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Abstract

Facial landmark detection in real world images is a diffi-
cult problem due to the high degree of variation in pose, fa-
cial expression and illumination, and the presence of occlu-
sions and background clutter. We propose a system that ad-
dresses the problem of head pose and facial expressions in
a guided unsupervised learning approach to establish mode
specific models. To detect 68 fiducial facial points we em-
ploy Local Evidence Aggregated Regression, in which local
patches provide evidence of the location of the target fa-
cial point using Support Vector Regressors. We improve an
earlier version of this approach by employing mode specific
models and substituting the original Local Binary Pattern
features with Local Gabor Binary Patterns. We show that by
using specialised model selection we are capable of dealing
with various head poses and facial expressions occurring in
the wild without the need for manual annotation of pose and
expression, and that our proposed detector performs signif-
icantly better than the current state of the art.

1. Introduction

Automatic face analysis is an important area of computer
vision due to the potential groundbreaking applications in
emotion recognition, face recognition, (mental) health as-
sessment, etc. One aspect of analysing the properties of
a face is by detecting certain unique fiducial facial land-
marks (see Fig.1) and using their locations and displace-
ments over time to infer higher level semantics. Hence al-
gorithms which can accurately detect such facial landmarks
are of great significance as they can improve the facial anal-
ysis in general. Detecting such points in “faces in the wild”,
that is faces in images captured in situations that would be
encountered by a real application, is particularly challeng-
ing because of the high variation in the appearance of fa-
cial points caused by different head poses and facial expres-
sions. These variations cause non-linear changes in the ap-
pearance of the area immediately surrounding a facial point,

making it difficult to learn facial point detectors.
There are generally two approaches to dealing with head

pose and facial expressions in facial point detection: para-
metric or mode specific. In a parametric approach, the ma-
chine learning model utilised is supposed to learn the differ-
ent modes of the facial point appearance and shapes from
a sufficiently rich dataset. However, even with training sets
containing many thousands of images these different modes
do not emerge [13]. On the other hand, mode specific ap-
proaches aim to explicitly separate the training data into
groups in which facial points have a significantly different
shape and/or appearance. Good examples of this are Cootes
et al. [7] and Zhu and Ramanan [22].

However, all existing methods for mode-specific facial
point detection use supervised learning to create the mode
specific models (MSMs). This is problematic, because both
pose estimation and facial expression recognition are noto-
riously time consuming and have relatively low inter-rater
reliability (i.e. noisy labels). This makes it hard to create
large datasets to train each separate MSM. In addition, su-
pervised labelling of the data is done under the assumption
that the different modes are known a priori, in our case the
head poses and facial expressions causing significant ap-
pearance and shape changes. Yet it is not at all evident how
to segment the space of head poses and expressions that best
separates the appearance and shape variation.

In the light of the shortcomings of existing approaches
to create MSMs, we propose to use guided unsupervised
learning, in which we employ unsupervised learning on a
different sets of points, depending on the type of mode we
aim to find (e.g. head pose, or facial expression). The unsu-
pervised learning is applied to the ground truth of the facial
points, and the goal is to reduce the shape variation in the
obtained modes as much as possible.

Our system builds upon the earlier works of [13] and [19]
but is extended to be able to cope with appearance variation
caused by non-frontal head poses and facial expressions by
using MSMs learned through guided unsupervised learning.
We also extend [13] to be able to detect 68 points, rather
than 20. This extension required us to formulate a hierar-
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chical Markov Random Field (MRF) shape model to ensure
the computation of the MRFs remains tractable. We com-
pared our new point detector to the current state of the art,
and evaluated it on the 300W dataset that forms the basis of
the 300 Faces in-the-Wild Challenge (300-W).

In summary, our main contributions are:

• Guided unsupervised learning of mode specific mod-
els (MSM), where each MSM corresponds to particu-
lar head pose and facial expression

• Learning a hierarchical shape model based on Markov
Random Field for increased run-time efficiency

• State of the art accuracy in facial point localisation

The remainder of the paper is as follows. Section 2
presents an overview of the related work. Section 3 de-
scribes our strategy to learn MSMs of head poses and facial
expressions, while section 4 details our full point detection
algorithm. Section 5 provides the details for our specific 68
point detection algorithm, which is evaluated in section 6.
Finally, we present our closing remarks in section 7.

2. Related work
Face shapes are typically modelled using a statistical shape
model [6]. Variations in face shape depend on two different
sets of parameters: rigid shape transformations are param-
eterised using a Procrustes transformation, i.e. using in-
plane rotation, translation and uniform scaling. Non-rigid
transformations are those that cannot be eliminated through
Procrustes analysis, and include transformations caused by
facial expressions and out-of-plane head rotations.

Other shape models include graphical models, where fa-
cial point detection is posed as a problem of minimising the
graph energy. For example, [22] use a tree to model the
relative position between connected points. Here conver-
gence to the global maximum is guaranteed due to the ab-
sence of loops in the graph. Similarly, a MRF-based shape
model was proposed in [13, 19], where the relative angle
and length ratio of the segments connecting pairs of points
are modelled, making it invariant to both scale and rotation.

A linear model might not be enough to approximate the
space of all 2D shapes in the presence of head pose and
expression variations. Both Cootes et al. [7] and Zhu &
Ramanan [22] propose pose-wise models to handle out-of-
plane head poses. Unlike our proposal, the poses are manu-
ally annotated, making it hard to collect a large set of train-
ing data. In addition, these approaches do not have MSMs
for facial expressions.

When it comes to the modelling of appearance, ap-
proaches vary significantly. The most common trends
with respect to the way texture information is used in-
clude Active Appearance Models (AAMs), Active Shape

Models (ASM)/Constrained Local Models (CLMs) 1, and
regression-based algorithms.

AAMs [14] try to match the whole face appearance with
a reference face model. To this end, the facial points are
used to define a mesh, and the appearance variations of each
triangle within the mesh is modelled using PCA. Face align-
ment consists on finding the optimal shape and texture pa-
rameters so that the reconstruction error is minimised. The
appearance models trained for AAMs are often incapable
of reconstructing generic faces. Furthermore, the error of
the reconstruction is typically measured using the L2 norm,
which is not a robust error measure. Therefore, reconstruc-
tion errors dominate alignment errors, resulting in a poor
performance. As a consequence, it is common practise to
apply AAMs in person-specific scenarios.

In the ASM framework, the face appearance is repre-
sented as a constellation of patches local to the facial points.
That is, face locations are represented by extracting a rep-
resentation over a local patch centred at it. A classifier is
trained per point to distinguish between the true target lo-
cation and surrounding locations. An example of a well-
optimised ASM is the work by Milborrow and Nicolls [15].

Alternatively, Saragih et al. [17] proposed the Con-
strained Local Models (CLM), where the authors use a non-
parametric distribution to approximate the response map.
Accordingly, the resulting gradient ascent shape fitting is
substituted by a mean-shift algorithm. It is therefore an ef-
ficient algorithm that can run in real time. Although the
fitting offered is not very precise, it can offer a good trade-
off as it can run in real time and offers high robustness. An
extension of the CLM was presented in [2], which substi-
tutes the Mean-Shift fitting by a discriminative shape fitting
strategy in order to avoid the convergence to local maxima.

The work by Zhu and Ramanan [22] can be categorised
within the ASM/CLM methodology as it uses local appear-
ance models. The authors use a tree-based shape model so
that the maximum a posteriori likelihood can be attained
without using an iterative procedure, and trained a large
number of pose-specific experts. This results in a very ro-
bust algorithm, capable of performing facial point detection
on faces with up to 90 degrees of jaw rotation. However, the
precision of the algorithm is often limited and, in particular,
it is usually unable to adapt to the presence of expressions.

In regression-based methods the local appearance is
analysed by a regressor instead of a classifier. More specif-
ically, given a feature vector, regressors are trained to di-
rectly infer the displacement from the test location to the
facial point location. Although regression-based models are
very recent, they are one of the dominating trends nowadays
and yield the best results to date [4, 5, 9, 13, 19].

A popular option is to use of random forests regression
and fern features to obtain shape estimates (e.g.[9, 4, 5]).

1CLMs can be considered a generalisation of ASM [17]
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Figure 1. Average shape of face in each cluster obtained for head
poses (second row) and facial expressions (third row) due to mouth
and eyes. The red coloured dots indicates the facial point which
were used to obtain that cluster.

This results in very fast algorithms, ideal for low computa-
tional cost requirements. Among them, [9] uses conditional
random forests to perform regression conditioned to the cur-
rent face shape. [5] uses random forest voting to generate
a response map in combination with the shape alignment
strategy of [17]. [4] uses random forests in a cascade regres-
sion strategy [10], and they directly regress the full shape,
avoiding the shape alignment step. Alternatively, [19] and
[13] use Support Vector Regression to obtain point location
estimates from stochastically selected local appearance, and
aggregate them into a final prediction.

3. Learning Modes

In order to learn relevant MSMs, modes related to pose and
expression were found by guided unsupervised learning and
pose and expression detectors were built from those data.
These detectors generated subsets of the training data to
learn the actual MSMs used in detecting facial landmarks in
a particular combination of head pose and expression. Par-
titioning the training data into these mode specific clusters
reduces the variance in the appearance and the relative lo-
cations of the facial points. This makes the learning process
more efficient and increases the point detection accuracy.

3.1. Learning head poses

We assume that the training images are only labelled with
facial points without any labels for head pose or facial ex-

pression. Since the head poses are not explicitly labelled,
a guided unsupervised approach is applied to learn a head
pose detector using the labelled facial points. It is guided in
the sense that only those points whose location depend on
the head pose, but not facial expression, are used to find the
top level modes of head poses. The x and y coordinates of
these facial points are concatenated to form a feature vector.
The feature vectors from all the face images in the training
set are clustered using Ward’s minimum variance algorithm
[20]. These clusters represent the modes in the data corre-
sponding to head poses.

Since the clustering is done on the basis of facial point
locations in the training set, it is not possible to classify a
test image into one these clusters as the facial points loca-
tions will be unknown in the test images. For this reason,
a mapping is learnt from the appearance features of a face
image to the modes of head poses obtained from clustering.
This mapping is learnt using a multi-class Support Vector
Machine (SVM).

3.2. Learning facial expressions

To further reduce the variance in the shape and appearance
of the facial points, the face images present in each head
pose cluster obtained in section 3.1 are clustered again to
learn the top level modes of facial expressions. Cluster-
ing for the expressions is done independently for differ-
ent expressive regions of the face, e.g. the mouth and the
eyes. In order to guide the expression clustering process
, only the points located in that specific region are used.
As features the concatenated pairwise distances between the
points from a region are calculated, and used again for clus-
tering using Ward’s method.

As with pose estimation, a mapping is learnt from the
appearance descriptors of a face image to the facial expres-
sion modes determined from the clusters. Sets of multi-
class SVMs are learnt separately for each set of clusters ob-
tained for a specific head pose mode, and separate SVMs
are learned for each expressive region. This results in learn-
ing MSMs which are specialised in estimating facial expres-
sions for a specific head pose.

4. Facial Point Detection

The facial point detection algorithm used here is the regres-
sion based Local Evidence Aggregation (LEAR) [13]. This
algorithm learns separate regressors for each facial point to
estimate the target point location. The output from these re-
gressors are used as evidences and an aggregation of these
evidences is used to detect the facial points. These regres-
sors are used in combination with a shape model to localise
the the facial points in a test image. The shape model is used
to avoid infeasible relative arrangements of facial points.



Figure 2. Hierarchical grouping of facial points for computing
shape models.

4.1. Appearance model

The local appearance features xl at a test location l close
to the target location t are used to estimate the location of a
target facial point. For this purpose, Support Vector Regres-
sion (SVR) is used to learn 3 different regressors for each
facial point. One regressor rx is trained for predicting the
distance in the horizontal direction (∆x = tx − lx) and one
regressor ry for predicting the distance in the vertical direc-
tion (∆y = ty − ly). Hence the predicted target location is
given as t̂ = l + v̂, where v̂ = (∆x,∆y). A third regressor
rd is trained for assessing the quality of the prediction by
estimating the distance d̂ = rd(xt̂) between the estimated
target location t̂ and the true target location. The estimated
distance d̂ is used to calculate a likelihood given by:

flik(t̂) = e−d̂/σ
2
lik (1)

where the variance σ2
lik is a fixed parameter.

4.2. Hierarchical shape model

A probabilistic graphical shape model is used to capture the
spatial relationship between the facial points. This shape
model is used to avoid searching for points in impossible
spatial configurations. It detects if the constellation of a
subset of facial points is possible, and if not, suggests a
maximum a posteriori probability (MAP) location estimate
as a solution to the inconsistency. A spatial relation ri,j be-
tween 2 points is defined as the line segment joining the 2
points expressed in polar coordinates as,

ri,j = (αi,j , ρi,j) (2)

A probabilistic network of these spatial relations is built
using Markov Random Fields (MRF) to encode their inter-
actions. The MRF is constructed with binary states si,j indi-
cating whether the relation ri,j is a valid shape or not. Each
node of the network represents a spatial relation and so the
probability of the network is decomposed as the pairwise
interaction between the nodes given by:

p({si,j}) =
1

Z

∏
ϕi,j,k,l(si,j , sk,l)

∏
ψi,j(si,j) (3)

where Z is a normalisation factor, ϕi,j,k,l is a function
which encodes the compatibility of si,j and sk,l depending
upon the configuration of points in the training images, and
ψi,j denotes the likelihood of si,j being 0/1 before consid-
ering other nodes. For more details please refer to [13].

The joint MRF is maximised using the Belief Propaga-
tion (BP) algorithm, to test a configuration of facial points.
The complexity of a fully connected network considering
all possible relations, increases quadratically with the num-
ber of nodes and hence becomes infeasible if the number of
facial points considered is large. In order to make the algo-
rithm more efficient, a hierarchical approach is used to learn
the shape model. The facial points are split into smaller
groups and a hierarchy of these groups is constructed. A
shape model is learnt from the points in a particular group
combined with all the points in its parent group. This results
in a hierarchy of shape models which is used in combina-
tion with the appearance model to detect the facial points in
a test image (see Fig. 2).

The points are detected following the same hierarchy, i.e.
the points in a particular group I are detected after the de-
tection of all the points in its parent group. The points at the
upper levels of the hierarchy seeks to preserve the global
shape of the face (for e.g. location of eyes and mouth w.r.t.
each other), while the points at the lower levels seeks to pre-
serve the local shape of a smaller region of the face (for e.g.
the location of points in the mouth region w.r.t each other).
This hierarchical shape model allows an efficient modelling
of the shape by keeping the number of points used in con-
structing any Markov Network, considerably low.

4.3. Detection by Specialised Model Selection (SMS)

Prior to the actual facial point detection process, the head
pose and facial expressions are estimated for a face image.
The SVM learnt for head pose estimation is used to classify
the face image into one of the head pose modes. Depend-
ing on the estimated pose, we apply the appropriate SVMs
for estimating facial expression. Specialised shape and ap-
pearance models are selected depending on the predicted
head pose and facial expression. The regressors trained on
the partition corresponding to the estimated head pose and
expressions were employed in detecting the facial points.
Similarly, shape models computed specifically for the par-
ticular head pose and facial expressions estimated from the
test image were applied during the detection process. This
specialised model selection (SMS) procedure ensures that
appropriate models are applied to a face image having a spe-
cific pose and expression.

The facial point detection process starts with the initial-
isation of a sampling region for each facial point. Points
sampled from the region are used for evaluating the regres-
sors to obtain target estimates (local evidences). The sam-
pling region for a particular facial point is initialised from



a Gaussian fitted to the prior distribution of the location of
that point in the training images.

The local evidences obtained from the regressor esti-
mates are used to update the evidence distribution and the
sampling region in an iterative manner. The shape model
checks the correctness of the point configuration at each it-
eration and provides a new sampling region if the shape gets
violated. The evidence distribution is modelled as a mixture
of Gaussian distributions where each evidence for the facial
point i adds a component Sik(x) at the iteration k. The esti-
mate of the target location at the iteration k is given as,

T̂ ik = arg max
x

Sik(x) (4)

The confidence on the estimated target location T̂ ik is given
as:

p(T̂ ik) = max(Sik)/θacc (5)

where θacc is a predefined acceptance threshold. This pro-
cess is repeated iteratively until p(T̂ ik) > θacc or a prede-
fined maximum number of iterations has passed.

5. Methodology
The training of our models was based on the 68 points mark-
up definition of Multi-PIE [11] data set (see Fig. 1). We
first describe the training of our head pose detector and head
pose specific facial expression detectors which were used to
partition the training data. We then give details of our mode
specific point detection models.

5.1. Head pose estimation

In order to find the modes of head poses in our training data
we clustered the face images using the concatenated coordi-
nates of selected facial points. For this purpose, we selected
facial points that do not move due to expressions and hence
can be used to get clusters corresponding to different head
pose modes. We also wanted to keep the dimensionality of
our feature vectors to be low and therefore we used only a
subset of all such so-called ’stable’ points for this purpose,
i.e. the points numbered 1,17,31,32,36,37,40,43 and 46.

The average facial point locations in each of the 3 clus-
ters obtained at the top level of the cluster hierarchy are
shown in Fig. 1. In this figure, one can clearly see that each
of the 3 clusters correspond to a particular head pose (out of
plane rotations of the face). The average variance of the lo-
cation of facial points within the clusters are shown in table
1. From this table, we can clearly see that the average vari-
ance within the clusters is significantly lower compared to
the entire training data, indicating that the shapes are more
similar and thus should be easier to detect.

We trained our head pose detector using appearance de-
scriptors extracted from the face images. We used Local
Gabor Binary Pattern (LGBP) [21] to extract the appearance

All points Mouth points Eye points
Entire data 2.88 0.93 0.31

After clustering for head poses 1.36 0.44 0.15
After clustering for expressions - 0.40 0.14

Table 1. Variances in the locations of facial points in the entire
dataset, in head pose clusters and in clusters obtained for facial
expressions in the eyes/mouth region.

features from face images normalized to 200 × 200 pixels.
LGBP features are extracted by applying Gabor filters of
various frequencies and orientations on an image before ap-
plying the LBP transform and computing histograms.

5.2. Facial expression estimation

We restricted ourselves to expressions involving eyes and
mouth region because for these points the facial point lo-
cation variation due to facial expressions is largest. For ex-
pressions involving the mouth region, the pairwise distances
between the points from the inner mouth region (labelled
61-68) were calculated in each face image. The concate-
nated pairwise distances were used as features for cluster-
ing the faces into 2 groups, using Ward’s method. A simi-
lar method was applied for clustering expressions related to
the eyes. Assuming symmetrical expressions, the pairwise
distances between the points from the left eye (labelled 37-
42), were concatenated to form feature vectors, and clus-
tered into 2 groups using Ward’s method.

Fig. 1 shows the average shape of face in each of the
clusters obtained for facial expressions due to eyes and
mouth. The reduced variance for the points belonging to
eyes and mouth region are also shown in table 1.

As for head pose estimation, the eyes/mouth expression
detectors were trained by extracting LGBP features from
face images in each cluster and learning a 2 class SVM. This
procedure was repeated for each of the 3 groups of training
images obtained from head pose clustering as described in
section 3.1. Hence a total 3 SVMs was learnt, each spe-
cialised in detecting expressions for a particular head pose.

5.3. Mode specific appearance modelling

The SVMs learnt for estimating the head pose and
eye/mouth expressions were used for partitioning the train-
ing data. The regressors rx, ry and rd for each facial point
(described in section 4.1) were trained on each partition sep-
arately. The partitioning was done separately for each facial
point. Regressors for points which do not depend on the
eye/mouth expressions were trained on 3 separate partitions
belonging to the different head poses. Regressors for other
points were trained on 3 × 2 partitions, each partition be-
longing to a particular head pose and eye/mouth expression.

The original algorithm uses LBP features as the local
appearance descriptor for training the regressors. In this
work, we have used LGBP features to extract the local ap-



Figure 3. Example results from our method on our internal evaluation test set. The first 3 images shows the best detections measured by
normalised mean error. The last 3 are the worst images measured by normalised mean error.

pearance. The LGBP features have been found to be more
robust to noise and lighting variation [21] and have been
shown to perform better than LBP features for facial Action
Units (AUs) recognition [1].

5.4. Mode specific hierarchical shape modelling

As is the case for appearance modelling, the shape models
were computed on each training partition separately result-
ing in shape models which are specialized for a particular
head pose and facial expression. For points which depend
only on head pose, shape models were computed on 3 dif-
ferent partitions, while for points whose location depends
on both head pose and facial expression, shape models were
computed from 3× 2 partitions.

As explained in section 4.2, facial points are split into a
hierarchy of smaller group of points and the shape model
for each group is computed following that hierarchy. At the
top of the hierarchy are the stable points. Stable points are
those points which are easy to detect because of their unique
local appearance and their invariance to facial expressions.
These points are detected first in a test image followed by
an affine image registration step. We decided to classify the
points 31, 32, 36, 37, 40, 43 and 46 as stable. All other
points were classified as unstable.

We selected only these points as stable because firstly,
we wanted to keep the number of stable points to be as low
as possible as they are detected before the image registration
step and hence chances of error are high. Secondly, some
points are difficult to detect because the appearance of the
area immediately surrounding them may not be unique (e.g.
points 28-30). Since the stable points are used for register-
ing the image, any error in detecting them may lead to errors
in image registration.

Stable points are followed by all other points as we move
down the hierarchy. In order to further reduce the com-
plexity, a set of composite points are computed from the
detected stable points using the mean of left eye points
(37,40), right eye points (43,46) and nose points (31,32,36).
These composite points are used for computing the shape
models for points further down the hierarchy. As discussed
in section 4.2, the shape model for a group is computed us-
ing all the points in that group and all the points in its parent

group. In case of groups at the second level of the hierar-
chy, only the composite points from their parent group (root
node) are used in computing the shape model.

The complete hierarchy of the facial point groups can be
seen in Fig. 2. Facial points were split into smaller groups,
each group belonging to smaller part of the face namely left
eyebrow, right eyebrow, left eye, right eye, nose , mouth and
face boundary. Since the mouth and face boundary consists
of many points, they were further split into smaller groups.
For e.g. the mouth region was split into mouth initial, left
mouth and right mouth. Similarly, the face boundary re-
gion was split into initial boundary, left boundary and right
boundary. This hierarchical grouping of points limits the
maximum number of points used in any Markov network to
13 and hence makes the algorithm more efficient.

6. Evaluation
We trained our model using approximately 3300 face im-
ages from LFPW [3] and HELEN [12] datasets which were
re-annotated with facial landmarks [16] using the Multi-PIE
[11] 68 points mark-up (see Fig. 1) . The evaluation of our
trained model was done in 2 separate ways. One was an in-
ternal evaluation in which we tested our model on a test set
selected by the authors. The other was an external evalua-
tion in which our model was tested by the organisers of the
300-W Challenge, on the 300-W testset (unknown to us). In
both evaluations, the error for a facial point was calculated
as the Euclidean distance between the detected location T̂i
of the point and the ground truth location Ti, normalised by
the inter-ocular distance dIOD :

ei =
||Ti − T̂i||
dIOD

(6)

Here the inter-ocular distance dIOD was defined as the
distance between the outer corner of the eyes i.e. the dis-
tance between the points 37 and 46. The mean error from
each image was used for computing the Cumulative er-
ror distribution (CED) curves for performance evaluation.
These mean errors were computed separately for 51 points
(points on the face boundary excluded) and 68 points in
each image.
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Figure 4. CED curves for 51 landmarks (left) and 68 landmarks
(right) computed on our internal evaluation test set.

6.1. Internal evaluation

In our own internal evaluation of our model , we com-
pared the performance of our model with other existing ap-
proaches on a test set consisting of 370 face images from
AFW [22] and IBUG [18] datasets. These datasets consist
of real world images of faces in various head poses and fa-
cial expressions. The images also have a wide variation in
illumination and image quality and many of the them con-
tains occlusions (e.g. sunglasses, hair, etc.). Overall, the
images are quite challenging and can be considered a good
test set for benchmarking facial point detection algorithms.
We compared the performance of our model with 2 other
approaches. The first approach is the regression based local
evidence aggregation (LEAR) [13], the second is the part
based approach of Zhu and Ramanan [22], which uses a
mixture of trees to detect face, pose and facial landmarks.
The third method we compared against was the CLM of
Saragih et al. [17].

It should be noted that although the AFW and IBUG
datasets contains a total of 472 face images annotated with
facial landmarks, we had to remove 102 images because in
those images the implementation from [22] either doesn’t
detects any face or detects only 39 facial landmarks due to
incorrect head pose estimation corresponding to 90 degree
out of plane rotation of the face. Hence, in order to have a
fair comparison we prepared a common ground by selecting
only those images in which [22] detects a face with all 68
facial landmarks.

In addition, we found that the CLM was often unable to
initialize properly. Because the face locations were given
for this test set but CLM detects faces internally, we pre-
sented the CLM with the image patch surrounding and in-
cluding the face by growing the face region by 50% in all
directions. However, even with this intervention the average
point detection error of the CLM was 1.64, and the cumu-
lative error graph was off the scale of Fig. 4. It is entirely
possible that this is a problem with the initialization of the
CLM rather than the point detection quality though.

Fig. 4 shows the CED curves from the 3 approaches on
our test set. The CED curves were computed separately for
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Figure 5. CED curves for landmark detection on the 300-W test
set. The first column shows the CED curves for 51 landmarks and
the second column shows the CED curves for 68 landmarks. The
baseline model corresponds to the approach in [14, 8].

LEAR [13] Zhu-Ramanan [22] Our model
51 points 0.0883 0.0790 0.0494
68 points 0.1379 0.1223 0.0886

Table 2. Comparison of the mean errors on our test set from the 3
approaches.

51 facial landmarks (labelled 18-68) and the 68 facial land-
marks. Both the plots clearly show that our model outper-
forms the other 2 approaches. The mean errors on the test
set for all the 3 approaches can be seen in table 2, which
shows that our model is performing significantly better than
the other 2 approaches. Fig. 3 shows the 3 best and worst
images measured by normalized mean error. It shows that
most errors are caused due to poor face detection.

6.2. External evaluation

Our model was also evaluated independently by the orga-
nizers of the 300-W challenge on their own 300-W testset
which was not disclosed to any of the participants of the
challenge [18]. Their test set was divided into 3 subsets,
one consisting of indoor images, another one consisting of
outdoor images and the third one consisting of a mixture of
indoor and outdoor images. Our model was compared to



their baseline model which was based on the project-out in-
verse compositional AAM algorithm [14] implemented us-
ing the edge-structure features described in [8]. The CED
curves comparing the performance of our model with the
baseline, for each subset of the test set are shown in Fig.
5. The curves were plotted separately for 51 and 68 facial
landmarks. From the curves one can clearly see that the per-
formance from our model is much higher than the baseline
performance.

7. Conclusion
We presented a novel facial point detection approach using
mode specific models, which were found using clustering
by guided unsupervised learning. Experts defined the facial
points that would result in either clusters corresponding to
head pose variations or facial expressions. This approach
allows the creation of mode specific facial point detection
models without the need for manual annotation of head pose
or facial expression. Our approach was applied to the Local
Evidence Aggregated Regression framework, and showed
significant improvements both over the current state of the
art in facial point detection as well as compared to the base-
line results of the 300-W facial point detection challenge.
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