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Abstract—Facial actions cause local appearance changes over
time, and thus dynamic texture descriptors should inherently
be more suitable for facial action detection than their static
variants. In this paper we propose the novel dynamic appearance
descriptor Local Gabor Binary Patterns from Three Orthogonal
Planes (LGBP-TOP), combining the previous success of LGBP-
based expression recognition with TOP extensions of other
descriptors. LGBP-TOP combines spatial and dynamic texture
analysis with Gabor filtering to achieve unprecedented levels of
recognition accuracy in real-time. While TOP features risk being
sensitive to misalignment of consecutive face images, a rigorous
analysis of the descriptor shows the relative robustness of LGBP-
TOP to face registration errors caused by errors in rotational
alignment. Experiments on the MMI Facial Expression and Cohn-
Kanade databases show that for the problem of FACS Action Unit
detection, LGBP-TOP outperforms both its static variant LGBP
and the related dynamic appearance descriptor LBP-TOP.

I. INTRODUCTION

The face is the primary means to identify other members, to
determine their personality, to interpret what has been said, and
to understand someone’s emotional state and intentions on the
basis of the shown facial expression. Automatic face analysis
in general and facial expression recognition in particular has
therefore become a popular topic in recent years, with the aim
of creating machines with interfaces that are better aligned
to human communication. One of the biggest challenges in
creating such interfaces lies in the fact that people communi-
cate a large amount of information non-verbally through e.g.
body gestures and facial expressions [1], which are difficult to
measure automatically.

In early 1978 Paul Ekman and Wallace Friesen published
their adopted version of Facial Action Coding System (FACS)
[2], originally developed by the Swedish anatomist Carl Her-
man Hjortsjo in the late 1960s [3]. FACS is the best known and
most commonly used system developed for human observers
to objectively describe facial activities. The coding system
defines 32 atomic facial muscle actions called Action Units
(AUs). With FACS, every possible facial expression can be
described as a combination of AUs. It enabled social scientists
and psychologists to use mathematical and statistical theory to
study facial expressions.

In addition, because AUs are independent of interpretation,
they can be used as an objective, low-dimensional basis for
assigning meaning to expressions, including the basic emo-
tions and cognitive states like interest and puzzlement, social
behaviours like agreement and disagreement, social signals like
status, trustworthiness and so on. For instance, an expression
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typically associated with happiness contains AU6 and AU12
and sadness contains AU1, AU4 and AU15. Researchers have
employed FACS to study everything from deception detection
[4], [5], [6] to data-driven avatars [7].

There are a number of existing automatic facial expression
recognition techniques available today, but there remain a
number of outstanding issues in this field. These include
the ability to deal with non-frontal head poses, accurate and
explicit temporal analysis of facial actions, subject independent
facial feature tracking, true intensity estimation, and dealing
with subtle, natural expressions. In this paper we will propose
a novel appearance descriptor designed to address the issues
of temporal analysis and intensity estimation.

While the recently held first Facial Expression Recognition
Challenge (FERA) indicated that the recognition of a small
set of discrete expressions, such as the six basic emotions [8],
is basically a solved case if the user is known, the same if
far from true for AU detection. In particular, the winners of
that challenge attained an average 2AFC score of only 75.2%
[9]. There is thus still a large gap between accurate discrete
expression recognition and AU detection, even on data that is
recorded under fairly well-controlled conditions.

Almost every existing appearance-based approach to AU
detection uses static descriptors, i.e. every data point/feature is
defined based on a single moment in time. However, in essence
AU detection is action detection, and rather than looking only
at the current appearance, one should look at the changes in
appearance over time. It is in this context that we present our
novel approach to AU detection, aiming to improve accuracy
while remaining subject independent and maintaining soft-
real time computational performance. We propose to extend
the previously successful LGBP method [9] to the temporal
domain, resulting in Local Gabor Binary Patterns from Three
Orthogonal Planes (LGBP-TOP). We experimentally show that
the proposed descriptor significantly outperforms its static
variant LGBP and its close spatio-temporal relative LBP-TOP.

LGBP-TOP applies LGBP independently on three orthog-
onal planes: the spatial x-y plane, and the temporal x-t and
y-t planes. In the temporal planes, it essentially encodes facial
movements as up/down or left/right movements of edges. Of
course, for facial expression analysis, it is essential that the
motion of these edges is caused by facial muscle activations,
rather than by rigid head movements, camera motion, or errors
in the detection and registration of the face.

As face registration aims to remove any motion caused by
head and/or camera motion, it is the errors in face registration



that are important to take into account when evaluating a
dynamic appearance descriptor. In this paper, we go beyond
simply extending yet another appearance descriptor to the
temporal domain. We additionally hypothesise that LGBP is
more robust to face registration errors than simple LBP is, due
to the smoothing effect of the Gabor filters. We experimentally
validate this hypothesis, comparing LGBP-TOP with LBP-
TOP on data where noise is added in the form of random
rotation registration errors.

Our contribution is thus threefold:

e  We propose the dynamic appearance descriptor Local
Gabor Binary Patterns from Three Orthogonal Planes
(LGBP-TOP)

e  We apply LGBP-TOP for the first time to AU detection
and show a significantly improved accuracy over all
related approaches (i.e. LBP, LBP-TOP and LGBP)

e  We analyse the robustness of TOP methods to varia-
tions in rotation errors during face alignment and show
that LGBP-TOP is least sensitive to this

The remainder of this paper is organised as follows: section
II provides an overview of the related work; section III gives
a detailed theoretical description of the proposed approach;
section IV provides all the methodological details about the
system implemented and data used to evaluate the proposed
approach; and section V presents the evaluation results. Finally,
our concluding remarks are provided in section VI.

II. RELATED WORK

Facial expression recognition in general and Action Unit
Detection in particular has been studied extensively in the past
decade. As a result, it is impossible to provide a comprehensive
review of the field here. Instead we provide an overview of the
relevant works only, focussing on related static and dynamic
appearance-based methods. For a general overview of the field
of expression recognition we refer the reader to two excellent
recent surveys [10], [11].

Gabor wavelet filtering is a successful filter bank approach
that is sensitive to fine wave-like image structures such as those
corresponding to wrinkles and bulges. In order to capture these
structures, it is important to use banks of filters with the right
frequencies given a certain face resolution so that the wave
frequency corresponds to the expected wrinkle characteristics.
In addition, the right filter orientations have to be included to
capture relevant directions of edges, and one or more spatial
scales have to be selected to determine their spatial extent.
Gabor magnitudes are commonly adopted as features as they
are robust to misalignment (e.g. [12], [13], [14]). Computing
Gabor filters has however a high computational cost, and the
dimensionality of the output can be very large, especially if
they are applied holistically with a wide range of frequencies,
scales, and orientations.

The LBP features were originally proposed for texture
analysis, and recently have become very popular for face
analysis. The local binary pattern of a pixel is defined as a
8-dimensional binary vector that results from comparing its
intensity against the intensity of each of the neighbouring
pixels (see Fig. 1). The LBP descriptor is a histogram where
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Fig. 1. Computing LBP response from a pixel’s local neighbourhood.

each bin corresponds to one of the different possible binary
patterns, resulting in a 256-dimensional descriptor of the basic
LBP. However, it has been shown that some of the patterns are
more prone to encode noise or spurious structures. In practise,
the most popular version of LBPs is the so-called uniform
pattern LBP [15].

The main advantages of LBP features are their tolerance
to illumination changes, their computational simplicity, and
their sensitivity to local structures while remaining robust
to variations in face alignment [16]. They are however not
inherently robust to rotations, though some effort has been
made to modify the descriptor to include this property [15], but
in practice this extension was less accurate than the original.
A review of other LBP-based descriptors can be found in [17].

Recently, Senechal et al. [9] and Wu et al. [18] proposed to
use appearance features extracted in a multi-layer architecture,
of which Local Gabor Binary Patterns (LGBP) is a prime
example. LGBPs are extracted by first creating a set of Gabor
magnitude response images (one for every filter in a filter
bank) and then applying an LBP operator to each of them.
This has been shown to be very robust to illumination changes
and misalignment [19]. The winner of the FERA 2011 AU
detection sub-challenge adopted this architecture. Wu et al.
[18] employed two layers of Gabor features, called G2. The
idea was that such representation could encode image textures
that go beyond edges and bars. They further compared single
layer (LBP, Gabor) and dual layer (G2, LGBP) architectures
for texture-based AU detection, and concluded that dual layer
architectures provide small but consistent improvements.

Zhao and Pietikainen [20] proposed an extension of LBPs
to spatio-temporal volumes. In order to make the approach
computationally simple, the proposed extension computes LBP
features only on Three Orthogonal Planes (TOP) within a
fixed temporal window: XY, XT, and YT, resulting in the
LBP-TOP descriptor (as shown in Fig.3). Similarly, LPQ is
extended to LPQ-TOP [21]. In [21], the performance of both
LBP-TOP and LPQ-TOP for automatic AU detection was
evaluated and compared to that of their static counterparts.
The authors apply the descriptors in a block-based holistic
manner, and conclude that dynamic appearance descriptors
offer a significant performance improvement.

In [22] the authors proposed dynamic features based on
Haar-like features. During a training phase, the distribution
of values of each Haar-like feature under an AU is modelled
through a Normal distribution. To build the dynamic feature,
the full set of Haar-like features for every frame within a
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Fig. 2. Creating LGBP features: a) original image, b) Gabor pictures, and

¢) concatenation of resulting histograms after applying LBP.

temporal window is computed. Then, a binary pattern of the
length of the temporal window is obtained for each feature
by thresholding over the Mahalanobis distance respect to the
corresponding Normal distribution. This has been extended
in [23], although it was only applied to the recognition of
prototypical facial expressions.

III. LGBP-TOP

Local Gabor Binary Patterns from Three Orthogonal Planes
(LGBP-TOP) splits face video into space-time video-volumes,
convolves all x-y, x-t, and y-t intersections of each video with
a bank of Gabor filters, and finally applies LBP to all of the
filtered intersections. Below we describe this process in detail.

A set of Gabor filters results in a number of filtered copies
of the original image, commonly called Gabor pictures (GP).
Each GP is the result of the original image convolved with the
2D complex Gabor function. A 2D complex Gabor function in
turn is the convolution of a 2D sinusoidal carrier with spatial
frequencies ug and vy and a 2D Gaussian with amplitude K,
orientation ¢ and spatial scales a and b. Here, for simplicity
we employ the same spatial scales and frequencies in x and
y direction, and unit amplitude, i.e. a = b = o, ug = vg = ¢,
K = 1. Our 2D complex Gabor function then becomes:

G(x,y) =exp(—mo*((x — z0); + (y — y0)7)
exp(j(2m¢(z +y) + P))) (D

(x —xg)r = (x — x0) cosl + (y — yo) sin b
(y —yo)r = —(x — mg)sin@ + (y — yo) cos @

We take the magnitude response of this function, which
cancels out the effect of the phase P. Figure 2 provides an
example of how an original image results in a set of Gabor
Pictures after being convolved with a set of Gabor filters.

In basic LBP, for every pixel of the image, its grayscale
value is compared with those of the eight surrounding pixels
(see Fig. 1). The value of each neighbour is set to O if its
grayscale value is smaller than the central pixel’s value and to
1 otherwise:
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Thus an eight digit binary number called the local binary
pattern is composed, which allows 256 possible values.

It has been shown that patterns which contain at most
two bitwise transitions from O to 1 or vice versa when the
bit pattern is traversed circularly account for about 90% of
the LBP responses, with only 59 patterns representing only
strong edges and corners. This fact was used to create a
modification of the original LBP operator called Uniform LBP,
which allows to significantly reduce the amount of bins of the
feature histogram by omitting all non-uniform patterns.

To lower the dimensionality of the problem further and
attain a degree of shift-robustness, images are usually divided
by a regular grid of m x n local regions from which LBP
histograms can be extracted, which can then be concatenated
into a histogram. This block-based representation of local
texture descriptors was first proposed by Ahonen et al. [24].

In LGBP, the Gabor and LBP filtering follow one after
the other. But whereas in normal LBP the LBP filter operates
only on the original image, in LGBP it operates on a number of
filtered images, because a bank of different Gabor filters is used
to generate response images. The final LGBP feature histogram
of the image is then composed by a simple concatenation of
the histograms composed for each GP, with histogram blocks
in the same manner as for LBP. For example, if we have 18
Gabor filters and apply Uniform LBP to an image split into 16
(4 x 4 grid) local regions we would obtain a feature histogram
descriptor of dimensionality 18 * 16 * 59 = 16 992.

Volume Local Binary Patterns (VLBP) or 3D Local Binary
Patterns (3D LBP) is an extension of the original LBP operator
to the spatio-temporal domain'. VLBP considers a block of
video frames as a single 3 dimensional array of grayscale
values. Following the rules of the basic LBP for each pixel it
calculates a binary number based on the intensity comparison
between the centre pixel and all its neighbours, including the 9
neighbour pixels in the previous and next frame, which leads
to 3 % 8 + 2 = 26 long local binary patterns. This results in a
VLBP dimensionality of 22, which makes VLBP calculation
computationally hard and risks succumbing to the curse of
dimensionality.

A simplified, more practical version of the approach was
proposed by its creators to make it more attractive for further
usage called Local Binary Patterns from Three Orthogonal
Planes (LBP-TOP). LBP-TOP applies LBP on every xy, xt,
and yt slice separately, averages the histograms over all slices
in a single plane orientation, and concatenates the resulting
histograms of the three dimensions. This is shown in Fig.
3. With LBP-TOP it is possible to combine motion and
appearance analyse in one operator with the feature histogram
length 3 % 28 (3 % 59 if Uniform LBP is used).

In LGBP-TOP a set of GPs of each block of frames within
a video sequence is created. Each GP-video-volume is created
by filtering every frame within the block with a specific Gabor
filter. These GP-video-volumes are consequentially processed
by the LBP-TOP operator described above. The resulting fea-
ture histogram of the block is then composed by concatenation
of histograms built for each of them.

INote that despite its name, V-LGBP [25] does not encode temporal
dynamics. Instead it operates on static images, treating the set of Gabor filter
responses as the third dimension.
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Fig. 3. Three planes in spatio-temporal domain to extract TOP features, and
the histogram concatenated from three planes. a) original image, b) the x-y,
y-t, and x-t planes, and c¢) concatenation of resulting histograms into a single
feature set.

IV. EVALUATION METHODOLOGY

Our aim is to ascertain that the spatio-temporal descriptor
LGBP-TOP results in more accurate AU predictions than both
its static counterpart LGBP and other dynamic appearance
descriptors, in particular LBP-TOP. To do so, we used 314
videos of 17 different subjects from the MMI facial expression
database [26] and from the original Cohn-Kanade database
[27] 205 video sequences of 138 different subjects. While
we acknowledge that these databases of mainly posed facial
expressions do not necessarily allow generalisation to perfor-
mance of a system in-the-wild, they are entirely suitable for
the type of comparative studies we aim to do here. In this
study, Support Vector Machines (SVM) have been used in a
10-fold subject independent cross-validation procedure.

Since MMI and Cohn-Kanade have different ways of
organising data we applied different data preprocessing to each
to normalise the data and prepare it for further processing with
a variety of descriptors and SVMs. In MMI every expression is
recorded in a single video file recorded at 25 frames per second
and a spatial resolution of 720x 576 pixels. In Cohn-Kanade all
expressions are stored as sequences of images with a resolution
of 640 x 490 pixels. Facial points were automatically detected
in faces of both databases using the publicly available Local
Evidence Aggregated Regression (LEAR) detector [28], which
have been used in order to perform accurate face localisation.

Although the LEAR-detected points allow accurate face
localisation, without adjustment the obtained facial image
dimensions might vary (about 350 x 400 for Cohn-Kanade
and about 200 x 300 for MMI). This variation is too small to
seriously affect static descriptors, but might have very serious
impact on dynamic approaches, where pixel to pixel precision
is required within blocks of frames. Thus, for every block
of frames composed, the following normalisation scheme was
applied:

e Determine the smallest frame resolution within the
block (N x M),

e  For every other frame only keep N x M pixels from
its centre;

Note that we did not scale the image - as the temporal
windows are relatively short, we assume here that variations
in detected face dimensions are caused by errors in face
localisation rather than real face motion.

Because of the large imbalance between positive and
negative examples in AU detection, we employed the 2AFC

classification performance measure to compare the various
approaches. The 2AFC score is a good approximation of the
area under the receiver operator characteristic curve (AUC).
And while some previous works employ the F1 measure for
the same reason, the 2AFC classification performance score
considers both correctly identified positive as well as negative
samples, whereas the F1 measure does not take True Negative
predictions into account. In this particular study the 2AFC
score has been calculated based on the SVM decision function
output values as follows:

n p
. 1
2AFC(Y) = iy Ni)———,
¥) =2 > 0By Ni)os— 3
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where Y is a vector of decision function output values, n
is the total number of true negative and p the total number
of true positive instances in Y, and P and N are subsets
of Y corresponding to all positive and negative instances,
respectively.

In order to focus on the performance of the features rather
than the classifier, we used a linear kernel SVM. This requires
only the slack variable C to be optimised. This value was
determined by a separate automatic 3-fold cross-validation
loop during the training phase of every fold, for every AU,
from a range of 0.01 to 5000.

The actual Gabor filters used in the experimental system
have been generated using the following set of values for the
sinusoidal spatial frequency ¢ and Gaussian orientation 6:
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This results in 18 different filters applied to all input frames.
Frames were divided into 4 x 4 spatial blocks, and the temporal
window length of the space-time video-volumes was fixed at
5 frames. This results in 18 X 4 x4 x 59 x 3 = 50976 features
per set of frames. This is a very large number, and much larger
than the number of training instances in our dataset. This risks
a negative impact of the curse of dimensionality, and we thus
employ feature selection to reduce the dimensionality of our
classification problem. We used the feature selection technique
proposed by Chen and Lin [29]. This involves calculating the
F1-score for every feature, and then gradually adding 5% of the
features with the highest score in a 5-fold subject independent
cross-validation procedure, comparing at each stage the 2AFC
score for the selected subset of features. The number of
features increase until the 2AFC stops improving. The subset
of features used to obtain the highest 2AFC is then used
for the following experimental stages. The feature selection
algorithm was applied to all descriptors being studied without
any changes.

SVM training and testing is a very time consuming process,
therefore we only tested AU detection performance on the
following set: AU2, AU6, AU7, AU12, AU20, AU2S5, and
AUA4S.



V. EXPERIMENTAL RESULTS

This section provides an explicit explanation of the experi-
ments performed on the LGBP-TOP approach being proposed
as well as a number of similar techniques for the purposes
of comparison. Two sets of experiments have been performed
in order to check whether the hypotheses formulated in the
introduction are correct or not.

Our first set of experiments is designed to determine
whether LGBP-TOP provides better overall recognition per-
formance than the approaches LBP, LGBP and LBP-TOP. The
results are shown in Fig. 4 and Fig. 5, from which we can
conclude the following:

e In general a combination of LBPs and a number of
Gabor filters is more accurate than that of the original
LBP

e  Extending the appearance descriptors to the temporal
domain using TOP improves accuracy

e LGBP-TOP attains the best results because of the
combination of the above approaches

On the whole, LGBP-TOP has an improvement compared
to LBP in terms of 2AFC score of 14% for the MMI data,
and 18% for the Cohn-Kanade data, which is a considerable
improvement. On the MMI data, AU2, AU6, and AU20 are
detected with more than 90% 2AFC, and on Cohn-Kanade
AU2, AU6, AU12, AU30, and AU25 are detected with over
93% 2AFC.
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Fig. 4. AU detection results measured in 2AFC comparing LBP, LGBP, LBP-
TOP and LGBP-TOP descriptors based on posed data taken from the MMI
database

The second set of experiments is intended to show that
Gabor filtering helps against artefacts caused by inaccurate
face alignment, which is a very common situation in real-life
settings. To verify this, for every space-time video-volume all
but the first frame was perturbed by a random rotation around
the centre of the image. We experimented with a random
rotation drawn from a Normal distribution with mean 0 and a
standard deviation of 3, 7 or 11 degrees. Results shown in Fig.
6 are the average 2AFC scores for AU2, AU6, and AU12.

As can be clearly seen from the obtained results, perfor-
mance reduction for LBP-TOP is close to linear and therefore
much more intense than that for LGBP-TOP, which shows a
curve close to inverse logarithmic, confirming our hypothesis

N LBP W LBP-TOP

W LGBP ® LGBP-TOP

Average AU2 AUB AU7 AU12 AU20 AU25 Au45

Fig. 5. AU detection results measured in 2AFC comparing LBP, LGBP,
LBP-TOP and LGBP-TOP descriptors based on posed data taken from the
Cohn-Kanade database
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Fig. 6. Analysis of sensitivity to errors in alignment. Images are rotated
randomly from a Normal distribution with std 3, 7 and 11 degrees. Accuracy
measured in 2AFC.

that the Gabor filtering reduces the sensitivity to registration
errors. But perhaps the most unexpected result of this study is
the observation that the static descriptors suffer far more from
the registration errors than the TOP features. This is something
that warrants further investigation.

Taking a closer look at the consistency of the selected
features, we found that the number of temporal features
selected was approximately twice as big as the number of
static appearance features across all AUs (60 —65% temporal).
Considering however that TOP processing results in twice
the number of temporal features in the original set, we can
only conclude that both appearance and temporal features are
selected with equal probability.

VI. CONCLUSION

Dynamic features are more powerful descriptors than their
static counterparts, as they are usually a generalisation. Fur-
thermore, they can truly encode an action, which has by
definition a temporal component. However, the dimensionality
of the resulting feature vector is very large, and using a fixed-
length window is not a natural way of dealing with actions
of varying speed. A novel dynamic appearance descriptor
for automatic facial expression recognition called LGBP-TOP
has been proposed, and shown to increase the overall level
of recognition accuracy. The use of Gabor filters has also



been shown to be moderately robust to face alignment er-
rors in terms of random rotation errors of faces. A number
of experiments show that LGBP-TOP is a very promising
approach, and clearly shows that the right feature extraction
is a very important aspect of facial expression recognition,
and the possibilities of further improvement of the current
technology should be carefully investigated. In particular we
aim to investigate the performance on non-posed datasets for
all AUs, and perform a sensitivity analysis to other alignment
errors such as variations in shift and zoom levels. We also
aim to address the issue of fixed-length temporal windows and
variable frame rates.
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