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Abstract. Capretta’s delay monad can be used to model partial compu-
tations, but it has the “wrong” notion of built-in equality, strong bisimi-
larity. An alternative is to quotient the delay monad by the “right” notion
of equality, weak bisimilarity. However, recent work by Chapman et al.
suggests that it is impossible to define a monad structure on the re-
sulting construction in common forms of type theory without assuming
(instances of) the axiom of countable choice.
Using an idea from homotopy type theory—a higher inductive-inductive
type—we construct a partiality monad without relying on countable
choice. We prove that, in the presence of countable choice, our partiality
monad is equivalent to the delay monad quotiented by weak bisimilarity.
Furthermore we outline several applications.

1 Introduction

Computational effects can be modelled using monads, and in some functional
programming languages (notably Haskell) they are commonly used as a program
structuring device. In the presence of dependent types one can both write and
reason about monadic programs. From a type theorist’s point of view, even a
“pure” functional language like Haskell is not really pure as it has built-in effects,
one of which is partiality: a function does not necessarily terminate. It is thus
natural to look for a partiality monad which makes it possible to model partial
computations and to reason about possibly non-terminating programs.

Capretta modeled partial computations using a coinductive construction that
we call the delay monad [6]. We use the notation D(A) for Capretta’s type of
delayed computations over a type A. D(A) is coinductively generated by now :
A → D(A) and later : D(A) → D(A). Examples of elements of D(A) include
now(a) and later(later(now(a))), as well as the infinitely delayed value ⊥, defined
by the guarded equation ⊥ = later(⊥). We can model recursive programs as
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Kleisli arrows A → D(B), and we can construct fixpoints of (ω-continuous)
functions of type (A→ D(B))→ (A→ D(B)), see Benton et al. [5].

Unfortunately, Capretta’s delay monad is sometimes too intensional. It is
often appropriate to treat two computations as equal if they terminate with the
same value, but the delay monad allows us to count the number of “steps” (later
constructors) used by a computation.

Capretta addressed this problem by defining a relation that we call weak
bisimilarity, ∼D, and that relates expressions that only differ by a finite number
of later constructors [6]. Capretta proved that the delay monad combined with
weak bisimilarity is a monad in the category of setoids.

A setoid is a pair consisting of a type and an equivalence relation on that
type. Setoids are sometimes used to approximate quotient types in type theories
that lack support for quotients. However, a major difference between setoids
and quotient types is that setoids do not provide a mechanism for information
hiding. Using the setoid approach basically boils down to introducing a new
relation together with the convention that all constructions have to respect this
relation. A problem with this approach is that it can lead to something which
has informally become known as setoid hell, in which one is forced to prove that
a number of constructions—even some that do not depend on implementation
details by, say, pattern matching on the now and later constructors—preserve
setoid relations. This kind of problem does not afflict quotient types.

In a type theory with quotient types [14], one can consider using the quotient
D(A)/∼D as the type of partial computations of type A. This idea was discussed
in a talk by Uustalu [7], reporting on joint work with Capretta and the first-
named author of the current paper. However, the idea does not seem to work as
intended. It is an open problem—and believed to be impossible—to show that
this construction actually constitutes a monad (in “usual” forms of type theory).

With an additional assumption, Chapman et al. have managed to show that
the partiality operator D(−)/∼D is a monad [8]. This additional assumption is
known as countable choice. To express what this is, first note that the proposi-
tional truncation, written ‖−‖ and sometimes called “squashing”, is an operation
that turns a type into a proposition (a type with at most one element). We can
see ‖A‖ as the quotient of A by the total relation. Countable choice says that Π
and ‖−‖ commute if the domain is the natural numbers, in the sense that there
is a function from Πn:N ‖P (n)‖ to ‖Πn:N P (n)‖. Even though this principle holds
in some models, its status in type theory is unclear: the principle is believed to
be independent of several variants of type theory. Recently Coquand et al. have
shown that it cannot be derived in a theory with propositional truncation and
a single univalent universe [10], speculating that the result might extend to a
theory with a hierarchy of universes. Furthermore Richman argues that count-
able choice should be avoided in constructive reasoning [18]. The main purpose
of the present paper is to define a partiality monad without making use of this
principle.

The situation with the quotiented delay monad is similar to that of one vari-
ant of the real numbers in constructive mathematics. If the Cauchy reals are



defined as a quotient, then it is impossible to prove a specific form of the state-
ment that every Cauchy sequence of Cauchy reals has a limit using IZFRef , a
constructive set theory without countable choice [17]. It is suspected that cor-
responding statements are also impossible to prove in several variants of type
theory. An alternative solution was put forward in the context of homotopy type
theory [20]. In that approach, the reals are constructed inductively simultane-
ously with a notion of closeness, and the quotienting is done directly in the
definition using a higher inductive-inductive type (HIIT).

In 2015, Andrej Bauer and the first-named author of the current paper sug-
gested to use a similar approach to define a partiality monad without using
countable choice, an idea which was mentioned by Chapman et al. [8]. Here, we
show that this is indeed possible.

We do not make use of the full power of HIITs, but restrict ourselves to set-
truncated HIITs. We call such types quotient inductive-inductive types, QIITs,
following Altenkirch and Kaposi [1]. Some of the theory of QIITs is developed
in the forthcoming PhD thesis of Dijkstra [12], see also Altenkirch et al. [2].
Although type theory extended with QIITs is still experimental and currently
lacks a solid foundation, QIITs are a significantly simpler concept than full-blown
HIITs. It is conjectured that QIITs exist in some computational models of type
theory.

The type theory that we work in can be described as a fragment of the theory
considered in the standard textbook on homotopy type theory [20] (henceforth
referred to as the HoTT book), and is quite close to the theory considered
by Chapman et al. [8]. Details are given in Sect. 2. The construction of our
partiality monad is given in Sect. 3, together with its elimination principle and
some properties. Furthermore we show that it gives us free ω-cpos in a sense
that we will make precise. In Sect. 4 we show that, assuming countable choice,
our partiality monad is equivalent to (in bijective correspondence to) the one
of Chapman et al. [8]. We outline some applications of the partiality monad in
Sect. 5, and conclude with a short discussion in Sect. 6.

Agda Formalisation. The paper is accompanied by a formal development [3]
in Agda.

At the time of writing, Agda does not directly support QIITs. We have chosen
to represent them by postulating their elimination principles together with the
equalities they are supposed to satisfy. In some cases (but not for the partiality
monad) we have also made use of Agda’s experimental rewriting feature [9] to
turn postulated equalities into judgmental computation rules.

Note that there are differences between the Agda code and the presentation
in the text. For one, the formalisation discusses various additional topics that
have been omitted in the paper for reasons of space, and is more rigorous. Fur-
thermore, the paper defines the partiality monad’s elimination principle as a
universal property. In the formalisation the elimination principle is given as an
induction principle, but we also prove that this principle is interderivable with
the universal property. Finally there are a number of small differences between



the formalisation and the text, and some results in the paper have not been
formalised at all, most notably the results about the reals in Sect. 5.2.

2 Background: Type Theory with Quotient
Inductive-Inductive Types

We work in intensional type theory of Martin-Löf style with all the usual com-
ponents (e.g. Π, Σ, inductive types), including the identity type (we use the
notation x = y). We assume that equality of functions is extensional, and that
(strong) bisimilarity implies equality for coinductive types.

Chapman et al. [8] assume the axiom of uniqueness of identity proofs, UIP, for
all small types (types in the lowest universe). UIP holds for a type A if, for any
elements x, y : A, if we have equalities p, q : x = y, then we have p = q. Instead
of postulating an axiom, we prefer to work in a more general setting and restrict
ourselves to types with the corresponding property. This approach is compatible
with homotopy type theory. In the language of homotopy type theory, we work
with sets or 0-truncated types; a type is a set if and only if it satisfies UIP. When
we write A : Set, we mean that A is a type (in some universe) with the property
of being a set; and when we write B : A → Set, we mean that B is a family of
types such that each B(a) is a set.

Similarly to A : Set, we write P : Prop for a type P with the property that
it is a proposition, i.e. a (−1)-truncated type, i.e. a type with the property that
any two of its elements are equal. A proposition is also a set. The type of all
propositions in a certain universe is closed under all operations that are relevant
to us, and the same applies to sets.

In addition to UIP, Chapman et al. [8] assume propositional extensionality—
that logically equivalent propositions are equal—for all small propositions. This
property is equivalent to the univalence axiom [20], restricted to (small) propo-
sitions. Just like Chapman et al., we only require propositional extensionality
(not full univalence) for our development, with the exception that univalence is
used to show that certain precategories (in the sense of the HoTT book [20])
are categories. For an example of how propositional extensionality is used, see
Lemma 7.

Chapman et al. [8] also assume the existence of quotient types in the style
of Hofmann [14]. Given a set A and a propositional relation ∼ on it, the (set-)
quotient A/∼ can in homotopy type theory be constructed as a higher inductive
type with three constructors [20]:

[−] : A→ A/∼
[−]= : Πa,b:A a ∼ b→ [a] = [b]

irr : Πx,y:A/∼Πp,q:x=y p = q

The last constructor irr ensures that any two parallel equalities are equal, that
is, that A/∼ is set-truncated. We call a higher inductive type with such a set-
truncation constructor a quotient inductive type (QIT).



As noted above, Chapman et al. [8] use countable choice, which we want to
avoid. Instead we make use of quotient inductive-inductive types (QIITs) [12; 2].
From the point of view of homotopy type theory, these are set-truncated higher
inductive-inductive types (HIITs); some other examples of HIITs can be found
in the HoTT book [20, Chap. 11]. While it seems plausible that QIITs exist in
some computational models of type theory, this has yet to be determined.

3 The Partiality Monad

As indicated in the introduction we define the partiality monad (−)⊥ as a QIIT,
defining the type A⊥ simultaneously with an ordering relation v on A⊥. We will
first describe the constructors and the elimination principle of this definition, and
then show that A⊥ is the underlying type of the free ω-cpo (see Definition 4) on
A, thus proving that (−)⊥ is a monad. In the final part of this section we will
give a characterisation of the ordering relation; this is perhaps not as trivial as
one might expect, given the relation’s definition.

Note that our construction of A⊥ can be seen as a further example of a
free algebraic structure defined in type theory. It was discussed in the HoTT
book [20, Chap. 6.11] that free groups can be defined as (in our terminology)
quotient inductive types, while it is well-known that even simpler examples can
be defined as ordinary inductive types.

3.1 The Definition and Its Elimination Principles

Let A be a set. We define the set A⊥ simultaneously with a binary proposi-
tional relation on A⊥, written v. The set A⊥ is generated by the following four
constructors, plus a set-truncation constructor:

η : A→ A⊥
⊔

: (Σs:N→A⊥ Πn:N sn v sn+1)→ A⊥

⊥ : A⊥ α : Πx,y:A⊥ x v y → y v x→ x = y

The constructor η tells us that any element of A can be viewed as an element
of A⊥, and ⊥ represents a non-terminating computation. The constructor

⊔
is

intended to form least upper bounds of increasing sequences, and α ensures that
the ordering relation v is antisymmetric.

The relation v is a type family that is indexed twice by A⊥. It is generated
by six constructors. One of these constructors says that, for any x, y : A⊥,
the type x v y is a proposition (Πp,q:xvy p = q). Because any two proofs of
x v y are equal, we do not name the constructors of the ordering relation. The
remaining constructors are given as inference rules, where each rule is implicitly
Π-quantified over its unbound variables (the same comment applies to other
definitions below):

x v x
x v y y v z

x v z ⊥ v x Πn:N sn v
⊔

(s, p)

Πn:N sn v x⊔
(s, p) v x



The rules state that v is reflexive and transitive, that ⊥ is at least as small as
any other element of A⊥, and that

⊔
constructs least upper bounds.

Now we will give the elimination principle of (−)⊥ and v. This principle can
be stated in different ways. One way would be to state it as an induction princi-
ple, along the following lines: Given a family P : A⊥ → Set and [. . . something
for v. . . ], and given elements of P (⊥), Πa:A P (η(a)), [. . . and so on. . . ], we
can conclude that Πx:A⊥ P (x) and [. . . ]. We take this approach in our formal-
isation; for another example, see the presentation of the Cauchy reals in the
HoTT book [20, Chap. 11.3.2]. However, because the two types are defined si-
multaneously and involve constructors targeting the equality type, the induction
principle may look somewhat involved and perhaps even ad-hoc, and it may not
be obvious that it is the “correct” one.

Instead, we present a universal property. Dijkstra [12] and Altenkirch et al. [2]
have worked out a general form and rules for a large class of quotient inductive-
inductive types. In their setting, any specification of a QIIT gives rise to a
category of algebras, following methods that have been used for W-types [4]
and certain higher inductive types [19], and if this category has a (homotopy-)
initial object, then this object is taken as the definition of the QIIT. We use the
following algebras:

Definition 1 (partiality algebras). A partiality algebra over the set A con-
sists of a set X; a propositional binary relation on X, vX ; an element ⊥X : X,
a family ηX : A→ X, and a family

⊔
X : (Σs:N→X Πn:N sn vX sn+1)→ X; and

the following laws:

x vX x x vX y → y vX z → x vX z

⊥X vX x x vX y → y vX x→ x = y

Πn:N sn vX

⊔
X

(s, p) (Πn:N sn vX x)→
⊔
X

(s, p) vX x

The type X and the type family vX are allowed to target universes distinct from
the one that A lives in.

For two partiality algebras over the same set A, (X,vX ,⊥X , ηX ,
⊔

X) and
(Z,vZ ,⊥Z , ηZ ,

⊔
Z), a morphism of partiality algebras from the former to the

latter consists of a function f : X → Z satisfying the following laws: First, f
has to respect the ordering relation, fv : x vX y → f(x) vZ f(y). Second,
f has to preserve some of the constructors, f(⊥X) = ⊥Z , f ◦ ηX = ηZ , and
f(
⊔

X(s, p)) =
⊔

Z(f ◦ s, fv ◦ p).
Let us denote this structure of objects and morphisms by PartA.

The structure PartA is a category, in which the identity morphism is the identity
function, and composition of morphisms is composition of functions.

We can now make the elimination principle precise. Note that the tuple
(A⊥,v,⊥, η,

⊔
) is a partiality algebra. As the elimination principle of A⊥ and

v we take the statement that there is a unique (up to equality) morphism from
this partiality algebra to any other partiality algebra over A. In the terminology
of the HoTT book [20], the statement that there is a morphism is basically the



recursion principle of (−)⊥ and v, while uniqueness gives us the power of the
induction principle (with propositional computation rules). Note that allowing
the type X and the type family vX to target arbitrary universes enables us to
make use of large elimination.

We do not lose anything by using a universal property instead of an induction
principle, at least for the induction principle referred to in the following theorem.
The theorem is similar to results due to Dijkstra [12] and Altenkirch et al. [2].
It is stated without proof here, but a full proof of the fact can be found in our
Agda development.

Theorem 2. The elimination principle of A⊥ and v can be stated as an induc-
tion principle. This induction principle, which comes with propositional rather
than definitional computation rules, is interderivable with the universal property
given above.

Note that we could have defined A⊥ and v differently. For instance, we could
have omitted the set-truncation constructor from the definition of A⊥, and then
proved that the type is a set, following the approach taken for the Cauchy reals
in the HoTT book [20]. However, if we had done this, then our definitions would
have been less close to the general framework mentioned above [12; 2].

As a simple demonstration of the universal property we construct an in-
duction principle for A⊥ that can be used when eliminating into a proposition.
Following the terminology of the HoTT book [20, Chap. 11.3.2], we call it par-
tiality induction:

Lemma 3. Let P be a family of propositions on A⊥ such that both P (⊥) and
Πa:A P (η(a)) hold. Assume further that, for any increasing sequence s : N→ A⊥
(with corresponding proof p), Πn:N P (sn) implies P (

⊔
(s, p)). Then we can con-

clude Πx:A⊥ P (x).

Proof. The proof uses a standard method. We define a partiality algebra where
the set is Z :≡ Σx:A⊥ P (x); the binary relation is v, ignoring the second pro-
jections of the values in Z; and the rest of the algebra is constructed using the
assumptions. The universal property gives us a morphism m from the initial
partiality algebra to this one, and in particular a function of type A⊥ → Z. We
are done if we can show that this function, composed with the first projection, is
the identity on A⊥. Note that the first projection can be turned into a partiality
algebra morphism fst. Thus, by uniqueness, the composition of fst and m has
to be the unique morphism from the initial partiality algebra to itself, and the
function component of this morphism is the identity. ut

3.2 ω-Complete Partial Orders

Another way of characterising our quotient inductive-inductive partiality monad
is to say that A⊥ is the free (pointed) ω-cpo over A:

Definition 4. Let us denote the category Part0, where 0 is the empty type, by
ω-CPO. An ω-cpo is an object of this category.



Let us quickly check that this definition makes sense. A partiality algebra on 0
is a set X with a binary propositional relation vX that is a partial order. There
is a least element ⊥X and any increasing sequence has a least upper bound.
There is also a function of type 0 → X, which we omit below as it carries no
information.

We can now relate the category of sets [20, Example 9.1.7], written SET,
to the category ω-CPO. For any ω-cpo we can take the underlying set, and it
is easy to see that this yields a functor, in the sense of the HoTT book [20,
Definition 9.2.1], U : ω-CPO→ SET.

We also have a functor F : SET→ ω-CPO, constructed as follows: The functor
maps a set A to the ω-cpo (A⊥,v,⊥,

⊔
). For the morphism part, assume that we

have a function f : A→ B. Then (B⊥,v,⊥, η ◦ f,
⊔
) is an A-partiality algebra,

and hence there is a morphism to this algebra from the initial A-partiality algebra
(A⊥,v,⊥, η,

⊔
). By removing the components η ◦ f : A→ B⊥ and η : A→ A⊥

we get a morphism between ω-cpos.
The function η lifts to a natural transformation from the identity functor to

U ◦ F. In order to construct a natural transformation from F ◦ U to the identity
functor, assume that we are given some ω-cpo X. We can construct an ω-cpo
morphism from F(U(X)) to X by noticing that (U(X),vX ,⊥X , id ,

⊔
X) is a

partiality algebra on U(X), and thanks to initiality we get a morphism m from
F(U(X)) toX satisfyingm◦η = id . After proving some equalities we end up with
the following result, where the definition of “adjoint” is taken from the HoTT
book [20, Definition 9.3.1]:

Theorem 5. For a given set A, the functor F is a left adjoint to the forgetful
functor U. This means that F(A) can be seen as the free ω-cpo over A. ut

Thus we get a justification for calling the concept that we are discussing the
partiality monad :

Corollary 6. The composition U ◦ F : SET → SET, which maps objects A to
A⊥, is a monad. ut

Note that one can also construct a monad structure on (−)⊥ directly. Let us
fix the set A. The unit is given by η. For the multiplication µ : (A⊥)⊥ → A⊥, note
that A⊥ can be given the structure of a partiality algebra over A⊥ in a trivial
way: the underlying set is A⊥, the function ηA⊥ : A⊥ → A⊥ is the identity, vA⊥

is v, and so on. This gives us the function µ as the unique morphism from the
initial partiality algebra to this one. Proving the monad laws is straightforward.

3.3 A Characterisation of the Relation v

To further analyse the QIIT construction, we show how the relation v on the set
A⊥ behaves.3 These results are useful when working with the partiality monad,
and will play an important role in the next section of the paper. The arguments

3 The work presented in Sect. 3.3 was done in collaboration with Paolo Capriotti.



are only sketched here, details are given in the formalisation. We use the propo-
sitional truncation ‖−‖ (also known as “squashing”), which turns a type into a
proposition. It can be implemented by quotienting with the trivial relation.

We know that ⊥ v y is (by definition) satisfied for any y : A⊥, and for the
least upper bound we have that

⊔
(s, q) v y is equivalent to Πn:N sn v y. The

following lemma provides a characterisation of η(a) v y, for any a : A:

Lemma 7. The binary relation v on A⊥ has the following properties:

η(a) v ⊥ ↔ 0

η(a) v η(b) ↔ a = b

η(a) v
⊔

(s, q) ↔ ‖Σn:N η(a) v sn‖

We will give the proof of this lemma later and make a remark first. Constructors
in “HIT-like” definitions, e.g. QIITs, may in general be neither injective nor
disjoint. For instance,

⊔
(λn.⊥, q) = ⊥. However, we have the following lemma:

Corollary 8. For any a : A and y : A⊥, we have that η(a) v y implies that
η(a) = y. Furthermore η is injective: if η(a) = η(b), then a = b. Moreover we
have η(a) 6= ⊥.

Proof (of Corollary 8). The last two claims are simple consequences of the lemma
and reflexivity. For the first claim, let us fix a : A and apply Lemma 3 with
P (y) :≡ η(a) v y → η(a) = y. The only non-immediate step is the case for⊔
(s, q), where we can assume Πn:N P (sn). From η(a) v

⊔
(s, q) and Lemma 7

we get ‖Σn:N η(a) v sn‖. We are proving a proposition, so we can assume that we
have n : N such that η(a) v sn. This implies that, for all m ≥ n, η(a) v sm and
hence, by the “inductive hypothesis”, η(a) = sm. Thus η(a) is an upper bound
of s, so we get

⊔
(s, q) v η(a), which by antisymmetry implies

⊔
(s, q) = η(a). ut

The proof of the lemma is more technical. The approach is similar to that
used to prove some results about the real numbers defined as a HIIT in the
HoTT book [20, Theorems 11.3.16 and 11.3.32]. We only give a sketch here, the
complete proof can be found in our Agda formalisation.

Proof (of Lemma 7). For every a : A we construct a relation in A⊥ → Prop by
applying the elimination principle of A⊥ and v, treating Prop as a partiality
algebra over A in the following way:

P vProp Q :≡ (P → Q) ηProp(b) :≡ (a = b)

⊥Prop :≡ 0
⊔
Prop

(S, P ) :≡ ‖Σn:N Sn‖

Propositional extensionality is used to prove that Prop is a set (this is a variant
of an instance of Theorem 7.1.11 in the HoTT book [20]), and to prove the
antisymmetry law.

Using Lemma 3 one can then show that the defined relation is pointwise equal
to η(a) v −, and it is easy to see that the relation has the properties claimed in
the statement of Lemma 7. ut



Using the results above one can prove that the order is flat, in the sense that
if x and y are distinct from ⊥ and x 6= y, then x 6v y (see the formalisation).

4 Relation to the Coinductive Construction

In this section we compare our QIIT to Capretta’s coinductive delay monad [6],
quotiented by weak bisimilarity [8]. Let us start by giving Capretta’s construc-
tion, as already outlined in the introduction. U stands for a universe of types.

Definition 9 (delay monad and weak bisimilarity). For a set A the delay
monad D(A) is the coinductive type generated by now : A → D(A) and later :
D(A) → D(A). The “terminates with” relation ↓D : D(A) → A → U is the
indexed inductive type generated by two constructors of type η(a) ↓D a and
p ↓D a→ later(p) ↓D a. Furthermore, x and y : D(A) are said to be weakly bisim-
ilar, written x ∼D y, if Πa:A x ↓D a↔ y ↓D a holds.

It is easy to give D(A) the structure of a monad. Note that x ↓D a can alterna-
tively be defined to be Σn:N x = latern(now(a)). The types x ↓D a and x ∼D y
are propositional, and ∼D is an equivalence relation on D(A).

The goal of this section is to show that, in the presence of countable choice,
the partiality monad A⊥ is equivalent to D(A)/∼D. (We use the notion of equiv-
alence from the HoTT book [20], which for sets is equivalent to bijective cor-
respondence.) To understand the structure of the proof, let us observe that
D(A)/∼D is constructed as a “coinductive type that is quotiented afterwards”,
while A⊥ is an “inductive type that is quotiented at the time of construction”.
To build a connection between these, it seems rather intuitive to consider an
intermediate construction, either a “coinductive type that is quotiented at the
time of construction” or an “inductive type that is quotiented afterwards”. The
theory of “higher coinductive types” has, as far as we know, not been explored
much yet, so we go with the second option. We do not even need an inductive
construction: it is well-known that coinductive structures can be represented
using finite approximations, and here, it is enough to consider monotone func-
tions. Thus, first we will show that D(A) is equivalent to a type of monotone
sequences, carefully formulated, and that the equivalence lifts to the quotients.
Then we will prove that, assuming countable choice, the quotiented monotone
sequences are equivalent to A⊥.

4.1 The Delay Monad and Monotone Sequences

For a set A we say that a function g : N → A + 1 is a monotone sequence if it
satisfies the propositional property

ismon(g) :≡ Πn:N (gn = gn+1) + ((gn = inr(?))× (gn+1 6= inr(?))) .

The set of monotone sequences, Σg:N→A+1 ismon(g), is denoted by SeqA. Below
the notation −n will be used not only for functions, but also for monotone
sequences; (g, p)n means gn.



As Chapman et al. [8] observe, one can construct a sequence of type N→ A+1
from an element of D(A). If their construction is tweaked a little, then the
resulting sequences are monotone, and the map is an equivalence:

Lemma 10. The types SeqA and D(A) are equivalent.

Proof. We can simply give functions back and forth. Note that endofunctions
on D(A) that correspond to later and “remove later, if there is one” can be
mimicked for SeqA: let us use the names shift and unshift : SeqA → SeqA for
the functions that are determined by shift(g)0 :≡ inr(?), shift(g)n+1 :≡ gn, and
unshift(g)n :≡ gn+1.

Define j : D(A)→ SeqA such that j(now(a)) equals λn.inl(a), and j(later(x))
equals shift(j(x)). One way to do this is to define j(z)n by recursion on n,
followed by case distinction on z. Furthermore, define h : SeqA → D(A) in the
following way: Given s : SeqA, do case distinction on s0. If s0 is inl(a), return
now(a). Otherwise, return later(h(unshift(s))). It is straightforward to show that
j and h are inverses of each other. ut

As an aside, our formalisation shows that Lemma 10 holds even if A is not a set.
Next, we mimic the relation ↓D by setting

↓Seq : SeqA → A→ U
s ↓Seq a :≡ Σn:N sn = inl(a).

The relation ↓Seq is not in general propositional. To remedy this, we can truncate
and consider ‖s ↓Seq a‖. Using strategies explained by Kraus et al. [15], we have
‖s ↓Seq a‖ → s ↓Seq a, so we can always extract a concrete value of n: a variant
of the definition above in which the number n is required to be minimal is
propositional, and this definition can be shown to be logically equivalent to both
‖s ↓Seq a‖ and s ↓Seq a. See the formalisation for details.

We define the propositional relations vSeq and ∼Seq by

s vSeq t :≡ Πa:A ‖s ↓Seq a‖ → ‖t ↓Seq a‖ and
s ∼Seq t :≡ s vSeq t× t vSeq s.

By checking that the equivalence from Lemma 10 maps ∼Seq-related elements
to ∼D-related elements, we get:

Lemma 11. The sets SeqA/∼Seq and D(A)/∼D are equivalent. ut

4.2 Monotone Sequences and the QIIT Construction

As the final step of showing that D(A)/∼D and A⊥ are equivalent, we show that
SeqA/∼Seq and A⊥ are. The plan is as follows: There is a canonical function
w : SeqA → A⊥ which can be extended to a function w̃ : SeqA/∼Seq → A⊥.
The function w̃ is injective. Furthermore, if we assume countable choice, then
the function w, and thus also w̃, are surjective. Thus w̃ is an equivalence.



Let us start by constructing w and w̃. We use a copairing function [η | ⊥] :
A + 1 → A⊥ defined by [η | ⊥] (inl(a)) :≡ η(a) and [η | ⊥] (inr(?)) :≡ ⊥, and
define w : SeqA → A⊥ by w(s, q) :≡

⊔
([η | ⊥] ◦ s, . . .), with a canonical proof of

monotonicity.

Lemma 12. The function w is monotone: Πs,t:SeqA s vSeq t → w(s) v w(t).
Thus w extends to a map w̃ : SeqA/∼Seq → A⊥.

Proof. For the second claim we show that w maps elements related by ∼Seq to
equal elements. This follows from the first claim by antisymmetry. For the first
claim it suffices to find a function k : N → N such that, for all n, we have
[η | ⊥] (sn) v [η | ⊥] (tk(n)). Fix n. If sn is inr(?), then [η | ⊥] (sn) is ⊥, and
k(n) can thus be chosen arbitrarily. If sn is inl(a), then we have s ↓Seq a and
therefore t ↓Seq a, which gives us a number k(n) such that tk(n) = inl(a) and
[η | ⊥] (sn) = η(a) = [η | ⊥] (tk(n)). ut

Lemma 13. The function w̃ is injective: Πs,t:SeqA/∼Seq
w̃(s) = w̃(t)→ s = t.

Proof. It suffices to show that, for s, t : SeqA, w(s) = w(t) implies s ∼Seq t. By
symmetry, it is enough to fix a : A and show ‖s ↓Seq a‖ → ‖t ↓Seq a‖, which fol-
lows from s ↓Seq a→ ‖t ↓Seq a‖. If s ↓Seq a then w(s) = η(a), and thus also w(t) =
η(a). Using Lemma 7 and Corollary 8 we then get ‖Σn:N η(a) = [η | ⊥] (tn)‖,
which implies ‖Σn:N tn = inl(a)‖. ut

Lemma 14. Under countable choice, w is surjective: Πx:A⊥

∥∥Σs:SeqA w(s) = x
∥∥.

Proof. We apply the simplified induction principle presented in Lemma 3. The
propositional predicate is P (x) :≡

∥∥Σs:SeqA w(s) = x
∥∥. Both P (⊥) and P (η(a))

are trivial: in the first case we use the sequence that is constantly inr(?), while
in the second case we take the one that is constantly inl(a).

The interesting part is to show P (
⊔
(f, p)) for a given f : N → A⊥ and

p : Πn:N fn v fn+1. By the mentioned induction principle, we can assume
Πn:N P (fn), which unfolds to Πn:N

∥∥Σt:SeqA w(t) = fn
∥∥. By countable choice, we

can swap Πn:N and ‖−‖, which allows us to remove the truncation completely,
because the goal is propositional. Hence we can assume Πn:NΣt:SeqA w(t) = fn.

Using the usual distributivity law for Π and Σ (sometimes called the “type-
theoretic axiom of choice”), we can assume that we are given g : N→ SeqA and a
proof γ : Πn:N w(gn) = fn. By dropping the monotonicity proof and uncurrying,
g gives us a function g′ : N×N→ A+1 with the property that it assumes at most
one value in A: If g′i,j = inl(a), then (using γ) η(a) v fi, thus η(a) v

⊔
(f, p),

and hence
⊔
(f, p) = η(a) by Corollary 8. If we also have g′k,m = inl(b), then

η(a) = η(b), which by Corollary 8 implies that a = b.
We use g′ to construct an element of SeqA. Take an arbitrary isomorphism

σ : N→ N×N (a split surjection would also be sufficient), and define a function
g̃ : N→ A+ 1 by

g̃(n) :≡

{
g′(σn), if n = 0 or g′(σn) 6= inr(?),
g̃(n− 1), otherwise.



The intuition is that g̃(n) checks the first n + 1 results of g′ ◦ σ and chooses
the last which is of the form inl(−), if any, otherwise returning inr(?). Because
g′ assumes at most one value in A we get that g̃ is monotone, q : ismon(g̃).
Furthermore (g̃, q) ↓Seq a holds if and only if we have Σn:N g

′(σn) = inl(a).
In order to complete the proof of P (

⊔
(f, p)) we show that w(g̃, q) =

⊔
(f, p)

by using antisymmetry:

– First part: w(g̃, q) v
⊔
(f, p). After unfolding the definition of w we see that

it suffices to prove [η | ⊥] (g̃n) v
⊔
(f, p) for an arbitrary n : N. If g̃n is inr(?),

then this is trivial. If g̃n is inl(a) for some a : A, then we can find a pair (i, j)
such that g′i,j = inl(a). Thus we get the following chain:

[η | ⊥] (g̃n) = [η | ⊥] (g′i,j) v w(gi) = fi v
⊔

(f, p)

– Second part:
⊔
(f, p) v w(g̃, q). Given n : N, we show that fn v w(g̃, q). By

γn we have fn = w(gn). Thus it suffices to prove w(gn) v w(g̃, q), which by
Lemma 12 follows if gn vSeq (g̃, q). If gn(i) = inl(a) for some i and a, then
we have inl(a) = g′n,i = g′(σ(σ−1n,i)), and thus (g̃, q) ↓Seq a. ut

This immediately shows that w̃ is surjective as well. Putting the pieces to-
gether, we get the main result of this section:

Theorem 15. In the presence of countable choice the map w̃ is an equivalence.
Hence the three sets D(A)/∼D, SeqA/∼Seq and A⊥ are equivalent.

Proof. A function between sets is an equivalence exactly if it is surjective and
injective. This is a special case of Theorem 4.6.3 in the HoTT book [20], which
states that a function between arbitrary types is an equivalence if and only if it
is surjective and an embedding, which for sets is equivalent to being injective. ut

5 Applications

The following examples show that our construction can be used in formalisations.

5.1 Nonterminating Functions as Fixed Points

Partiality algebras can be used to implement not necessarily terminating func-
tions. Let (Y,vY ,⊥Y , ηY ,

⊔
Y ) be a partiality algebra, and let ϕ : Y → Y be a

monotone and ω-continuous function. We can write down the least fixed point
of ϕ directly as

⊔
Y (λn.ϕ

n(⊥Y ), p), where p is constructed from the fact that
⊥Y vY ϕ(⊥Y ) and from the monotonicity proof of ϕ. One does not need ω-
continuity to write down this expression, but we use it to prove that the expres-
sion is a fixed point of ϕ.

If (Y,vY ,⊥Y , ηY ,
⊔

Y ) is a partiality algebra and X is any type, then the
function space X → Y can be given the structure of a partiality algebra in a
canonical way (this is done for dependent types Πx:X Y (x) in the formalisation).



As an example of how this kind of partiality algebra can be used we will construct
a function searchq : Aω → A⊥ that takes an element of the coinductive set of
streams Aω and searches for an element of the set A satisfying the decidable
predicate q : A → 2. The function is constructed as the least fixed point of the
following endofunction on Aω → A⊥:

Φ(f)(a :: as) :≡ if q(a) then η(a) else f(as)

It is straightforward to check that f v g implies Φ(f) v Φ(g) by applying Φ(f)
and Φ(g) to a point a :: as and doing case analysis on q(a). Thus Φ is monotone.
In a similar way one can verify that Φ is ω-continuous.

5.2 Functions from the Reals

Let us consider the Cauchy reals, defined as a quotient. We say that f : N→ Q
is a Cauchy sequence if, for all m, n : N with m < n, we have −1 < m · (fm−fn)
< 1. Furthermore, f and g are equivalent (written f ∼ g) if, for all n : N, we
have −2 ≤ n · (fn − gn) ≤ 2. We use the notation Rq for the quotient of Cauchy
sequences by ∼.

A meta-theoretic result is that, without further assumptions, any defin-
able function (i.e. any closed term) of type Rq → 2 is constant for reasons
of continuity [16]. In particular, we cannot define a function isPositive which
checks whether a real number is positive. However, we can define a function
isPositive : Rq → 2⊥ such that isPositive(r) is equal—but not judgmental-
ly/definitionally equal—to η(12) if r is positive, η(02) if r is negative, and ⊥ if
r is zero.

We define this function as follows: Given a Cauchy sequence f : N → Q,
we construct a new sequence f : N → {−, ?,+}. The idea is that fn is an
approximation which only takes fi with i ≤ n into account. We start with
f0 :≡ ?. If we have chosen fn−1 to be −, then we choose fn to be − as well, and
analogously for +. If we have chosen fn−1 to be ?, we check whether fn ·n < −2,
in which case we choose fn to be −; if fn ·n > 2, we choose fn to be +; otherwise,
we choose fn to be ?. We can compose with the map {−, ?,+} → A⊥ which is
defined by − 7→ η(02), ? 7→ ⊥, and + 7→ η(12). This defines a monotone sequence
in 2⊥, and we can form

⊔
f : 2⊥ to answer whether f represents a positive or

negative number, or is zero. One can check that equivalent Cauchy sequences
get mapped to equal values, hence we get isPositive : Rq → 2⊥.

The strategy outlined above does not quite work for the reals defined as a
HIIT [20] because, roughly speaking, in that setting fn is a real number and a
comparison such as fn · n < −2 is undecidable. Recently Gilbert has refined our
approach and defined a function isPositive for such reals [13], using the definition
of the partiality monad presented in this text (with insignificant differences).
Gilbert’s key observation is that comparisons between real numbers and rational
numbers are semidecidable, and semidecidability is sufficient to define isPositive.



5.3 Operational Semantics

In previous work the second-named author has discussed how one can use the
delay monad to express operational semantics as definitional interpreters [11].
As a case study we have ported some parts of this work to the partiality monad
discussed in the present text: definitional interpreters for a simple functional
language and a simple virtual machine, a type soundness proof, a compiler, and
a compiler correctness result. Due to lack of space we do not include any details
here, but refer interested readers to the accompanying source code.

6 Discussion and Further Work

We have constructed a partiality monad without using countable choice. This is
only a first step in the development of a form of constructive domain theory in
type theory. It remains to be seen whether it is possible to, for instance, replicate
the work of Benton et al. [5], who develop domain theory using the delay monad.

Consider the partial function filter : ΠA:Set (A → 2) → Aω → Aω that fil-
ters out elements from a stream. How should partial streams over A be defined?
Defining them as νX.(A×X)⊥ seems inadequate, because the ordering of (−)⊥
is flat. One approach would perhaps be to define this type by solving a domain
equation. Instead of relying on the type-theoretic mechanism to define recur-
sive types, we can perhaps construct a suitable type of partial streams as the
colimit of an ω-cocontinuous functor on the category of ω-cpos. Preliminary in-
vestigations indicate that QIITs are useful in the endeavour, for example in the
definition of a lifting comonad on ω-cpos (as suggested by Paolo Capriotti).

Going in another direction, it might be worth investigating how much topol-
ogy can be done using the Sierpinski space, represented as 1⊥ in our setting.
A very similar question was discussed at the Special Year on Univalent Foun-
dations of Mathematics at the IAS in Princeton (2012–2013). Moreover, some
observations have been presented by Gilbert [13], who used our definition of 1⊥
as presented in this paper (with minor differences).
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