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Abstract

Many accuracy measures have been proposed in the past for time series forecasting com-

parisons. However, many of these measures suffer from one or more issues such as poor

resistance to outliers and scale dependence. In this paper, while summarising commonly

used accuracy measures, a special review is made on the symmetric mean absolute per-

centage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Rel-

ative Absolute Error (UMBRAE), which combines the best features of various alternative

measures, is proposed to address the common issues of existing measures. A comparative

evaluation on the proposed and related measures has been made with both synthetic and

real-world data. The results indicate that the proposed measure, with user selectable bench-

mark, performs as well as or better than other measures on selected criteria. Though it has

been commonly accepted that there is no single best accuracy measure, we suggest that

UMBRAE could be a good choice to evaluate forecasting methods, especially for cases

where measures based on geometric mean of relative errors, such as the geometric mean

relative absolute error, are preferred.

Introduction

Forecasting has always been an attractive research area since it plays an important role in daily

life. As one of the most popular research domains, time series forecasting has received particu-

lar concern from researchers [1–5]. Many comparative studies have been conducted with the

aim of identifying the most accurate methods for time series forecasting [6]. However, research

findings indicate that the performance of forecasting methods varies according to the accuracy

measure being used [7]. Various accuracy measures have been proposed as the best to use in

the past decades. However, many of these measures are not generally applicable due to issues

such as being infinite or undefined under certain circumstances, which may produce mislead-

ing results. The criteria required for accuracy measures have been explicitly addressed by Arm-

strong and Collopy [6] and further discussed by Fildes [8] and Clements and Hendry [9]. As

discussed, a good accuracy measure should provide an informative and clear summary of the

error distribution. The criteria should also include reliability, construct validity, computational
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complexity, outlier protection, scale-independency, sensitivity to changes and interpretability.

It has been suggested by many researchers that no single measure can be superior to all others

in these criteria [6, 10, 11].

The evolution of accuracy measures can be seen through the measures used in the major

comparative studies of forecasting methods. Root Mean Square Error (RMSE) and Mean

Absolute Percentage Error (MAPE) can be considered as the very early and most popular

accuracy measures. They were the primary measures used in the original M-Competition

[12]. Despite well-known issues such as their high sensitivity to outliers, they are still being

widely used [13–15]. When using these accuracy measures, errors which are small and

appear to be good, such as 0.1 by RMSE and 1% by MAPE, can often be obtained. Wei et al.

[16] employed RMSE as the performance indicator in their research on stock price forecast-

ing. The average error obtained was 84 and it was claimed to be superior to some other previ-

ous models. However, without comparison, the error 84 as a number is not easy to interpret.

In fact, the average fluctuation of stock indices used was 83 which is smaller than the error

of their proposed model. A similar case can be found regarding MAPE. Esfahanipour and

Aghamiri [17] proposed a model with an error of 1.3%, which appears to be good. Yet, this

error was larger than the average daily fluctuation of the stock price, which was approxi-

mately 1.2%. The poor interpretation here is mainly due to the lack of comparable bench-

mark used by the accuracy measure.

Armstrong and Collopy [6] recommended the use of relative absolute errors as a potential

solution to the above issue. Accuracy measures based on relative errors, such as Mean Relative

Absolute Error (MRAE), can provide a better interpretation of how good the evaluated fore-

casting method perform compared to the benchmark method. However, when the benchmark

error is small or equal to zero, the relative error could become extremely large or infinite. This

may lead to an undefined mean or at least a distortion of the result. Thus, Armstrong and Col-

lopy suggested a method named ‘winsorizing’ to overcome this problem by trimming extreme

values. However, this process will also add some complexity to the calculation and an appro-

priate trimming level has to be specified [18].

Similarly, MAPE also has the issue of being infinite or undefined due to zeros in the

denominator [19]. The symmetric mean absolute percentage error (sMAPE) was first pro-

posed by Armstrong [20] as a modified MAPE which could be a simple way to fix the issue. It

was then used in the M3-Competition as an alternative primary measure to MAPE [7]. How-

ever, Goodwin and Lawton [21] pointed out that sMAPE is not as symmetric as its name sug-

gested. In fact, it gave more penalties to under-estimates more than to over-estimates. Thus,

the use of sMAPE in the M3-Competition was widely criticized by researchers later [22]. In an

unpublished working paper, Chen and Yang [23] defined a modified sMAPE, called msMAPE,

by adding an additional component to the denominator of sMAPE. The added component

can efficiently avoid the inflation of sMAPE caused by zero-valued observations. However, this

does not address the issue of asymmetry for sMAPE.

Hyndman and Koehler [18] proposed Mean Absolute Scaled Error (MASE) as a generally

applicable measurement of forecasting accuracy without the problems seen in the other accu-

racy measures. However, this measure can still be dominated by a single large error, though

infinite and undefined values have been well avoided for most cases [24]. Davydenko and

Fildes [24] proposed an altered version of MASE, the average relative MAE (AvgRelMAE),

which uses the geometric mean to average the relative efficiencies of adjustments across time

series. Although the geometric mean is appropriate for averaging benchmark ratios [25], the

appropriateness of AvgRelMAE still depends on its component measure RelMAE for each

time series.

A new accuracy measure based on bounded relative error for time series forecasting
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In this paper, a new accuracy measure is proposed to address the issues mentioned above.

Specifically, by introducing a newly defined bounded relative absolute error, the new measure

can address the asymmetric issue of sMAPE while maintaining its other properties, such as

scale-independence and outlier resistance. Further, we believe that the new measure improves

the interpretability based on relative errors with a selectable benchmark than sMAPE which

uses the percentage errors based on the observation values. Given that [6] claimed that mea-

sures based on relative errors are the most reliable, we believe our measure is reliable in this

sense.

Review of accuracy measures

Many accuracy measures have been proposed to evaluate the performance of forecasting meth-

ods during the past couple of decades. A table of most commonly used measures were listed in

the review of 25 years of time series forecasting [1]. There was also a thorough review on accu-

racy measures by Hyndman and Koehler [18]. In this section, we mainly focus on new insights

or new measures that have been introduced since 2006.

For a time series with n observations, let Yt denote the observation at time t and Ft denote

the forecasts of Yt. Then the forecasting error et can be defined as (Yt–Ft). Let e�t denote the

forecasting error at time t obtained by some benchmark method. That means e�t ¼ ðYt � F�t Þ,
where F�t is the forecast at time t by the benchmark method.

Scale-dependent measures

The measures based on absolute or squared errors are also known as scale-dependent mea-

sures since their scale depends on the scale of the data. They are useful in comparing forecast-

ing methods on the same set of data. However, they should not be used across data sets that

are on different scales. The most commonly used scale-dependent measures are Mean Abso-

lute Error (MAE), Mean Squared Error (MSE) and RMSE:

MAE ¼
1

n

Xn

t¼1

jetj ð1Þ

MSE ¼
1

n

Xn

t¼1

e2

t ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE
p

ð3Þ

MAE had been cited in the very early forecasting literature as a primary measure of perfor-

mance for forecasting models [26]. As shown in Eq 1, MAE directly calculates the arithmetic

mean of absolute errors. Hence, it is very easy to compute and to understand. However, it may

produce biased results when extremely large outliers exist in data sets. Specifically, even a sin-

gle large error can sometimes dominate the result of MAE.

MSE, which calculates the arithmetic mean of squared errors, was used in the first M-Com-

petition [12]. However, its use was widely criticized later as inappropriate [6, 27]. MSE is more

vulnerable to outliers since it gives extra weight to large errors. Also, the squared errors are on

different scale from the original data. Thus, RMSE, which is the squre root of MSE, is often

preferred to MSE as it is on the same scale as the data. However, RMSE is also sensitive to fore-

casting outliers [28].
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Percentage-based measures

To be scale-independent, a common approach is to use percentage errors based on observation

values. Two example measures based on percentage errors are MAPE and sMAPE defined as:

MAPE ¼
1

n

Xn

t¼1

jetj
jYtj

ð4Þ

sMAPE ¼
1

n

Xn

t¼1

2 � jetj
jYtj þ jFtj

ð5Þ

It should be noted that absolute values are used in the denominator of sMAPE defined in

this paper. This definition is different but equivalent to the definition in Makridakis [10] and

Makridakis and Hibon [7] when forecasts and actual values are all non-negative. The absolute

values in the denominator can avoid negative sMAPE as pointed out by Hyndman and Koeh-

ler [18].

MAPE was used as one of the major accuracy measures in the original M-Competition

[12]. However, the percentage errors could be excessively large or undefined when the target

time series has values close to or equal to zero [19]. Moreover, Armstrong [20] pointed out

that MAPE has a bias favouring estimates that are below the actual values. This was illustrated

by extremes: “a forecast of 0 can never be off by more than 100%, but there is no limit to errors on
the high side”. Makridakis [10] discussed the asymmetric issue of MAPE with another example

which involves two forecasts on different actual values. However, we believe that the example

by Makridakis is beyond the idea of Armstrong in 1985. To our understanding, we believe that

the assumption concerning the asymmetric issue of MAPE described by Armstrong [20] is: i),

the estimates are non-negative while the actual value is positive; ii) the forecasting range is

asymmetric that 0 is the lower bound for lower estimates while there is no upper bound for

upper estimates; iii), errors for lower estimates and upper estimates should be symmetric (an

extreme case: 0 as the worst lower estimate should have the same absolute error as the worst

upper estimate which is infinite).

sMAPE can produce symmetric errors in the asymmetric forecasting range as stated in the

above assumption. However, it is more natural to consider the symmetric property in a sym-

metric forecasting range for lower and upper estimates. Thus, sMAPE was widely criticized as

an asymmetric measure [21, 22]. Regardless of the asymmetric issue, an advantage of sMAPE

is that it does not have the issue of MAPE from being excessively large or infinite. Also, due to

the error bounds defined, sMAPE is more resistant to outliers since it gives less significance to

outliers compared to other measures which do not have bounds for errors.

Relative-based measures

Another approach for accuracy measures to be scale-independent is to use relative errors

based on the errors produced by a benchmark method (e.g. the naïve method). The most

commonly used such measures are MRAE and the geometric mean relative absolute error

(GMRAE):

MRAE ¼
1

n

Xn

t¼1

et
e�t

�
�
�
�

�
�
�
� ð6Þ
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GMRAE ¼
Yn

t¼1

et
e�t

�
�
�
�

�
�
�
�

 !
1
n
¼ exp

1

n

Xn

t¼1

ln
et
e�t

� � !

ð7Þ

MRAE can provide a clearer intuition of the performance improvement compared to the

benchmark method. However, MRAE has a similar limitation as MAPE, in that it can also be

excessively large or undefined, when e�t is close to or equal to zero.

GMRAE is favoured since it is generally acknowledged that the geometric mean is more

appropriate for averaging relative quantities than the arithmetic mean [6, 8]. According to an

alternative representation of GMRAE shown above in Eq 7, a key step for calculating GMRAE

is to make an arithmetic mean of log-scaled error ratios. This makes GMRAE more resistant

to outliers compared to MRAE which uses the arithmetic mean of original error ratios. How-

ever, GMRAE is still sensitive to outliers. More specifically, GMRAE can be dominated by not

only a single large outlier, but also an extremely small error close to zero. This is because there

is neither upper bound nor lower bound for the log-scaled error ratios used by GMRAE. Also,

it should also be noticed that zero errors, both in et and e�t , have to be excluded from the analy-

sis. Thus, GMRAE may not be sufficiently informative.

Rather than use the average of relative errors, one can also use the relative of average errors

obtained by a base measure. For example, when the base measure is RMSE, then relative

RMSE (RelRMSE) is defined as:

RelRMSE ¼
RMSE
RMSE�

ð8Þ

RelRMSE is a commonly used measure proposed by Armstrong and Collopy [6] where

RMSE
�

denotes the RMSE produced by a benchmark method. Similar measures, such as

RelMAE and RelMAPE, can be easily defined. They are also called relative measures. An

advantage of relative measures is their interpretability [18]. However, the performance of rela-

tive measures is restricted by the component measure. For example, RelMAPE is also unde-

fined when MAPE is undefined. Further, RelMAPE can also be easily dominated by extreme

large outliers since MAPE is not resistant to outliers. Thus, it makes no sense to compute

RelMAPE if MAPE, as the component, is skewed.

Another disadvantage of relative measures is that they are only available when there are sev-

eral forecasts on the same series [18]. As a related idea of relative measures, MASE does not

have the above issue. It is defined as:

MASE ¼
1

n

Xn

t¼1

jetj
MAE�� ð9Þ

In MASE, the absolute error |et| for each observation is scaled by the average in-sample
error MAE

��

produced a benchmark method (e.g. one-step naïve method, or seasonal naïve

method for seasonal data). Thus, MASE will not produce infinite or undefined values except in

the irrelevant case where all historical data are equal. However, MASE is still vulnerable to out-

liers [24]. Moreover, it has to be assumed that the period-to-period difference of the time series

is stationary, so that the scaling factor is a consistent estimator of the scale of the series.

For comparisons of forecasting methods on multiple time series, MASE is equivalent to the

weighted arithmetic mean of relative MAEs [24]:

MASE ¼
1

N

Xm

i¼1

niri; ri ¼
MAEi

MAE��i
ð10Þ
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where m denotes the number of time series, ni denotes the number of observations for the ith

time series and N ¼
Pm

i¼1
ni. As pointed out by Davydenko and Fildes [24], using the arithme-

tic mean of MAE ratios introduces a bias towards overrating the accuracy of a benchmark

method. They proposed the measure AvgRelMAE as an alternative to MASE, based on the

geometric mean to average the scaled quantities.

AvgRelMAE ¼
Ym

i¼1

rnii

 !
1
N
; ri ¼

MAEi

MAE�i
ð11Þ

It should be noticed that AvgRelMAE uses out-of-sample MAE�i as the scaling factor while

MASE uses in-sample MAE��i . Though AvgRelMAE was shown to have many advantages such

as interpretability and robustness [24], it still has the same issue with MASE since they are

based on RelMAE. As mentioned above, the accuracy of RelMAE is constrained by the accu-

racy of MAE. Since MAE can be dominated by extreme outliers, the MAE ratio ri does not nec-

essarily represent an advisable comparison of forecasting methods based on the errors of the

majority of forecasts for the ith time series.

A new accuracy measure

The criteria for a useful accuracy measure have been explicitly addressed in the literature [6, 8,

9, 11]. As reviewed in the previous Section, many measures have been proposed with various

advantages and disadvantages. However, most of these measures suffer from one or more

issues. In this section, we propose a new accuracy measure which adopts the advantages of

other measures such as sMAPE and MRAE without having their common issues. Specifically,

the proposed measure is expected to have the following properties: (i) Informative: it can pro-

vide an informative result without the need to trim errors; (ii) Resistant to outliers: it can

hardly be dominated by a single forecasting outlier; (iii) Symmetric: over estimates and under

estimates are treated fairly; (iv) Scale-independent: it can be applied to data sets on different

scales; (v) Interpretability: it is easy to understand and can provide intuitive results.

It has been mentioned above in the review that sMAPE is resistant to outliers due to

bounded error defined. We would like to propose a new measure in a similar fashion to

sMAPE without its issues. Since relative errors are more general than percentage errors in pro-

viding intuitive results, we use the Relative Absolute Error (RAE) as the base to derive our new

measure.

RAE ¼
jetj
je�t j

ð12Þ

Since RAE has no upper bound, it can be excessively large or undefined when je�t j is small

or equal to zero. This issue can be easily addressed by adding a |et| to the denominator of RAE,

which introduces a bounded RAE (BRAE):

BRAE ¼
jetj

jetj þ je�t j
ð13Þ

In BRAE, the added |et| can ensure that the denominator will be no less than the numerator.

It means BRAE will have a maximum error of 1 while the minimum error is 0 when |et| is

equal to zero. Due to the upper bound of BRAE, an accuracy measure based on BRAE will be

more resistant to forecasting outliers. It can be noticed that the asymmetric issue of sMAPE

has also been addressed in BRAE by adding a |et| rather than a |Ft| to the denominator. Also, a

measure based on BRAE is more appropriate than sMAPE for intermittent demand data

A new accuracy measure based on bounded relative error for time series forecasting
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which have many zero-valued observations. To avoid the issue of being undefined, BRAE is

defined to be 0.5 for the special case when |et| and je�t j are both equal to zero.

In practice, the one-step naïve method is a commonly used benchmark where e�t ¼ Yt� 1 � Yt .

However, it should be noticed that the naïve method is not necessarily an effective benchmark.

For example, when most forecasting methods can generally produce much smaller errors than

the naïve method, BRAE will have the same issue as percentage error based measure stated

above. Thus, it is preferable to use a properly competitive method as a benchmark, such that a

value of around 0.5 is obtained by BRAE.

Based on BRAE, a measure called Mean Bounded Relative Absolute Error (MBRAE) can be

defined as:

MBRAE ¼ meanðBRAEÞ ¼
1

n

Xn

t¼1

jetj
jetj þ je�t j

ð14Þ

Though MBRAE is adequate to compare forecasting methods, it is a scaled error that can-

not be directly interpreted as a normal error ratio reflecting the error size. In fact, the process

of calculating GMRAE also contains a mean of log-scaled error ratio which is not easily inter-

pretable. But this issue is addressed by converting the log-scaled error to a normal ratio with

the exponential function. Similarly, a transformation can be made to MBRAE to obtain a more

interpretable measure which is termed the unscaled MBRAE (UMBRAE):

UMBRAE ¼
MBRAE

1 � MBRAE
ð15Þ

With UMBRAE, the performance of a proposed forecasting method can be easily inter-

preted, in terms of the average relative absolute error based on BRAE, as follows: when

UMBRAE is equal to 1, the proposed method performs roughly the same as the benchmark

method; when UMBRAE< 1, the proposed method performs roughly (1−UMBRAE)�100%

better than the benchmark method; when UMBRAE> 1, the proposed method is roughly

(UMBRAE−1)�100% worse than the benchmark method.

In general, UMBRAE is informative without the need to trim extreme errors. At the same

time, based on the bounded errors, UMBRAE is resistant to outliers. It is also symmetric and

obviously scale-independent. The benchmark used by UMBRAE is selectable where the naïve

method can be easily applied. A competitive benchmark is preferable to obtain more intuitive

results. To the best of our knowledge, UMBRAE has not been proposed before. We suggest it

as a generally applicable accuracy measure for time series forecasting. UMBRAE would be par-

ticularly useful for the cases where the performance of forecasting methods are not expected to

be dominated by forecasting outliers.

Evaluation and results

In this section, the performance of UMBRAE is evaluated. The naïve method is used as the

benchmark for UMBRAE. Properties such as reliability and sensitivity have been well investi-

gated in the study by Armstrong and Collopy [6]. In their study, MAPE and MRAE have been

assessed to be acceptable in terms of reliability and good in terms of sensitivity. In fact, these

properties, especially reliability, cannot be easily examined. For example, in the reliability tests,

if forecasting methods are expected to have the same rankings when they are evaluated by a

reliable accuracy measure, these forecasting methods themselves have to perform stably on dif-

ferent time series. It is difficult to find such forecasting methods in the real world. Thus, these

properties are not examined in our study. Instead, it is assumed that UMBRAE, based on rela-

tive errors, will also be reliable and sensitive to error changes. Consequently, our evaluation
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will be mainly focused on the expected properties mentioned in the previous Section. To make

comparisons, other common measures mentioned in the review Section are also examined in

our evaluation. Comparisons are firstly made with synthetic time series to specifically examine

the required properties. Then the M3-Competition data with 3003 time series [7] are used to

demonstrate how these measures perform with real-world data.

Evaluation with synthetic data

Three groups of synthetic time series data are used in the comparative study. These synthetic

data are not designed to be representative of real-world data. Rather, they are selected to clearly

show the drawbacks of accuracy measures in terms of the required properties. In the synthetic

evaluations, the average one-step naïve error is used to scale errors for MASE.

One of the most desired properties of an accuracy measure is the ability to resist outliers.

Thus, the first group of synthetic data is made to examine whether the accuracy measure is resis-

tant to a single forecasting outlier. As shown in Fig 1, Yt is the objective time series with 10 obser-

vations, which are randomly generated under the normal distribution (mean = 300, sd = 100).

Fn
t is the forecasting series of Yt. Specifically, F1

t does not have obvious forecasting outlier and its

forecasting errors measured by MAPE are approximately 10%. The other three forecasts are the

same as F1
t except that they all have a forecasting outlier for the eighth observation. Though occa-

sionally occurring large errors should also be considered in evaluating the performance of a fore-

casting method, it is assumed that a single large outlier should not affect the whole performance

significantly. However, the results in Fig 1 shows that the errors reported by some accuracy mea-

sures have been significantly dominated by the single forecasting outlier. The worst is RMSE

where its error for F4
t has become approximately 36 times larger than its error for F1

t . Though

MASE has been scaled from MAE, it in fact performs the same as MAE in dealing with the fore-

casting outlier. The errors given by MAE and MASE for F4
t have both been distorted to be about

15 times larger than for F1
t . In contrast, sMAPE, GMRAE and UMBRAE are less sensitive to this

single forecasting outlier. UMBRAE reports the smallest differences for the four time series.

The second group of time series data is created to evaluate whether over-estimates and

under-estimates are treated ‘fairly’ by the accuracy measures. As presented in Fig 2, Yt is the

same time series as which was used in the single forecasting outlier resistance evaluation. In

this scenario, F1
t makes a 10% over-estimate error to all observations in Yt while F2

t makes a

10% under-estimate. The results in Fig 2 show that all the accuracy measures except sMAPE

have given the same error for F1
t and F2

t . sMAPE produces a larger error for F2
t which indicates

it puts a heavier penalty on under-estimates than on over-estimates.

Davydenko and Fildes [24] suggested another scenario to examine the property of symme-

try for measures. In this scenario, the reward given for improving the benchmark is expected

to balance the penalty given for reducing the benchmark by the same quantity. We also use

this to examine our measure UMBRAE. Suppose that a time series has only two observations

(y) and there is one forecasting method to be compared with another benchmark method. For

the benchmark method, it makes the forecasts f with errors (y−f) of 1 and 2 respectively. In

contrast, the forecasting method produces errors of 2 and 1 respectively. As an expected result,

the forecasting method has an error of 1 measured by UMBRAE based on the benchmark

method. Thus, UMBRAE is also symmetric for this case.

Normally, the scale-dependent issue of accuracy measures is related to their capability of

evaluating forecasting performance across data series on different scales. Accuracy measures

based on percentages or relative ratios are clearly suited to perform such evaluations and no

synthetic data are made for this. However, the scale-dependent issue also exists within a data

series. Thus, the third group of synthetic data shown in Fig 3 is made to evaluate the property

A new accuracy measure based on bounded relative error for time series forecasting
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Fig 1. Evaluation on the resistance of accuracy measures to a single forecasting outlier. A: Synthetic time series data

where Yt is the target series and Fnt are forecasts. The only difference between Fnt is their forecasts on the observation Y8. B:

Results of single forecasting outlier evaluation, which shows UMBRAE is less sensitive than other measures to a single

forecasting outlier.

https://doi.org/10.1371/journal.pone.0174202.g001
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Fig 2. Evaluation on the symmetry of accuracy measures to over-estimates and under-estimates. A: Synthetic time

series data where Yt is the target series and Fnt are forecasts. F1
t makes a 10% over-estimate to all observations of Yt, while

F2
t makes a 10% under-estimate. B: Results of symmetric evaluation, which shows UMBRAE and all other accuracy

measures except sMAPE are symmetric.

https://doi.org/10.1371/journal.pone.0174202.g002
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Fig 3. Evaluation on the scale dependency of accuracy measures. A: Synthetic time series data where Yt is the target

series and Fnt are forecasts. F1
t and F2

t have the same mean absolute error, but errors are on different percentage scales to

the corresponding values of Yt. B: Results of scale dependency evaluation, where MAE, RMSE, MASE and even GMRAE

show no difference between F1
t and F2

t . MRAE and MAPE produce substantially different errors for the two cases. sMAPE

and UMBRAE can reasonably distinguish the two forecasts.

https://doi.org/10.1371/journal.pone.0174202.g003
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of accuracy measures dealing with data on different scales within a single time series. In this

data set, Yt is a time series generated by the Fibonacci sequence from 2 to 144. As the forecasts

to Yt, all forecasting values of F1
t are set to have a 20% over-estimate error of the relevant obser-

vation of Yt. In contrast, F2
t has the same mean absolute error as F1

t but its errors are on differ-

ent percentage scales from 1440% to 0.2%. Specifically, F2
n has the same absolute error as F1

11� n.

For instance, F2
1

has the same absolute error as F1
10

which is 28.8. As presented in Fig 3, MAE,

RMSE, MASE and even GMRAE do not show any difference between the two forecasts.

MRAE and MAPE, however, have produced substantially different results for the two cases.

The errors measured by them for F2
t are approximately ten times larger than for F1

t . In contrast,

UMBRAE and sMAPE give a moderate difference for the two forecasts.

Evaluation with the M3-Competition data

The M-Competitions are well-known empirical studies which employ various real-world time

series data in comparing the performance of forecasting methods. In this study, we use the

M3-Competition [7] Data which contains 3003 time series to evaluate our proposed measure.

The forecasting data are available with R package ‘Mcomp’ maintained by Hyndman. The

‘Mcomp’ package for R is available from Hyndman’s website: http://robjhyndman.com/

software/mcomp/. Among the 24 forecasting methods in the M3-Competition, 22 are used in

our evaluation since their forecasts are available for all the 3003 time series. Since the one-step

naïve method is used by many accuracy measures as the benchmark, it is also listed in the

results as a forecasting method. As an alternative version of MASE, AvgRelMAE which use

geometric mean to average errors across time series, is also included in this evaluation. To sim-

plify the results, errors are only measured at the first six forecasting horizons across the 3003

time series, which are available from all of the 22 forecasting methods.

The results are listed in Table 1. It can be noticed that errors by MAE and RMSE are rela-

tively large numbers which is meaningless without comparisons. UMBRAE is able to give

interpretable results where a forecasting method with an error < 1 can be considered to be bet-

ter than the benchmark method in terms of the average relative absolute error based on BRAE.

As shown in the results, the naïve method, which is the benchmark used by UMBRAE, has an

error of 1. Errors of other forecasting methods measured by UMBRAE are all less than 1. This

indicates that these forecasting methods are better than the naïve method. However, MRAE

gives the opposite result in which the naïve method is ranked as the best. It has to be noticed

that all the errors excluding that for the naïve method measured by AvgRelMAE are smaller

than 1, whereas all the errors measured by MASE are much larger than 1. The rank correlation

coefficient of different measures is shown in Table 2. The correlation between RMSE, or

MRAE, and other measures is extremely low. In contrast, UMBRAE shows substantially high

agreement with most of other measures, where the average Spearman rank correlation is

0.516. Particularly, UMBRAE has remarkably high correlations with GMRAE and AvgRel-

MAE which are 0.995 and 0.990 respectively.

To eliminate the influence of outliers and extreme errors, we also use trimmed means to

evaluate the accuracy measures. A 3% trimming level is used in our study. As shown in

Table 3, most errors measured by MAE, RMSE, MASE, MRAE and MAPE have significant dif-

ferences compared to that without trimming shown in Table 1. The rankings of forecasting

methods made by these measures also have significant changes. In contrast, errors and rank-

ings measured by other measures have less changes. Particularly, the value of UMBRAE is

quite invariant to trimming, where differences appear only after the third decimal point for

most of the forecasting methods. It can also be noticed that the rankings made by UMBRAE in

Table 3 keep the same as that in Table 1. In general, all the measures except MRAE have similar

A new accuracy measure based on bounded relative error for time series forecasting
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rankings. As shown in Table 3, the rank correlations between UMBRAE and other measures

are much higher on average as shown in Table 4.

To show the error distributions in a similar manner to that in [24], we use the errors pro-

duced by the forecasting method ForecastPro as an example. Figs 4 to 11 show the distributions

of the eight underlying error measurements used in the nine accuracy measures mentioned in

this paper. In each Fig, the top plot shows the kernel density estimate of the errors illustrating

its distribution, while the bottom shows a box-and-whisker plot which more clearly highlights

the outliers. From these Figs, it can be seen that the distribution of error measurements used in

UMBRAE is more evenly distributed, with fewer outliers than in the other measures.

Discussion

Fig 1 shows that MRAE and MAPE can be easily dominated by a single forecasting outlier.

This is because they are based on the arithmetic mean and there are no upper bound defined

for the single error. In practice, the poor resistance to forecasting outliers may produce mis-

leading results. This can be illustrated by our evaluation on the M3-Competition data. As

shown in Table 1, MRAE gives significantly different rankings from other measures. It suggests

the naïve method performs the best while almost all the other accuracy measures indicate that

the naïve method is the worst. By examining the forecasting data, we can find that the results

measured by MRAE are seriously distorted by the extreme large relative absolute errors where

the naïve errors are small. With the geometric mean, GMRAE has shown remarkable resis-

tance to the forecasting outliers. However, one disadvantage of measures based on the geomet-

ric mean is that zero-error forecasts have to be excluded. Thus, these measures may not be

sufficiently informative. In contrast, due to the bounded errors defined, we have shown that

UMBRAE can perform as well as GMRAE in resisting forecasting outliers. In fact, the errors

and rankings given by UMBRAE are remarkably correlated to which measured by GMRAE,

especially in Tables 3 and 4 where extreme errors are trimmed. Thus, for the cases where mea-

sures such as GMRAE are preferred, UMBRAE could be an alternative measure since it is

much easier to use without the need to trim errors.

It can also be noticed in Figs 4 to 11 that all the accuracy measures except AvgRelMAE (see

Fig 7), GMRAE (see Fig 8) and UMBRAE (see Fig 11) have highly skewed distributions with

long tails including extremely large forecasting outliers. Although undefined and zero errors

(0.5%) have been trimmed, GMRAE still contains about 10.2% forecasting outliers including

some large log-transformed errors such as -10.76 and 8.08. Although the bounded errors used

Table 2. Spearman’s rank correlation coefficient of the rankings in Table 1.

Accuracy

Measure

MAE RMSE MASE AvgRelMAE MRAE GMRAE MAPE sMAPE UMBRAE

MAE − 0.650 0.409 0.463 0.278 0.493 0.895 0.821 0.476

RMSE 0.650 − −0.110 −0.254 0.357 −0.229 0.449 0.168 −0.260

MASE 0.409 −0.110 − 0.711 0.220 0.687 0.510 0.590 0.679

AvgRelMAE 0.463 −0.254 0.711 − 0.054 0.985 0.481 0.687 0.990

MRAE 0.278 0.357 0.220 0.054 − 0.010 0.079 0.110 0.026

GMRAE 0.493 −0.229 0.687 0.985 0.010 − 0.532 0.702 0.995

MAPE 0.895 0.449 0.510 0.481 0.079 0.532 − 0.841 0.513

sMAPE 0.821 0.168 0.590 0.687 0.110 0.702 0.841 − 0.706

UMBRAE 0.476 −0.260 0.679 0.990 0.026 0.995 0.513 0.706 −
Average 0.561 0.096 0.462 0.515 0.142 0.522 0.538 0.578 0.516

https://doi.org/10.1371/journal.pone.0174202.t002
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by sMAPE (see Fig 10) and UMBRAE also contain some outliers, there are no extremely large

errors. Specifically, UMBRAE follows a symmetric distribution and it only produces about 3%

outliers which will not affect the result significantly.

It has to be noted that UMBRAE does not necessarily always provide the same information

as GMRAE. For example, given a time series with a million observations, if the forecasting

method and the benchmark method produces errors (y−f) which are e and e� following the

standard normal distribution, UMBRAE and GMRAE will both be approximately 1. However,

if the forecasting method produces errors of 2e, the value of GMRAE will be approximately 2

as one may expected. But, UMBRAE will give an error of approximately 1.67 which is less than

2. This is because the bounded error
jej

jejþje�j used by UMBRAE will not be increased too much

when error e is doubled for the cases where |e| is much larger than |e�|. In other words, a twice

worse forecast will not be given an error of twice in significance by UMBRAE when the fore-

cast is much worse than most of other forecasts. In fact, this is the key strategy of UMBRAE for

resisting outliers. Also, the above expectation of error 2 is based on the estimation by ‘relative

Table 4. Spearman’s rank correlation coefficient of the rankings in Table 3.

Accuracy

Measure

MAE RMSE MASE AvgRelMAE MRAE GMRAE MAPE sMAPE UMBRAE

MAE − 0.951 0.805 0.828 0.256 0.820 0.940 0.970 0.839

RMSE 0.951 − 0.707 0.710 0.345 0.708 0.929 0.909 0.720

MASE 0.805 0.707 − 0.952 0.239 0.912 0.631 0.751 0.948

AvgRelMAE 0.828 0.710 0.952 − 0.135 0.980 0.688 0.771 0.996

MRAE 0.256 0.345 0.239 0.135 − 0.077 0.143 0.156 0.133

GMRAE 0.820 0.708 0.912 0.980 0.077 − 0.684 0.753 0.985

MAPE 0.940 0.929 0.631 0.688 0.143 0.684 − 0.950 0.697

sMAPE 0.970 0.909 0.751 0.771 0.156 0.753 0.950 − 0.781

UMBRAE 0.839 0.720 0.948 0.996 0.133 0.985 0.697 0.781 −
Average 0.801 0.747 0.743 0.758 0.186 0.740 0.708 0.755 0.762

https://doi.org/10.1371/journal.pone.0174202.t004

Fig 4. Box-and-whisker plot and kernel density estimates for the absolute errors used by MAE.

https://doi.org/10.1371/journal.pone.0174202.g004
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average error’. However, it is arguable the ‘average relative error’ is not necessarily the same as

the ‘relative average error’. This can be more or less reflected by the synthetic test shown in Fig

3. More discussions about this will be given later in this section in terms of the scale-indepen-

dency. We believe that the above issue does not invalidate the use of UMBRAE in practice.

One of the common concerns about an accuracy measure is whether it is symmetric. Two

different cases were used to evaluate the property of symmetry for accuracy measures. In our

point of view, the first case is about the symmetry in the absolute quantity which concerns

whether the same over-estimates and under-estimates can be treated fairly by a measure. As

shown in Fig 2, only sMAPE is not symmetric in the absolute quantity (due to the asymmetric

bounded errors used). This issue has been addressed by UMBRAE with symmetric bounded

Fig 5. Box-and-whisker plot and kernel density estimates for the squared errors used by RMSE.

https://doi.org/10.1371/journal.pone.0174202.g005

Fig 6. Box-and-whisker plot and kernel density estimates for the absolute scaled errors used by MASE.

https://doi.org/10.1371/journal.pone.0174202.g006
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errors defined. The second case is in fact about the symmetry in the relative quantity where

measures are expected to give a result of 1 for averaging two relative errors N and 1

N. Normally,

a measure which uses the arithmetic mean should not be symmetric in such relative quantity.

However, UMBRAE, which uses the arithmetic mean for part of its calculations, has shown a

symmetric result. This is because UMBRAE does not work directly on the original error ratios.

The original relative errors have been converted to bounded relative errors for UMBRAE

before calculating the arithmetic mean. In fact, this is quite similar to the process of calculating

GMRAE which is based on the geometric mean. As a result, it is not an issue for UMBRAE to

use the arithmetic mean. Figs 8 and 11 show that both errors used by GMRAE and UMBRAE

follow a symmetric distribution.

Fig 7. Box-and-whisker plot and kernel density estimates for the absolute scaled errors used by AvgRelMAE (log-scale).

https://doi.org/10.1371/journal.pone.0174202.g007

Fig 8. Box-and-whisker plot and kernel density estimates for the relative absolute errors used by MRAE and GMRAE (log-scale,

forecasts with zero or undefined error excluded).

https://doi.org/10.1371/journal.pone.0174202.g008
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It is necessary (or, at least, highly desirable) for an accuracy measure to be scale-indepen-

dent when assessing forecasting methods across data on different scales. Normally, measures

based on percentages or ratios in the same range are considered to be scale-independent. How-

ever, we argue that it is not enough for these percentages or ratios to be in the same range. To

be truly scale-independent, these error percentages or ratios should also be closely related to

the scale of data for specific observations. Otherwise, they may lead to misleading results. For

example, in Table 1, the error of MASE for the naïve method is 2.134. This is a somewhat con-

fusing result which may be intuitively interpreted as indicating that the naïve method performs

worse than the naïve method itself! In fact, it means the naïve method gives smaller errors on

average for the forecasting data than its errors for the in-sample data. In contrast, AvgRelMAE

does not have this issue since it uses the average error on out-of-sample as the scaling factor.

Fig 9. Box-and-whisker plot and kernel density estimates for the absolute percentage errors used by MAPE.

https://doi.org/10.1371/journal.pone.0174202.g009

Fig 10. Box-and-whisker plot and kernel density estimates for the scaled percentage errors used by sMAPE.

https://doi.org/10.1371/journal.pone.0174202.g010
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Fig 3 shows that MASE fails to distinguish the difference between the two forecasts which are

clearly different considering the error percentages at different observations. This is because

every single error used by MASE at different observations is scaled by the same scaling factor.

GMRAE also fails in this evaluation. We notice that this is because GMRAE, in fact, has the

same issue as MASE. Every single error of GMRAE can also be considered to be a scaled error

based on a consistent scaling factor GMAE�, which is the geometric mean of the benchmark

errors e�. According to the above, we conclude that MASE, AvgRelMAE and GMRAE are rela-

tively scale-independent because they assume that the scaling factor is a consistent estimator.

In contrast, UMBRAE is scale-independent and it is closely related to the error ratios at obser-

vations. Thus, it can reasonably show the difference between the two forecasts with respect to

error percentages.

Another important property of an accuracy measure is its interpretability. As Table 1

shows, the numerical errors measured by MAE and RMSE have little intuitive meaning with-

out comparisons, and have therefore been scored as ‘fair’. Comparatively, measures which

produce errors in percentages or ratios based on a benchmark are more interpretable. The

benchmark used by an accuracy measure is also important for its interpretability. In Table 1,

errors measured by MAPE are all small errors around 10%. However, these small errors are

less meaningful without comparisons. This is because these small percentages are based on the

original values of observations. Thus, they do not necessarily indicate a good performance. In

contrast, errors measured by UMBRAE are more interpretable. An error of 0.77 indicates that

the forecasting method performs approximately 23% better than the benchmark method.

As shown in Table 5, the accuracy measures are rated by the key criteria concerned in this

paper. Measures are considered to be less informative if undefined or zero errors have to be

excluded. The property of symmetry is rated in both absolute quantity and relative quantity as

discussed above. Measures are rated as relatively scale-independent because they assume that

the scaling factor is a consistent estimator. Relative-based accuracy measures are considered to

be more interpretable than other measures since they can provide more intuitive results in

terms of performance without extra comparisons. sMAPE is rated as poor in interpretability

since its error, which has a range of (0,200), is not as easy as MAPE to understand.

Fig 11. Box-and-whisker plot and kernel density estimates for the bounded relative absolute errors used by UMBRAE (using the

naïve errors as the benchmark).

https://doi.org/10.1371/journal.pone.0174202.g011
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In summary, we show that UMBRAE (i) is informative and uses all available errors; (ii) can

perform as well as GMRAE in resisting forecasting outliers without the need to trim zero-error

forecasts; (iii) is symmetric in both absolute quantity and relative quantity; (iv) is scale-inde-

pendent; (v) is interpretable and can provide intuitive result. As such, UMBRAE combines the

best features of various alternative measures into a single new measure. Thus, we believe

UMBRAE is an interesting new measure because it constitutes a simple, flexible, easy to use

and understand measure that is resistant to outliers. Also, the forecasting benchmark for calcu-

lating UMBRAE is selectable, and the ideal choice should be a forecasting method to be out-

performed. As a well-known benchmark, the naïve method can be easily applied as a default to

show whether a forecasting method is generally good or not.

Conclusion

We have proposed a new accuracy measure UMBRAE based on bounded relative errors. As

discussed in the review of sMAPE, one advantage of the bounded error is that it gives less

significance to outliers since it does not have the issue of being excessively large or infinite.

Evaluation on the proposed measure along with related measures has been made on both

synthetic and real-world data. We have shown that UMBRAE combines the best features

of various alternative measures without having their common drawbacks. UMBRAE,

with selectable benchmark, can provide an informative and interpretable result based on

bounded relative error. It is less sensitive to forecasting outliers than other measures. It is

also symmetric and scale-independent. Though it has been commonly accepted that there

cannot be any single best accuracy measure, we suggest that UMBRAE is a good choice for

general use when evaluating the performance of forecasting methods. Since UMBRAE, in

our study, performs similar to GMRAE without the need to trim zero-error forecasts, we

particularly recommend UMBRAE as an alternative measure for the cases where GMRAE is

preferred.

Although we have shown that UMBRAE has many advantages as described above, its statis-

tical properties have not been well studied. For example, the way how UMBRAE reflects the

properties of the distributions of errors is unclear. Moreover, one possible underlying draw-

back for UMBRAE is that the bounded error used by UMBRAE will reach the maximum value

1.0 when the benchmark error (Yt � F�t ) is equal to zero even if the forecast is good. This may

produce a biased estimate especially when the benchmark method produces a large number of

zero errors. Although this drawback may not be relevant for the majority of real-world data, in

the future, we would like to address this issue.

Table 5. Ratings of accuracy measures.

Accuracy

Measure

Informative Resistant to

Outliers

Symmetric

(absolute,relative)

Scale-

independent

Interpretability

MAE good fair yes,no no fair

RMSE good poor yes,no no fair

MASE good fair yes,no relatively good

AvgRelMAE good good yes,yes relatively good

MRAE fair fair yes,no yes good

GMRAE fair good yes,yes relatively good

MAPE fair fair yes,no yes fair

sMAPE good good no,no yes poor

UMBRAE good good yes,yes yes good

https://doi.org/10.1371/journal.pone.0174202.t005
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