the allocation (entity, room)
that keeps the solution feasible and is different from
the one in the current solution. The changes are made
even if the solution is worsened. A maximum of n/20
changes are implemented in this way.

2. Diversification Strategy.We implemented a strat-
egy that “heavily” disrupts the current solution as fol-
lows. Those entities that are penalized the most (are
involved in violation of soft constraints or in the mis-
use of space) are removed from their assigned rooms.
Then, the strategy attempts to allocate each of these
now-unallocated entities to one of various alternative
rooms. For each unallocated entity, the rooms from
the first one to the last one (i.e., i= 1� � � � �m) are eval-
uated for a feasible allocation with the exception of
those allocations marked as tabu in MT . The degree
of disturbance carried out by this diversification strat-
egy is controlled by setting the maximum number of
penalized entities that will be unallocated to be n/5.
The purpose of this “heavy” disruption is to encour-
age each explorer to search a (hopefully) very differ-
ent area of the solution space.

4.3. Extending the Single-Solution Approaches
A single-solution explorer (local searcher) LSSS can be
extended to a population-based approach LSPB based
on the asynchronous cooperative mechanism described
above. The first phase (Step 1) in the pseudocode
below corresponds to the construction of a population
of explorers, each associated to an initial solution. In
the intensification phase (Step 3.1) each explorer aims
to achieve self-improvement using local search and
the information-sharing strategy. In the diversification
phase (Step 3.2), each explorer uniformly at random
modifies its current solution using the diversification
strategy. The best solution found by each explorer is
maintained in the best population so far. Note that
although the improvement rate could be better in
some explorers, each explorer has its own solution
and none is permitted to contribute more than one
solution to the best population so far, i.e., this is a
population of independent and cooperating threads
(multi-walk approach). This encourages diversity and
avoids one or more explorers to dominate the search.

LSPB. Population-based scheme based on asynchro-
nous cooperative local search
Step 1. Generate the initial current population P

using heuristic HI .
Step 2. Archive the current population as the best

population so far, P ∗.

Step 3. Each explorer carries out the follow-
ing intensification and diversification steps asyn-
chronously:

3.1. Do population self-improvement (intensifi-
cation) updating P ∗, i.e., each individual in P exe-
cutes the single-solution local search approach LSSS
using the information-sharing strategy and attempts
to improve its own solution iteratively. The local
search thread continues doing this until no further self
improvement to its current solution is possible.

3.2. Do uniform random variation of the individ-
ual solution (diversification), i.e., since the local search
thread appears to be “stuck,” its current solution is
disturbed using the diversification strategy.
Step 4. Stop if the termination criterion is satisfied;

otherwise continue with the process of Step 3.

Although we implemented our algorithms sequen-
tially using a single-processor computer, the structure
of these algorithms permits their parallel implemen-
tation. In our implementation, only one local search
thread at a time can access the global memory struc-
tures MA and MT . If the asynchronous coopera-
tive algorithms are parallelized, a mechanism should
be implemented to resolve conflicts if two threads
attempt to update the same cell in MA or MT at the
same time. The value of the tabu tenure parameter in
MT is the same for all threads and fixed for the whole
search process.

Parallel metaheuristics are expected to have a num-
ber of advantages over their nonparallel counterparts
(Crainic 2005). They should be more robust, find bet-
ter solutions, require little or no parameter tunning,
while using comparable computing resources. Crainic
(2005) also notes that exchanging “meaningful” infor-
mation in a “timely” manner is an objective in multi-
threaded approaches but that current implementations
tend to exchange complete solutions (the best ones)
and clean up the memory structures before a new
search begins. It is also believed that interrupting
the local search does not always yields good results.
Our approach addresses those issues by (1) sharing
“good” and “bad” parts of solutions, (2) allowing
each thread to access the global memory when needed
(asynchronously), (3) updating the global memory
along the search, and (4) allowing each thread to con-
tinue with its individual search until it gets stuck. Our
experiments also show that the extended approaches
achieve much better results and are more robust than
the noncooperative independent approaches while
using comparable computation time.

An extended population-based asynchronous coop-
erative approach consists of replacing LSSS in the
pseudocode above by a single-solution local search
technique. The algorithms implemented here are
the iterative improvement algorithm of Section 3.3
and its population-based variant (I ISS and I IPB), the
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simulated-annealing algorithm of Section 3.4 and
its population-based variant (SASS and SAPB), and
the tabu-search algorithm of Section 3.5 and its
population-based variant (TSSS and TSPB). TSPB main-
tains the global memory structures only, while in
TSSS the memory structures are local, as described in
Section 3.5.

5. Performance of the Extended
Approaches

5.1. The Experiments
One aim of our experiments is to evaluate how
beneficial it is to extend a single-solution technique
toward a population-based approach as proposed
above. The other aim is to improve upon the known
solutions. We seek high-quality solutions that are also
diverse with respect to the solution space (see Sec-
tion 2). The experiments are designed to compare the
population-based variant against the corresponding
single-solution technique for finding such set. A fair
way to do that is to execute each method for an
equal computation time. The number of solution eval-
uations or neighborhood moves is another possibil-
ity for comparison, but because the population-based
approaches spend extra time using the asynchronous
cooperation mechanism, this stopping criterion would
be unfair for the single-solution methods. Preliminary
experiments showed that, given a short computation
time, the single-solution approaches quickly achieve
improvement but they also get stuck relatively early.
The population-based approaches can take longer
(relative to the single-solution variants) to reach high-
quality solutions. We carried out experiments to find
the computation time for which the single-solution
approaches achieved no further improvement for a
considerable number of iterations.

Given an initial population PI of size p, the single-
solution approach was executed for tind computation
time to each of the solutions in PI and the best solu-
tion at the end of each run was archived (p solutions
are obtained). Then, the corresponding population-
based approach was executed for ptind computation
time using PI . This process was repeated ten times
(a different PI is generated each time) for each of the
problem instances of Section 2.3. For each set of p

Table 2 Initial Populations of Different Sizes and Diversity Values for Each Test Instance

p= 20 p= 5

65%< Vip < 90% 20%< Vip < 40% 65%< Vip < 90% 20%< Vip < 40%

nott1, tind = 120 s nott1A nott1A2 nott1B nott1B2
nott1b, tind = 60 s nott1bA nott1bA2 nott1bB nott1bB2
nott1c, tind = 30 s nott1cA nott1cA2 nott1cB nott1cB2
trent1, tind = 70 s trent1A trent1A2 trent1B trent1B2

solutions obtained, the best, average, and worst solu-
tion fitnesses were recorded and these values were
averaged for each set of ten repetitions. To compare
further the performance of each population-based
variant against its corresponding single-solution algo-
rithm, we carried out experiments using small and
large populations with low and high diversity for
each test instance as shown in Table 2. The algorithms
were coded using MS Visual C++ 6.0 on a 700 MHz
PC with 132 MB RAM.

5.2. Results on Fitness of Solutions
Figures 1–4 summarize the results using the vari-
ous initial populations for each test instance. The
left bar in each pair shows the results from the
population-based variant of one algorithm, the right
bar shows the results from the corresponding single-
solution approach and a line is drawn between the
average solutions. The solutions from the population-
based variants are better than those from the single-
solution approaches. The best, average, and worst
solution qualities are better for the extended algo-
rithms in most cases. This is clear for the nott1
and nott1c test instances in Figures 1 and 3, respec-
tively. In the results for the nott1b instance in Fig-
ure 2, the extended simulated-annealing algorithm is
outperformed by the single-solution approach when
the initial population is small and the diversity is
low (nott1bB2). In some cases the worst solution
found by the population-based variant of one algo-
rithm was worse than the one found by the corre-
sponding single-solution approach. This is true for
the simulated-annealing algorithm on the nott1bA,
nott1bA2, nott1bB, and trent1A2 cases, and the tabu
search algorithm on the nott1bB and nott1bB2 cases.

In some cases, even the worst solution produced
by the extended algorithm outperforms, or at least
matches, the quality of the best solution found by
the corresponding single-solution approach. This is
true for the iterative improvement algorithm on most
cases of the nott1c and trent1 problems, the simu-
lated annealing-algorithm on the nott1cA and trent1B
cases, and tabu search on nott1cB, nott1cB2, and
trent1A2. The size of each bar gives an indication of
the difference in quality between the worst and best
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Figure 1 Results for nott1
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Figure 2 Results for nott1b

solutions found by each algorithm variant. This dif-
ference appears smaller for the population-based
approaches compared to the corresponding single-
solution algorithms (except for nott1b). In some
cases, the extended variant of a less-sophisticated
algorithm outperforms the single-solution variant of
another more elaborate technique; e.g., in Figure 1
the extended variant of iterative improvement clearly
outperforms the single-solution variant of simulated
annealing on nott1B.

5.3. Diversity of Solutions
Over the ten runs, we calculated the average final
population diversity Vfp (3) for each algorithm vari-
ant. When the initial population is highly diverse
(65% < Vip < 90%), the population-based variants
achieve a Vfp of around 10% below Vip, while the
corresponding single-solution approaches achieve a
Vfp of around 15% below Vip in most cases. In
only a few cases the Vfp obtained by an extended
approach is slightly lower than that of the corre-
sponding single-solution variant. If the initial pop-
ulation has a low diversity (20% < Vip < 40%), the

II II II IISA SA SA SA TSTSTSTS

nott1cBnott1cA2nott1cA nott1cB2

300

200

400

500

600

700

800

F
(x
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Figure 3 Results for nott1c
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2,100

trent1A2trent1A trent1B trent1B2

F
(x

)

Figure 4 Results for trent1

extended approach typically obtains a Vfp of around
150% above Vfp. Although the single-solution variants
also achieve improvement in this respect, typical val-
ues are around 50% above Vfp.

The population-based algorithms consistently main-
tain good population diversity (above 40%) even if the
computation times are considerably longer (as in
the experiments in Section 5.4). We attribute this to
the way in which our asynchronous cooperative mech-
anism operates. Each local search thread focuses on
self improvement and accesses the shared memory
structures asynchronously and only when needed
(see pseudocode in Section 4.3). When taking parts
of “good” solutions from MA, the information-sharing
strategy allows a maximum of n/20 changes so that
solutions do not become too similar. When avoiding
parts of “bad” solutions from MT , the diversification
strategy targets the disruption according to the enti-
ties that are penalized the most in each solution. In
addition, the asynchronous manner in which cooper-
ation takes place helps avoid convergence to a few
too-similar solutions.
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Figure 5 Rate of Improvement over Execution Time on trent1B for Each Algorithm

5.4. Rate of Improvement
The population-based variants based on our asyn-
chronous cooperative scheme find high-quality, di-
verse solutions regardless of the diversity (low or
high) and size (small or large) of the initial popula-
tion. This section reports on the performance of the
single-solution and extended methods with respect to
the computation time required to achieve the results
reported above. Figure 5 shows typical runs for the
single-solution and extended approaches over the
computation time for trent1B in which the population
size is 5 and the initial population is highly diverse
(65% < Vip < 90%), showing the quality of the best,
average, and worst individuals in the population at
each time during the run. The processing time for the
extended approaches is five times longer (5tind) than
the processing time for the single-solution methods.
However, as explained in Section 5.1, the total time
spent by each variant to process the whole population

is exactly the same. Similar results were observed for
all problems in runs with different population sizes
and different initial diversities.

Figure 5(b) shows that the single-solution variant of
iterative improvement (I ISS) achieves its best perfor-
mance very quickly, slightly less than 20 seconds. For
the population-based variant of the same algorithm
(I IPB), comparable high-quality solutions are found
after 100 seconds, although further improvement and
the best average are achieved after 250 seconds (Fig-
ure 5(a)). In other words, it takes about 275 seconds
for the extended approach to find the best values for
the best, average, and worst statistics in this popu-
lation of 5 solutions. For the single-solution variant
it takes about 20 seconds to achieve its best statis-
tics for each of the individuals in the population.
As expected, the single-solution variant is computa-
tionally cheaper but no further improvements can be
achieved after a certain computation time. Although
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the population-based approach takes more time to
produce a set of high-quality solutions, even the worst
solution outperforms the best result from the single-
solution method. Moreover, after a long processing
time I IPB still improves the average quality of the pop-
ulation while I ISS produces no better result. Assuming
we need only one good solution and the computa-
tion time available is small, I ISS is a perfectly accept-
able approach. However, if five good solutions are
required to carry out comparisons and select the most
appropriate one, then it will take about 20× 5 = 100
seconds for I ISS to achieve this (by restarting the algo-
rithm). At this time I IPB has already achieved a much
better best solution and the average is as good (if not
better) than the one produced by I ISS . I IPB can further
improve the quality of the population after this com-
putation time. Similar observations were made for the
variants of simulated annealing and tabu search as
illustrated in Figures 5(c)–5(f).

The execution times used here might present
an advantage for the population-based approaches,
so we carried out experiments running the single-
solution variants for a much longer time. For exam-
ple, for problem trent1B, I ISS was run for 350 seconds
(5tind) for each individual in the population. That is,
the total time spent to obtain the set of five solutions
was 1,750 seconds. These results were compared with
those obtained by I IPB after 350 seconds (the same
as before). Even with this advantage of longer exe-
cution time, the single-solution variant was outper-
formed by the extended approach. The same was
observed for the three algorithms in all test problems,
i.e., none of the single-solution methods achieved
further improvements after much longer execution
times. Thus, our asynchronous cooperative local search
approach prevents the cooperative threads from get-
ting stuck in local optima, as appears to be the case
in the independent threads.

5.5. Comparison with Prior Results
A single-solution hybrid metaheuristic (referred to as
HMHSS) was presented in Burke et al. (2001a) and
the pseudocode is shown below. This hybrid algo-
rithm incorporates features from iterative improve-
ment, simulated annealing, and genetic algorithms.
The mutation operator in Step 5.2 below unallo-
cates a small number (≈n/10) of entities from their
assigned room. Here we extend the HMHSS approach
to a population-based variant (HMHPB) using our
asynchronous cooperative local search scheme. Note
that Step 5.3 is added here when this algorithm is
extended to a population-based approach.

Hybrid metaheuristic approach �HMHSS� from
Burke et al. (2001a)
Step 1. Generate the initial solution x using heuris-

tic HI

Step 2. Set T0 ← 1�000, T ← T0, )T ← 200, Riter← 0,
Rstep ← 10n, Dstep ← n/2, iter ← 0, failed move
attempts← 0, and max failed attempts← n/5.
Step 3. For Rstep iterations do

3.1. Find a feasible candidate solution x′ using
HLS , and if x′ is better than x then x← x′.
Step 4. Find a feasible candidate solution x′ using

HLS and if this solution is found,
4.1. Calculate the fitness variation )F between x

and x′, and if x′ is better than x then x← x′.
4.2. If x′ is not better than x and T = 0,

4.2.1. Reject x′, set Riter ← Riter + 1, and if �Riter
mod Rstep�= 0 then T ← T0 and Riter← 0.

4.3. If x′ is not better than x and T > 0,
4.3.1. accept probability← e−)F /T , if accept prob-

ability> uniform 
0�1� random number then x← x′.
4.4. iter← iter+ 1.
4.5. If (iter mod Dstep=0) then make T ← T−)T .
4.6. If T ≤ 0 then make T ← T0.

Step 5. If no feasible candidate solution x′ was
found,

5.1. Increment failed move attempts.
5.2. If failed move attempts > max failed attempts

then apply the mutation operator to x.
5.3. If in cooperative scheme then use the asyn-

chronous cooperation mechanism.
Step 6. Stop if the termination criterion is satisfied;

otherwise go to Step 4.

Burke et al. (2001a) also presented population-
based variants of HMHSS , focusing on implementing a
common annealing schedule to control the evolution
of the whole population. By controlling the annealing
schedule and the termination condition it was possi-
ble to obtain a population of high-quality solutions
(PMH −M) or only one high-quality solution (with
the rest of the population being less fit) in less time.
The results produced by the PMH −M method and
reported in Burke et al. (2001a) are the best published
results for the test instances there. Our test instances
(Section 2.3) are more difficult because they are larger
in terms of n and m and also incorporate more con-
straints (soft and hard) than those in Burke et al.
(2001a).

Below we compare the performance of our asyn-
chronous cooperative algorithms (I IPB� SAPB�TSPB�
HMHPB) and the PMH − M algorithm from Burke
et al. (2001a). The extended variant of HMHSS
(HMHPB) differs from the PMH−M approach in that
HMHPB incorporates our asynchronous cooperation
mechanism while PMH−M incorporates the common
annealing schedule. See Burke et al. (2001a) for details
on HMHSS and PMH−M .

5.6. Experiments with Previous Test Instances
First, our extended approaches are tested on the
instances in Burke et al. (2001a). The three problems
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Table 3 Performance of the Population-Based Algorithms on the Test Instances of Burke et al. (2001a)

P1 P2 P3
Idle iterations= 1�700 Idle iterations= 2�800 Idle iterations= 3�500

Algorithm Best Average Best Average Best Average

PMH −M 1,995.4 2,759.1 2,572.8 3,281.8 3,042.1 5,674.2
IIPB 3,256.2 4,521.8 3,017.8 3,556.3 5,484.1 6,984.3
SAPB 2,147.4 2,501.8 2,305.0 3,502.7 3,820.5 5,407.9
TSPB 1,742.9 2,385.4 2,173.1 2,947.1 2,395.1 4,401.8
HMH PB 1,512.1 2,193.3 2,184.2 2,729.4 1,825.5 3,596.9

considered have the following main characteristics:
P1 with n = m = 55, h = 7, g = 18; P2 with n = 93,
m= 55, h = 23, g = 38; P3 with n = m = 115, h= 32,
g = 35. The same experimental settings and com-
puting facilities in Burke et al. (2001a) to test the
PMH−M algorithm were used here: a population
size of p = 10, a number of idle iterations (itera-
tions with no improvement) as the termination cri-
terion, and ten runs of each algorithm on each test
instance. Table 3 shows the number of idle iterations
for each test instance and the results obtained with
each algorithm. For each problem instance and each
approach, the best and average solutions are reported.
The results shown for the PMH−M algorithm are
from Burke et al. (2001a). The best results among all
algorithms for each test instance are in bold.

The new population-based variant of the hybrid
metaheuristic (HMHPB) outperforms the previous ex-
tended version (PMH−M), i.e., the asynchronous coop-
eration mechanism helps produce better results. The
population-based tabu-search approach also produces
better results. In fact, the overall best solution for
the P2 instance is produced by TSPB, although the
best average performance over all runs for all test
instances is achieved by HMHPB. The population-
based variant of iterative improvement produces poor
results. The population-based variant of simulated
annealing is competitive with PMH−M but produces
significantly worse results than TSPB or HMHPB. All
the population-based approaches outperformed their
corresponding single-solution algorithms (as they did
in the experiments of Section 5.2).

Table 4 Performance of the Population-Based Algorithms on Our Test Instances

nott1 nott1b nott1c trent1
p · tind = 2�400 s p · tind = 1�200 s p · tind = 600 s p · tind = 1�400 s

Algorithm Best Average Best Average Best Average Best Average

IIPB 568.1 728.4 468.4 544.0 348.2 424.6 3,439.1 3,736.2
SAPB 543.7 687.0 470.7 575.3 342.5 418.7 2,724.4 3,756.4
TSPB 491.2 680.1 432.6 547.7 323.8 391.4 2,682.9 3510.6
PMH −M 525.9 647.7 458.0 505.8 334.9 398.5 3,217.4 3,618.7
HMH PB 482.2 621.5 417.1 479.5 315.4 392.1 2,531.4 3,104.0

5.7. Experiments with New Test Instances
The five population-based algorithms are compared
using the test instances described in Section 2.3. The
two versions of the extended hybrid metaheuristic
(PMH −M and HMHPB) were tested using the same
experimental settings described in Section 5.1. Taking
into account all the results obtained by each algo-
rithm on each test instance, the overall best and aver-
age solutions are in Table 4. The results in the first
three rows are those reported in Section 5.2, while the
results in the last two rows are obtained in this sec-
tion. Again, the best result among all the algorithms
for each instance is indicated in bold.

The best solutions are also produced by HMHPB,
i.e., the asynchronous cooperative approach obtained
from extending the single-solution hybrid meta-
heuristic. Again, the TSPB approach is competitive and
even gets one best average solution quality result
(nott1c). The population-based simulated annealing
algorithm (SAPB) and the PMH − M approach are
similar on these test instances, while the population-
based iterative improvement algorithm (I IPB) appears
once again to produce less favorable results overall.

5.8. Structure of Solutions
Table 5 shows the average value (rounded up to
the next integer) for each of the penalties that con-
tribute to the overall penalty function F �x�. Row
3 shows the average value of space-misuse f1�x�.
Row 10 shows the average value of violation-of-
soft-constraints f2�x�. Although minimizing space
overused is more important than minimizing space
wasted (2), the capacity of rooms is typically
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Table 5 Typical Penalty Values in the Solutions Obtained for Each
Problem Instance

nott1 nott1b nott1c trent1
n= 158 n= 104 n= 94 n= 151
m= 131 m= 77 m= 94 m= 73

Space wasted 45 17 23 43
Space overused 148 107 166 48
Space misuse 194 125 186 101
Not sharing 50 0 0 2�850
Be allocated in 40 80 100 150
Be adjacent to 40 30 70 0
Be away from 0 0 0 0
Be together with 80 50 0 100
Be grouped with 223 234 122 0
Soft constraints 538 385 264 3�280

Allocated entities 158 104 94 151
Rooms used 124–126 70–72 93–94 72–73

exceeded. This is the result of minimizing the viola-
tion of proximity/adjacency and grouping soft con-
straints. If a higher factor than 2 is applied to space
wasted (2), more of these soft constraints are violated
in the solutions produced by the algorithms. The be
grouped with soft constraint (ensuring that entities are
close to each other) is the most challenging, as illus-
trated by the high penalties in Table 5 for this soft
constraint. The last two rows in Table 5 show the
number of allocated entities and the typical number
of rooms used in the solutions obtained for each prob-
lem instance. All entities are always allocated because
that is a condition for feasibility. However, the num-
ber of rooms used in the solution is sometimes less
than the total of rooms m, i.e., sometimes some rooms
are left free, which is an interesting option for space
administrators as it gives more flexibility for space
management.

6. Summary and Final Remarks
We have reported results from a range of experiments
on extending four single-solution techniques: itera-
tive improvement, simulated annealing, tabu search,
and a hybrid metaheuristic, toward population-based
approaches based on asynchronous cooperative local
search. The asynchronous cooperation mechanism con-
sists of adding an information-sharing strategy and a
diversification strategy. The information-sharing strategy
allows individuals in the population to share good
and bad parts of solutions during the search. The
diversification strategy uses knowledge gained by the
population during the search and encourages indi-
viduals to explore different areas of the solution
space. Because each individual in the population uses
mainly local search, no specific mechanism is required
to maintain diversity (in the solution space) within

the population. This is a good alternative for improv-
ing upon the performance of single-solution meta-
heuristics when a set of solutions is required. In
producing a good set of solutions, the performance
of each asynchronous cooperative approach is better
than that of the corresponding single-solution algo-
rithm. The population size and diversity in the initial
population does not decrease the effectiveness of the
extended variants. This is an attractive feature of the
scheme because other population-based approaches
such as genetic algortihms usually require larger pop-
ulations to operate, or they tend to converge prema-
turely unless mechanisms to maintian diversity are
incorporated.

Our main purpose is to illustrate the concept of
asynchronous cooperative local search toward the design
of population-based metaheuristics. We also justify
the effectiveness of the method by presenting the
best available results on a set of test instances of the
office-space-allocation problem. This is a real-world
combinatorial optimization problem with a complex
search space due to the high number of hard and soft
constraints. We have shown that the best results are
produced by the HMHPB approach and that very com-
petitive results are obtained with the TSPB approach.
Future research includes applying our algorithms
to real-world problems and teaching-space-allocation
problems (in collaboration with Real Time Solu-
tions (see http://www.realtimesolutions-uk.com/), to
implement the asynchronous cooperative local search for
other combinatorial problems, to investigate the sys-
temic behavior as suggested by Toulouse et al. (2004),
and to modify our approach to make it a multi-level
cooperative search (see Crainic et al. 2005).
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