TOWARDS MODULAR
COMPILERS FOR EFFECTS

Laurence E. Day
Functional Programming Laboratory
University of Nottingham

What Are Compilers?

Programs translating from high-level languages
to low-level sequences of instructions.

Compiler

Example - in Haskell

Compiler

What Is Modularity?

The separation of individual features.

Compilers are usually factorised into stages:

Lexing, parsing, code generation...

Can they also be factorised by effects?

Exceptions, mutable state, 1/0...

Modular Correctness

PN

EXpr

Can we combine correctness proofs
for each individual feature?

Example

Syntax:
Expr = Val Int | Add Expr Expr

Semantics:

eval .1 Expr— Int

eval (Val n) =n
eval (Addxy) =-evalx+evaly

Compiler

Syntax:
Code = [Op]
Op = PUSH Int | ADD
Semantics:
comp .. Expr — Code

comp (Val n) = [PUSH n]

comp (Add xy) = comp X ++ compy
++ [ADD]

Adding an Effect - Exceptions

Expr = ... | |

eval .1 Expr -

eval (Val n) n
eval (Add x y) do n < eval x
< evaly
+
eval (
eval (eval x

Compiling with Catches

.. Expr — Code

|]
| (comp h)] ++
[comp X] ++ [

Modularity In Haskell

Haskell syntax isn‘t modular!

Extending syntax — Editing functions
Modular syntax:

Data Types a La Carte (Swierstra)
Modular semantics:

Monad transformers and Modular Interpreters
(Liang, Hudak and Jones) .

Signatures

Consider the following two datatypes:

Arith e ValInt | Addee

Except e Throw | Catchee

Reveals the non-recursive nature of Expr.

Signatures as Functors

Functor Arith where
D :: (@ =b) = Aritha— Arith b
o f (Val n) = Val n
0 f (Add x y) = Add (f x) (f y)

Induced recursive
datatype for any

i functor f

Fix f = In (f (Fix f))

Modular Syntax

ex1 :: Fix Arith
ex] = 27

ex2 :: Fix Except
ex2 =)

ex3 :: Fix (Arith e Except)
ex3 =) " (val 1336

Folding Functors for Fixpoints

fold :: Functor f = (fa -a) >Fixf—»a
fold f (In t) = f (fmap (fold f) t)

The fold operator accepts an (fa—a)
as a directive for recursively processing
expressions written using Fix.

Piecemeal Semantics

To define a semantics of the type
eval :: Fix f - m Value

using fold, we need an algebra:

evalAlg :: f (m Value) - m Value

.

Abstract this pattern out into a
typeclass Eval

Modular Semantics (Arith)

instance = Eval Arith m where

evd
eva
€va

A
A

A

g :: Arith (m Value) - m Value
g (Val n) = n
g (Add x y) =do n < X
<Y
(n + m)

Semantics of Arith totally separate from those of
Except (not even referenced in the code above!)

Modular Semantics (Except)

Instance

evd
evd
€Vad

A
A

= Eval Except m where

g :: Except (m Value) - m Value

g (Throw)
g (Catch x h)

=X‘

Modular Compiler (Arith)

instance Comp Arith where
compAlg :: Arith (Code — Code) - Code — Code
compAlg (Val n) n
compAlg (Add x y) X.Y.

Modular Compiler (Except)

instance Comp Except where
compAlg :: Except (Code — Code) - Code — Code
compAlg (Throw) =
compAlg (Catch x h) = \c —»
hc

Modular Machine (Arith)

instance = Exec ARITH where

execAlg :: ARITH (StackTrans m ())—StackTrans m ()

execAlg (PUSH n st) = n >> st
execAlg (ADD st) = >> st

Modular Machine (Except)

instance = Exec EXCEPT where
execAlg :: EXCEPT (StackTrans m ())—»StackTrans m ()
execAlg (THROW)
execAlg (MARK h st) h >> st
execAlg (UNMARK st) >> st

What’s The Point?

Can define evaluators, compilers etc modularly:

Each effect handled separately!

Individual features can be proved correct:

Full proof is ‘Semantic Lego’ (Espinosa)

Modular syntax allows flexible languages:

Can describe what features are needed

The Road Ahead

Modularise semantics of virtual machine:

Some issues still to be resolved

Examine varying semantics of multiple effects:

Exceptions + State — Local / Global State

Moving on to modular correctness proofs:

A PhD will hopefully fall out at the end

