
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066

067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

FG 2015 FG 2015FG 2015 Submission. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

FERA 2015 - Second Facial Expression Recognition and Analysis
Challenge

Anonymous FG 2015 submission
– DO NOT DISTRIBUTE –

Abstract— Despite efforts towards evaluation standards in
facial expression analysis (e.g. FERA 2011), there is a need for
up-to-date standardised evaluation procedures, focusing in par-
ticular on current challenges in the field. One of the challenges
that is actively being addressed is the automatic estimation of
expression intensities. To continue to provide a standardisation
platform and to help the field progress beyond its current
limitations, the FG 2015 Facial Expression Recognition and
Analysis challenge (FERA 2015) will challenge participants
to estimate FACS Action Unit (AU) intensity as well as AU
occurrence on a common benchmark dataset with reliable
manual annotations. Evaluation will be done using a clear and
well-defined protocol. In this paper we present the second such
challenge in automatic recognition of facial expressions, to be
held in conjunction with the 11 IEEE conference on Face and
Gesture Recognition, May 2015, in Ljubljana, Slovenia. Three
sub-challenges are defined: the detection of AU occurrence, the
estimation of AU intensity for pre-segmented data, and fully
automatic AU intensity estimation. In this work we outline the
evaluation protocol, the data used, and the results of a baseline
method for the three sub-challenges.

I. INTRODUCTION

Facial expression analysis is a rapidly growing field of
research, due to the constantly increasing interest in applica-
tions for automatic human behaviour analysis and novel tech-
nologies for human-machine communication and multimedia
retrieval. Most Facial Expression Recognition and Analysis
systems proposed in the literature focus on detecting the
occurrence of expressions, often either basic emotions or
the Facial Action Coding System (FACS Action Units, AUs,
[2]). In reality, expressions can vary greatly in intensity, and
intensity is often a strong cue for the interpretation of the
meaning of expressions. However, very little annotated data
is available for the evaluation of AU intensity estimation
approaches. In addition, despite efforts towards evaluations
standards (e.g. FERA 2011 [7]), there is still a need for
improved standardised evaluation datasets and procedures for
the more challenging application scenarios.

In particular, there is a need for evaluation standards on
large sets of data, recorded in realistic scenarios, with de-
tailed annotations including intensity and frame-by-frame oc-
currence. Without such improved benchmarking procedures,
facial expression recognition will continue to suffer from low
comparability between proposed approaches. This is in stark
contrast with more established problems in human analysis
from video such as face detection and face recognition.

In these respects, the FG 2015 Facial Expression Recogni-
tion and Analysis challenge (FERA2015) shall help raise the
bar for expression recognition by challenging participants to

estimate AU intensity, and it will continue to bridge the gap
between excellent research on facial expression recognition
and low comparability of results. We do this by means of
three selected tasks: the detection of FACS Action Unit
occurrence (Occurrence Detection Sub-Challenge), the esti-
mation of AU intensity when AU occurrence is known a pri-
ori (Pre-Segmented Intensity Estimation Sub-Challenge), and
fully automatic AU intensity estimation for the most realistic
scenario in which AU occurrence is not known beforehand
(Fully Automatic Intensity Estimation Sub-Challenge).

II. DATA

The training, development and test data for the FERA
2015 challenge are drawn from two databases: the BP4D-
Spontaneous database [10] and the SEMAINE database [4].
The training and development sets are drawn from the
SEMAINE database and the original BP4D-Spontaenous
database, while the test set is drawn from a part of the
SEMAINE database and an extended version of BP4D that
both have not been publicly released. FACS is a system for
human observer coding of facial expressions, decomposing
expressions into atomic units of anatomically-based Action
Units that correspond to specific facial muscles or muscle
groups. In this challenge, FACS was used to code the
occurrence and intensity of participants facial expressions.

The challenge will focus on 14 AUs that occurred fre-
quently in the BP4D and SEMAINE datasets. The Occur-
rence Detection sub-challenge requires participants to detect
11 AUs from the BP4D database and 6 from the SEMAINE
database (see Table I). AUs were selected based on their
frequency of occurrence and sufficiently high inter-rater
reliability scores. AU intensity estimation, both for the Pre-
Segmented Intensity Estimation Sub-Challenge and the Fully
Automatic Intensity Estimation Sub-Challenge will be done
on the BP4D data only, on a subset of 5 AUs (see Table I).

Data is split into train and test partitions. The train
partition is publicly available for researchers to train and
develop their AU analysis systems, and to allow participants
to uniformly report performance (i.e. using cross-validation).
The test partition is held back by the organisers. Participants
submit their trained systems and the FERA 2015 organisers
apply their systems on this held-back data to create a fair
comparison.

A. BP4D Database

Both the train and test partitions of the BP4D database
consist of video data of young adults responding to emotion-
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TABLE I
OVERVIEW OF AUS INCLUDED IN THE THREE SUB-CHALLENGES

Occurrence detection Intensity Estimation
BP4D AU1, AU2, AU4, AU6, AU6, AU10, AU12,

AU7, AU10, AU12, AU14, AU14, AU17
AU15, AU17, AU23

SEMAINE AU2, AU12, AU17, AU25, -
AU28, AU45

elicitation tasks. The datasets are described in detail below.
Here we note differences between them that are most relevant
to the challenge. The training data was collected first and
is publicly available. The testing data is newer, part of an
ongoing data collection that includes thermal imaging and
peripheral physiology, and is not publicly available. The
number of participants in the two partitions is 41 and 20,
respectively. Some differences exist in the threshold for
coding AU occurrence and intensity, and changes occurred
in the mix of AU coders of the two partitions. Coders were
highly trained for both, and reliability was tested throughout
coding to ensure consistency.

The train partition of BP4D is selected from BP4D-
Original, and the test partition from BP4D-Expanded. Below
we will refer to these as BP4D-Train and BP4D-Test.

BP4D-Train The BP4D-Train dataset includes digital
video of 41 participants (56.1% female, 49.1% white, ages
18-29). These individuals were recruited from the depart-
ments of psychology and computer science and from the
school of engineering at Binghamton University. All partic-
ipants gave informed consent to the procedures and permis-
sible uses of their data. Participants sat approximately 51
inches in front of a Di3D dynamic face capturing system
during a series of eight emotion elicitation tasks.

To elicit target emotional expressions and conversational
behaviour, we used approaches adapted from other investi-
gators plus techniques that proved promising in pilot testing.
Each task was administered by an experimenter who was
a professional actor/director of performing arts. The proce-
dures were designed to elicit a range of emotions and fa-
cial expressions that include happiness/amusement, sadness,
surprise/startle, embarrassment, fear/nervous, physical pain,
anger/upset, and disgust.

BP4D-Test The BP4D-Test dataset includes digital video
of 20 participants with similar demographics as BP4D-
original. These individuals underwent similar recruitment,
emotion-elicitation, and video recording procedures as those
in the BP4D-Train dataset. The main difference between
these datasets is that the extended dataset also collected phys-
iological data and captured thermal images of participants.
However, thermal and physiological data are not included in
the FERA Challenge.

B. SEMAINE database

The challenge uses the SEMAINE corpus [4] as the second
source of data. This database was recorded to study natural
social signals that occur in conversations between people
and virtual humans, and to collect data for the training of

the next generation of such agents. It is is freely available
for scientific research purposes from http://semaine-db.eu.
The scenario used in the recordings is called the Sensitive
Artificial Listener (SAL) technique [1]. It involves a user
interacting with emotionally stereotyped “characters” whose
responses are stock phrases keyed to the user’s emotional
state rather than the content of what (s)he says.

For the recordings, the participants are asked to talk
in turn to four emotionally stereotyped characters. These
characters are Prudence, who is even-tempered and sensible;
Poppy, who is happy and outgoing; Spike, who is angry and
confrontational; and Obadiah, who is sad and depressive.

Video was recorded at 49.979 frames per second at a
spatial resolution of 780 x 580 pixels and 8 bits per sample,
while audio was recorded at 48 kHz with 24 bits per sample.
To accommodate research in audio-visual fusion, the audio
and video signals were synchronised with an accuracy of 25
µs using the system developed by Lichtenauer et al. [3].

In this challenge the 24 recordings of the publicly available
Solid-SAL part of the database are used as train partition.
The test partition is derived from parts of the SEMAINE
database that haven’t been made public to date.

C. Action Unit Annotation

Action Units were annotated by a team of experts. Both
databases were annotated frame-by-frame for the occurrence
(i.e. activation) of AUs. In addition, BP4D was annotated
frame-by-frame for the intensity of a subset of AUs.

Occurrence Annotation For BP4D-Train, coders annotated
onsets when AUs reached the A-level of intensity and offsets
when they dropped below it. Segments of the most facially-
expressive 20 seconds of each task were selected for coding.
Across all participants, AU base occurrence rates, defined
as the fraction of coded frames in which an AU occurred,
averaged 35.4%, and ranged from 17% for to 59%. To assess
inter-coder reliability, approximately 11% of the data was
independently coded by two highly trained and certified
coders. Inter-coder reliability, as quantified by the Matthews
Correlation Coefficient (MCC; [5]), averaged 0.91. MCC for
individual AU ranged from 0.81 for AU 23 to 0.96 for AU
2. These results suggest very strong inter-coder reliability
for occurrence. Fig. 1 depicts the frequency and inter-coder
reliability of AU occurrence annotation on BP4D.

For BP4D-Extended, coders annotated onsets when AUs
reached the B-level of intensity and offsets when they
dropped below it. Segments of the most facially-expressive
20 seconds of each task were selected for coding. Across all
participants, AU base rates averaged 26.2%, ranging from
5% to 60%. To assess inter-coder reliability for occurrence,
approximately 15% of the data were independently com-
parison coded as above. Inter-coder reliability, as quantified
by MCC, averaged 0.79, ranging from 0.69 to 0.91. These
results indicate strong to very strong inter-rater reliability.
Across all AUs except for AU 15, inter-coder reliability for
occurrence was lower in the expanded dataset than in the
original dataset. These differences may be due in part to
differences in threshold for determining occurrence (B-level

2
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Fig. 1. AU occurrence frequency (top) and inter-coder reliability (bottom)
for the BP4D data (both original and extended).

versus A-level) and the addition of two coders in BP4D-
Expanded.

For SEMAINE, one-minute segments of the most facially-
expressive part of each selected interactions were coded. The
same method for inter-coder reliability was employed on
10% of the data. Only AUs with good inter-coder reliability
or better (i.e. MCC>0.6) were selected to be used in the
challenge (see Fig. 2).

Intensity Annotation For BP4D-Original, five AUs were
intensity coded in the BP4D-Original dataset: AU6, AU10,
AU12, AU14, and AU17. The distribution of intensity levels
was similar across the AUs. The B- and C-levels of intensity
were most common for all except AU 17, which showed
more A- than C-level intensity. To assess inter-coder reliabil-
ity for intensity, approximately 6% of the data was indepen-
dently coded by two highly trained and certified coders. Inter-
coder reliability, as quantified by the intra-class correlation
coefficient (ICC; [6]), averaged 0.85. ICC for individual AU
ranged from 0.79 to 0.92. These results indicate strong to
very strong inter-coder reliability for intensity.

III. EVALUATION PROCEDURE
To perform a fair evaluation of participants’ performance,
participants are asked to submit their working programs to
the challenge organisers, who will run these programs on
the held-back test sets of the same two databases (BP4D
and SEMAINE).

The performance measure for AU occurrence is the F1-
measure, which is the harmonic mean of recall and precision.
For an AU with precision P and recall R, it is calculated as:

F1 =
2PR

P +R
(1)

The performance measure for AU intensity is the Intraclass
Correlation Coefficient (ICC, [6]). Given ground truth labels

Fig. 2. AU occurrence label frequency (top) and inter-coder reliability
(bottom) for SEMAINE .

Fig. 3. AU intensity label frequency (top) and inter-coder reliability
(bottom) for the BP4D-Original data only.

3
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y, yt ∈ {0, 1, ...5} and predictions ŷ, ŷt ∈ N , the ICC I is
calculated as follows:

I =
W − S

W + (k − 1)W
(2)

where k is the number of coding sources compared; in our
case k = 2. W and S are the Within-target Mean Squares
and Residual Sum of Squares, respectively, and are computed
as follows:

W =

n∑
i=1

k∑
j=1

(yij − ȳi)2

n(k − 1)
=

n∑
i=1

k∑
j=1

(yij − ȳi)2

n
(3)

where ȳi =
∑k

j=1 yij/k and the third term of Eq. (3) follows
from k = 2. S is defined as:

S =

n∑
i=1

(yi − ŷi)2 (4)

To come to a single score s for the Occurrence Detection,
Pre-Segmented Intensity Estimation and Fully-Automatic
Intensity Estimation Sub-Challenges, labels of all test se-
quences will be concatenated into a sequence to calculate
F1/ICC measures per AU. The average value will be used as
the performance of a participant’s submission:

s =
1

N

N∑
a=1

fa(y, ŷ) (5)

where fa is either the F1 or ICC measure for a given AU
a, depending on the sub-challenge, and N is either the 14
AUs for Occurrence Detection, or the 5 AUs for intensity
estimation. For AUs that do not occur in either BP4D or
SEMAINE (see table I), both predictions and ground truth
will be set to 0. This results in all values contributing to True
Negative predictions, which do not impact the F1 measure.

The code used by the organisers to calculate participants’
performance will be made available on the FERA 2015
challenge’s website.

IV. BASELINE SYSTEM

While baseline results exist for BP4D, this is the first time
that the SEMAINE data is used for AU recognition, which
means that there are no other works that participants can
compare their methods with, and no means to check whether
the results obtained are reasonable. Therefore, in this work
we provide baseline recognition results on both datasets, for
easy comparison of participants’ systems. In addition, the
baseline features described in this work are made available to
participants, which is useful for those who wish to replicate
the baseline system results and may be particularly valuable
for participants who want to focus on the machine learning
aspects of expression recognition.

A. Baseline Features

For the challenge baseline two types of features have been
extracted: two-layer appearance features (Local Binary Ga-
bor Patterns, LGBP [9]) and geometric features derived from
tracked facial point locations. The geometric features are
based on 49 landmarks detected and subsequently tracked
with the Cascaded Regression facial point detector/tracker
proposed by Xiong and De la Torre [8] (see Figure 4 for an
overview of detected points). We only use the inner facial
points as they are the main indicators of the AUs included in
this challenge. For some frames facial point detection failed.
When this happens the corresponding feature array contains
all zeros, to indicate point detection failure to participants.

Fig. 4. 49 facial landmarks used to compute geometric features

Facial landmarks P = [p1 . . . p49] of every video frame are
aligned with a mean shape using a set of stable points. Stable
points are defined as those not affected by AU activations.
In the 49 landmarks notation points 20, 23, 26, 29 (eye
corners region) and 11 - 19 (nose region) are considered
to be stable. The mean facial landmarks shape has been
computed prior to geometric features extraction individually
for each database by taking mean of 10% randomly selected
video frames from every session. The alignment is performed
by computing a non-reflective affine transformation, which
minimises the difference between stable point coordinates of
the two shapes. All mean shape landmark coordinates are
then subtracted from the corresponding aligned shape points
resulting in a set of aligned facial points P̃ = [p̃1 . . . p̃49],
which form the first 49 ∗ 2 = 98 geometric features.

The next 98 features are composed by subtracting the
aligned facial point locations of the previous frame from that
of the current one. This applies to all frames except the very
first one of every session, for which these features are the
same as the first 98.

For the next set of features the facial landmarks have been
split intro three groups representing the left eye (points 20 -
25) and left eyebrow (points 1 - 5), the right eye (points 26 -
31) and right eyebrow (points 6 - 10), and the mouth region
(points 32 - 49). For each of these groups a set of features

4
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representing Euclidean distances as well as angles in radians
between points within the groups is extracted.

Distances between points within a group are computed by
taking the squared L2-norm between consecutive points:

F (i) = ‖p̃i − p̃i+1‖22,

i = {1..Np − 1}

where Np is the total number of points within the region,
p̃i is the point coordinates vector and F is the feature array
of the region. Hence, for each group the number of features
constructed in this manner Nf is equal to:

Nf = Np − 1

The same approach is used to calculate the angles between
two lines defined by two pairs of points at a time within a
group, where the two pairs share one common point. For each
consecutive triplet of points Euclidean distances between
them are computed first, which are then used to calculate
angle between the points:

F (i) = arccos

(
p̃212 + p̃213 − p̃223

2 ∗ p̃12 ∗ p̃13

)
where p̃ij is an Euclidean distance between points i and
j. The number of features extracted this way is equal to
the total number of consecutive angles within the groups of
points, which is equal to:

Nf = Np − 2

There are thus 71 features in total extracted from the above
face regions.

Finally, for the last 49 features we first compute median
of stable points of the aligned shape. We then go through
all of the aligned shape points and compute Euclidean
distance between them and the median. In total there are
316 geometric features extracted from every video frame in
both databases.

Fig. 5. Creating LGBP features: a) original image, b) Gabor pictures, and
c) concatenation of resulting histograms after applying LBP to each of the
Gabor responses.

To extract appearance features the local LGBP descriptor
has been adopted. LGBP takes a video frame which is first
convolved with a number of Gabor filters to obtain a set of
Gabor magnitude response images. This is followed by LBP
feature extraction over the set of Gabor magnitude response
images. The resulting binary patterns are histogrammed and
concatenated into a single feature histogram (see Fig. 5). The

final feature array is then composed for every frame by taking
the mean of its histogram with that of up to 5 preceding
frames. Prior to feature extraction, each image is split into a
4x4 regular grid to maintain some local information encoded
in the features.

Preprocessing of video frames includes face localisation
and segmentation by means of the Viola & Jones face
detector prior to LGBP feature extraction. Fast and easy
to use, it sometimes struggles to correctly detect a face on
noisy data such as that used in this challenge. To keep the
dimensionality of all feature vectors constant and the number
of instances per video consistent with the number of frames,
in this paper frames where the face detector failed to locate
a face are marked with a feature vector of all zeros.

B. Baseline Results

The baseline system is kept simple on purpose since it
should be easy to interpret and simple to replicate. All
of the results have been obtained using linear SVM for
the AU occurrence sub-challenge and linear SVR for the
intensity sub-challenges using geometric and appearance
features described above. In every experiment parameter
search has been applied to find the best values of the SVM
cost parameter C as well as SVR parameter epsilon.

Due to the high number of training samples, and in order
to reduce the time required to train the models, training
instances were subsampled to approach a balanced number
of positive and negative examples while at the same time
reducing the total number of training examples. Because of
a high dimensionality of the appearance features, PCA has
been employed for the purpose of dimensionality reduction
keeping 98% of the energy. A very simple correlation-
based form of feature selection has also been applied to
the geometric features despite their low dimensionality. The
features have been selected based on Pearson’s correlation
coefficient (PCC) computed for every geometric feature,
measuring the correlation between the feature values and
the true labels. The exact number of features selected varies
depending on the AU.

Baseline results for occurrence/activation detection are
shown in Tables II and III for the development and test
partitions of both databases. Detection performance is mea-
sured by F1 as well as accuracy and 2AFC scores. A number
of different performance measures are shown since each
has their own merits, and combined they provide a deeper
analysis of the results. However the challenge participants
will only be judged based on F1 scores.

Whereas F1 and accuracy are well-known performance
measurement, 2AFC is less well-known. The 2AFC score is a
good approximation of the area under the receiver operator
characteristic curve (AUC). In contrast to F1, 2AFC does
take True Negative preditions into account. In this study
the 2AFC has been calculated based on the SVM decision
function output values as follows:

2AFC(Ŷ ) =

n∑
i=0

p∑
j=0

σ(Pj , Ni)
1

n× p
, (6)
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TABLE II
BASELINE RESULTS FOR THE OCCURRENCE SUB-CHALLENGE ON THE DEVELOPMENT PARTITION MEASURED IN F1 SCORE, 2AFC AND ACCURACY.

Action Unit Database Geometric Appearance
F1 2AFC Accuracy F1 2AFC Accuracy

AU1 BP4D 0.397 0.319 0.699 0.349 0.382 0.593
AU2 BP4D 0.317 0.364 0.699 0.265 0.465 0.571
AU4 BP4D 0.453 0.231 0.743 0.432 0.256 0.696
AU6 BP4D 0.763 0.144 0.780 0.775 0.141 0.771
AU7 BP4D 0.763 0.202 0.729 0.762 0.239 0.693
AU10 BP4D 0.831 0.851 0.796 0.804 0.815 0.744
AU12 BP4D 0.861 0.916 0.844 0.839 0.900 0.810
AU14 BP4D 0.616 0.323 0.569 0.613 0.345 0.548
AU15 BP4D 0.395 0.258 0.623 0.272 0.466 0.468
AU17 BP4D 0.617 0.267 0.652 0.538 0.383 0.518
AU23 BP4D 0.369 0.302 0.700 0.279 0.463 0.627
AU2 SEMAINE 0.235 0.243 0.653 0.343 0.237 0.863
AU12 SEMAINE 0.435 0.293 0.671 0.345 0.405 0.648
AU17 SEMAINE 0.317 0.173 0.932 0.114 0.454 0.936
AU25 SEMAINE 0.331 0.387 0.593 0.345 0.433 0.327
AU28 SEMAINE 0.457 0.108 0.975 0.308 0.238 0.975
AU45 SEMAINE 0.329 0.287 0.591 0.333 0.353 0.846

Weighted Mean — 0.491 0.329 0.721 0.445 0.407 0.689

TABLE III
BASELINE RESULTS FOR THE OCCURRENCE SUB-CHALLENGE ON THE TEST PARTITION MEASURED IN F1 SCORE, 2AFC AND ACCURACY.

Action Unit Database Geometric Appearance
F1 2AFC Accuracy F1 2AFC Accuracy

AU1 BP4D 0.188 0.254 0.625 0.180 0.183 0.497
AU2 BP4D 0.185 0.214 0.696 0.159 0.234 0.611
AU4 BP4D 0.197 0.269 0.541 0.225 0.311 0.645
AU6 BP4D 0.645 0.177 0.753 0.671 0.136 0.720
AU7 BP4D 0.799 0.164 0.759 0.751 0.264 0.679
AU10 BP4D 0.801 0.882 0.774 0.799 0.881 0.774
AU12 BP4D 0.801 0.930 0.803 0.792 0.922 0.790
AU14 BP4D 0.720 0.293 0.673 0.666 0.321 0.612
AU15 BP4D 0.238 0.251 0.622 0.139 0.495 0.530
AU17 BP4D 0.311 0.289 0.564 0.245 0.369 0.391
AU23 BP4D 0.320 0.286 0.723 0.239 0.433 0.606
AU2 SEMAINE 0.569 0.102 0.832 0.755 0.106 0.938
AU12 SEMAINE 0.595 0.194 0.755 0.517 0.236 0.726
AU17 SEMAINE 0.091 0.168 0.926 0.066 0.261 0.927
AU25 SEMAINE 0.445 0.299 0.680 0.400 0.313 0.357
AU28 SEMAINE 0.250 0.106 0.971 0.009 0.289 0.982
AU45 SEMAINE 0.396 0.286 0.695 0.209 0.370 0.760

Weighted Mean — 0.444 0.302 0.730 0.400 0.359 0.681

TABLE IV
BASELINE RESULTS FOR THE PRE-SEGMENTED INTENSITY ESTIMATION SUB-CHALLENGE ON THE DEVELOPMENT PARTITION MEASURED IN MSE

AND PCC.

Action Unit Database Chance level Geometric Appearance
MSE MSE PCC ICC MSE PCC ICC

AU6 BP4D 0.879 0.529 0.696 0.684 0.828 0.473 0.372
AU10 BP4D 1.100 0.678 0.679 0.601 0.689 0.666 0.651
AU12 BP4D 1.465 0.483 0.823 0.797 0.790 0.746 0.744
AU14 BP4D 0.835 0.629 0.665 0.642 0.751 0.637 0.637
AU17 BP4D 0.695 0.694 0.151 0.042 0.668 0.210 0.108
Mean — 0.995 0.603 0.603 0.553 0.745 0.546 0.502

σ(X,Y ) =


1, if X > Y

0.5, if X == Y

0, if X < Y

where Ŷ is a vector of decision function output values, n
is the total number of true negative and p the total number
of true positive instances in Ŷ , and P and N are subsets

of Ŷ corresponding to all positive and negative instances,
respectively.

Since there are two databases in the occurrence sub-
challenge with different number of samples each, the to-
tal scores have been computed across two databases as a
weighted mean based on the total number of samples in each
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TABLE V
BASELINE RESULTS FOR THE PRE-SEGMENTED INTENSITY ESTIMATION SUB-CHALLENGE ON THE TEST PARTITION MEASURED IN MSE AND PCC.

Action Unit Database Chance level Geometric Appearance
MSE MSE PCC ICC MSE PCC ICC

AU6 BP4D 0.880 0.901 0.479 0.475 0.774 0.409 0.330
AU10 BP4D 0.825 0.771 0.549 0.510 0.900 0.489 0.483
AU12 BP4D 0.790 0.450 0.691 0.685 0.945 0.613 0.604
AU14 BP4D 0.722 0.572 0.611 0.592 0.960 0.498 0.497
AU17 BP4D 0.628 0.574 0.153 0.050 0.596 0.187 0.107
Mean — 0.769 0.654 0.497 0.462 0.835 0.439 0.404

TABLE VI
BASELINE RESULTS FOR THE FULLY AUTOMATIC INTENSITY ESTIMATION SUB-CHALLENGE ON THE DEVELOPMENT PARTITION MEASURED IN MSE

AND PCC.

Action Unit Database Chance level Geometric Appearance
MSE MSE PCC ICC MSE PCC ICC

AU6 BP4D 1.914 1.103 0.699 0.690 1.020 0.720 0.694
AU10 BP4D 2.246 1.255 0.715 0.696 1.289 0.683 0.641
AU12 BP4D 2.439 2.137 0.706 0.653 2.166 0.695 0.670
AU14 BP4D 1.756 1.548 0.472 0.453 1.614 0.396 0.325
AU17 BP4D 1.019 0.960 0.365 0.278 0.991 0.303 0.185
Mean — 1.875 1.401 0.592 0.554 1.416 0.559 0.503

TABLE VII
BASELINE RESULTS FOR THE FULLY AUTOMATIC INTENSITY ESTIMATION SUB-CHALLENGE ON THE TEST PARTITION MEASURED IN MSE AND PCC.

Action Unit Database Chance level Geometric Appearance
MSE MSE PCC ICC MSE PCC ICC

AU6 BP4D 1.992 1.004 0.698 0.670 1.366 0.644 0.622
AU10 BP4D 2.135 0.897 0.757 0.732 1.209 0.686 0.656
AU12 BP4D 2.205 0.738 0.816 0.780 1.092 0.768 0.767
AU14 BP4D 2.020 1.227 0.650 0.586 1.526 0.521 0.389
AU17 BP4D 0.656 0.806 0.184 0.144 0.819 0.225 0.168
Mean — 1.802 0.934 0.621 0.582 1.202 0.569 0.520

database.
Results for intensity estimation on the publicly available

training/development partition are shown in Tables IV and
VI corresponding to the pre-segmented intensity estimation
sub-challenge as well as fully automatic one respectively.
Baseline intensity estimation performance is measured by
means of PCC and Mean Squared Error (MSE).

Both occurrence detection and intensity estimation base-
lines perform well over chance levels, but are clearly a
long way of from being accurate enough to be used in real
world-applications. An exception to this is the occurrence
detection of AU12, which with an F1-score of 0.86 can be
said to be reliable. A high 2AFC score for this AU (0.92)
indicates that the classifier for AU12 also has a low number
of false positives. The same can be said for AU10 detection
performance. Intensity baselines overall demonstrate similar
behaviour, with the best results obtained for AU10 and AU12.
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V. CONCLUSION

In this paper we have presented the Second Facial Ex-
pression Recognition and Analysis Challenge (FERA 2015)
dedicated to FACS Action Units detection and intensity
estimation on the highly challenging set of data. The dataset
for this challenge has been composed using two facial
expression databases BP4D and SEMAINE. This is the first
time these datasets have been applied to FACS AU analysis
except the training and development partitions of the former.
The challenge addresses such significant problems of the
field as expression intensity estimation as well as robust
detection under non-frontal head poses, partial occlusions
and environmental factors. Baseline results obtained using
geometric and appearance features demonstrate a huge room
for potential improvements to be brought by the challenge
participants.
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