
0/22

TOWARDS MODULAR
COMPILERS FOR EFFECTS

Laurence E. Day
Functional Programming Laboratory

University of Nottingham

1/22

What Are Compilers?

Programs translating from high-level languages
to low-level sequences of instructions.

Compiler

Source
Program

Target
Program

2/22

Example – in Haskell

Add (Val 4) (Val 1333) [PUSH 4, PUSH 1333, ADD]
Compiler

3/22

What Is Modularity?

 The separation of individual features.

 Compilers are usually factorised into stages:

 Lexing, parsing, code generation…

 Can they also be factorised by effects?

Exceptions, mutable state, I/O…

4/22

Modular Correctness

Expr Value eval

Code

comp exec

Can we combine correctness proofs
 for each individual feature?

5/22

Example

Syntax:

Semantics:

data Expr = Val Int | Add Expr Expr

eval :: Expr Int

eval (Add x y) = eval x + eval y
eval (Val n) = n

6/22

Compiler

Syntax:

Semantics:

type Code = [Op]
data Op = PUSH Int | ADD

comp (Add x y) = comp x ++ comp y
 ++ [ADD]

comp (Val n) = [PUSH n]

comp :: Expr Code

7/22

Adding an Effect - Exceptions

data Expr = … | Throw | Catch Expr Expr

eval (Throw) = mzero
eval (Catch x h) = eval x `mplus` eval h

eval :: Expr Maybe Int

eval (Val n) = return n
eval (Add x y) = do n eval x
 m eval y
 return (n + m)

8/22

Compiling with Catches

data Op = … | THROW | MARK Code | UNMARK

comp :: Expr Code
…
comp (Throw) = [THROW]
comp (Catch x h) = [MARK (comp h)] ++
 [comp x] ++ [UNMARK]

9/22

Modularity In Haskell

Haskell syntax isn’t modular!

 Extending syntax Editing functions

Modular syntax:

 Data Types à La Carte (Swierstra)

Modular semantics:

 Monad transformers and Modular Interpreters
 (Liang, Hudak and Jones)

10/22

Signatures

Consider the following two datatypes:

data Arith e = Val Int | Add e e

data Except e = Throw | Catch e e

Reveals the non-recursive nature of Expr.

Signatures as Functors

instance Functor Arith where
 fmap :: (a b) Arith a Arith b
 fmap f (Val n) = Val n
 fmap f (Add x y) = Add (f x) (f y)

data Fix f = In (f (Fix f))

11/22

Induced recursive
datatype for any

functor f

12/22

Modular Syntax

ex1 :: Fix Arith
ex1 = val 27 `add` val 15

ex2 :: Fix Except
ex2 = throw `catch` throw

⊕ Except) ex3 :: Fix (Arith
ex3 = throw `catch` (val 1336 `add` val 1)

Folding Functors for Fixpoints

fold :: Functor f (f a a) Fix f a
fold f (In t) = f (fmap (fold f) t)

The fold operator accepts an f-algebra (f a a)
as a directive for recursively processing
expressions written using Fix.

13/22

Piecemeal Semantics

To define a semantics of the type
eval :: Fix f m Value

using fold, we need an algebra:
evalAlg :: f (m Value) m Value

14/22

Abstract this pattern out into a
typeclass Eval

15/22

Modular Semantics (Arith)

instance Monad m Eval Arith m where
 evalAlg :: Arith (m Value) m Value
 evalAlg (Val n) = return n
 evalAlg (Add x y) = do n x

 m y
 return (n + m)

Semantics of Arith totally separate from those of
Except (not even referenced in the code above!)

Modular Semantics (Except)

instance ErrorMonad m Eval Except m where
 evalAlg :: Except (m Value) m Value
 evalAlg (Throw) = throw

 evalAlg (Catch x h) = x `catch` h

16/22

17/22

Modular Compiler (Arith)

instance Comp Arith where
 compAlg :: Arith (Code Code) Code Code
 compAlg (Val n) = pushc n
 compAlg (Add x y) = x . y . addc

Modular Compiler (Except)

instance Comp Except where
 compAlg :: Except (Code Code) Code Code
 compAlg (Throw) = throwc
 compAlg (Catch x h) = \c
 h c `markc` x (unmarkc c)

18/22

19/22

Modular Machine (Arith)

instance Monad m Exec ARITH where
 execAlg :: ARITH (StackTrans m ()) StackTrans m ()
 execAlg (PUSH n st) = pushval n >> st
 execAlg (ADD st) = addc >> st

Modular Machine (Except)

instance ErrorMonad m Exec EXCEPT where
 execAlg :: EXCEPT (StackTrans m ()) StackTrans m ()

 execAlg (THROW _) = unwind
 execAlg (MARK h st) = pushcode h >> st
 execAlg (UNMARK st) = unmark >> st

20/22

21/22

What’s The Point?

Can define evaluators, compilers etc modularly:

Individual features can be proved correct:

Modular syntax allows flexible languages:

Each effect handled separately!

Full proof is ‘Semantic Lego’ (Espinosa)

Can describe what features are needed

22/22

The Road Ahead

Modularise semantics of virtual machine:

Examine varying semantics of multiple effects:

Moving on to modular correctness proofs:

Some issues still to be resolved

Exceptions + State Local / Global State

A PhD will hopefully fall out at the end

