
Termination Checking in the Presence of
Nested Inductive and Coinductive Types

Thorsten Altenkirch and Nils Anders Danielsson
University of Nottingham

Abstract
In the dependently typed functional programming language Agda one can easily mix induction

and coinduction. The implementation of the termination/productivity checker is based on a simple
extension of a termination checker for a language with inductive types. However, this simplicity
comes at a price: only types of the form νX.µY.F X Y can be handled directly, not types of the form
µY.νX.F X Y . We explain the implementation of the termination checker and the ensuing problem.

1 Introduction

This short and speculative note discusses how one can—apparently—extend a termination checker which
accepts structurally recursive programs so that it also accepts guarded corecursive programs (and proofs),
and even mixed recursive/corecursive definitions. However, we will also point out a problem with the
extended checker: the “obvious” way to represent a coinductive type nested within an inductive type
does not work.

Some familiarity with total, dependently typed languages, induction, coinduction, structural recur-
sion and guarded corecursion is assumed.

2 foetus

Originally the termination checker of the dependently typed functional programming language Agda
(Norell 2007; Agda Team 2010) only supported structural recursion. The checker was based on foetus
(Abel and Altenkirch 2002), which will now be explained using the following two, mutually recursive
(and contrived) functions:

mutual
f : N→ N→ N
f m zero = m
f m (suc n) = f m n + g m

g : N→ N
g zero = zero
g (suc n) = f n n

The definitions of f and g are accepted by foetus, which works roughly as follows:

• For every function clause h p1 . . . pm and every call site i e1 . . . en in the right-hand side of the
clause, the following information is noted for every pattern-argument pair (pi,e j): Is e j structurally
strictly smaller than pi, or is it equal to pi? The former case is denoted by <, the latter by =, and
otherwise the symbol ? is used.

In the case of our example we have three calls. If we write the information using call matrices it
looks as follows (one row per caller argument, one column per callee argument):

f → f :
(
= ?
? <

)
f → g :

(
=
?

)
g→ f :

(
< <

)
1

Termination Checking in the Presence of Nested Ind. and Coind. Types Altenkirch and Danielsson

• This information is then combined into information about every (kind of) call path from a function
to itself.

For our example we get three kinds of call paths, denoted as vectors with one element per argu-
ment:

1. (=,<), which corresponds to f ’s call to itself,

2. (<,?), which includes the call sequence f → g→ f , and

3. (<), which includes the call sequence g→ f → g.

• Finally we need to check if, for every function, there is some lexicographic combination of argu-
ments such that every kind of call path is strictly decreasing.

In the case of f we need to choose the lexicographic combination (first argument, second argu-
ment), and in the case of g the only argument is strictly decreasing.

3 Coinductive Definitions in Agda

This section contains a crash course on the approach to coinduction taken in Agda. For more information,
see Danielsson and Altenkirch (2010, Section 2).

First consider the following Agda definition of the type of infinite streams:

data Stream (A : Set) : Set where
:: : A→ ∞ (Stream A)→ Stream A

The use of the type constructor ∞ : Set→ Set makes Stream coinductive. The best way to get an intuition
about ∞ may be to view it as the suspension type constructor which is sometimes used to encode non-
strictness in strict languages (Wadler et al. 1998). The type constructor comes with a force function and
a (tightly binding) delay constructor:

[: {A : Set}→ ∞ A→ A
] : {A : Set}→ A→ ∞ A

Now consider the following definition of stream processors (Hancock et al. 2009):

data SP (A B : Set) : Set where
get : (A→ SP A B)→ SP A B
put : B→ ∞ (SP A B)→ SP A B

A stream processor is either a command to read (get) another element from the input stream, and use
this element to guide the rest of the computation, or a command to output (put) an element, and continue
with another stream processor. The use of ∞ only for put means that a stream processor may contain an
infinite number of consecutive put constructors, but only a finite number of consecutive get constructors.
This is ensured by the termination checker.1

Agda supports structural recursion for inductive types, and guarded corecursion for coinductive
types. These recursion principles can also be combined “lexicographically”, as explained in the next
section.

1Perhaps. Neither Agda’s meta-theory nor its implementation have been formally verified to be correct.

2

Termination Checking in the Presence of Nested Ind. and Coind. Types Altenkirch and Danielsson

4 An Extension of foetus Which Handles Guarded Corecursion

When Agda was extended to support coinductive data types and guarded corecursion Andreas Abel just
made a small change to the termination checker: an extra row and column was added to the call matrices,
representing guardedness.

An example will illustrate the change. Consider the following definition of the semantics of a stream
processor:

J K : {A B : Set}→ SP A B→ Stream A→ Stream B
J get f K (a :: as) = J f a K ([as)
J put b sp K as = b ::] J [sp K as

The first recursive call is not guarded by the coinductive constructor] , but no non-constructor function
is used between the left-hand side and the call, so we say that it preserves guardedness (=). On the other
hand, in the second clause the recursive call is guarded (<). We get the following call matrices, where the
topmost, leftmost element represents guardedness, and the remainder of the first rows and columns do
not represent anything; the rest of the matrices represent structural relations between the four arguments
of J K:

J K→ J K :

= ? ? ? ?
? = ? ? ?
? ? = ? ?
? ? ? < ?
? ? ? ? ?

 J K→ J K :

< ? ? ? ?
? = ? ? ?
? ? = ? ?
? ? ? ? ?
? ? ? ? =

Note that [sp is not viewed as structurally smaller than put b sp (this measure only applies to the inductive
parts of types), and that f a is viewed as structurally strictly smaller than get f (higher-order primitive
recursion).

The call matrices above give rise to three kinds of call paths:

1. (=,=,=,<,?), corresponding to the first recursive call,

2. (<,=,=,?,=), corresponding to the second recursive call, and

3. (<,=,=,?,?), corresponding to call paths which involve both recursive calls.

It is easy to see that one gets a strictly decreasing combination by lexicographically pairing the first
component (guardedness) with the fourth (the inductive structure of the stream processor).

We have not seen a proof of correctness for the extended termination checker described above. It is
plausible that it ensures totality, at least if the rest of the language is restricted in a suitable way. However,
we have not tried to prove this. The reason is that the checker makes the language somewhat strange, as
described in the next section.

5 Quantifier Inversion

Consider the following definitions of colists and potentially infinitely branching trees:

data Colist (A : Set) : Set where
[] : Colist A

:: : A→ ∞ (Colist A)→ Colist A

data Tree : Set where
node : Colist Tree→ Tree

3

Termination Checking in the Presence of Nested Ind. and Coind. Types Altenkirch and Danielsson

One might believe that the type Tree should be read as the nested fixpoint µX. νY. 1 + X × Y (in the
category of sets and total functions). However, the termination checker described above accepts the
following definition:

mutual
bad : Tree
bad = node (node [] ::] bads)

bads : Colist Tree
bads = bad ::] bads

The tree bad could not be defined if Tree defined the type µX. νY. 1+X× Y: bad is used in the definition
of itself. The problem seems to be that the termination checker is too untyped—it only cares about delay
constructors, not about which fixpoint they “belong” to. In this case the delay constructors for the inner
fixpoint (νY. . . .) work as guards also for the outer fixpoint.

We conjecture that one can understand (a first-order fragment of) Agda’s data type definitions—in
the presence of the termination checker described above—by the following translation into a simpler
core theory. For a given program we first define a type of codes for all the data types in the program
(including ∞). In the case of the example above we get the following type (where the notation (c1 :
T1) + . . . + (cn : Tn) is used for labelled sums):

Type : Set
Type = µT. (colist : T) + (tree : 1) + (inf : T)

The three constructors represent Colist, Tree, and ∞. The second step is to translate all data type defini-
tions into a single nested fixpoint, indexed by type codes:

Data : Type→ Set
Data = νC. µI. λ t. ([] : ∃ (t′ : Type) . t ≡ colist t′)

+ (:: : ∃ (t′ : Type) . t ≡ colist t′ × I t′ × I (inf (colist t′)))
+ (node : t ≡ tree tt × I (colist (tree tt)))
+ (] : ∃ (t′ : Type) . t ≡ inf t′ × C t′)

Here we have, for instance, that Data (tree tt) represents Tree (tt is the only closed inhabitant of 1).
Note that, under the translation above, all data types have the form νY. µX. F X Y . In particu-

lar, the termination checker seems to invert the quantifiers of Tree so that it behaves more like Tree′:

data SnocList (A : Set) : Set where
[] : SnocList A

:: : SnocList A→ A→ SnocList A

data Tree′ : Set where
node : SnocList (∞ Tree′)→ Tree′

When translating SnocList and Tree′ we get the following types:

Type′ : Set
Type′ = µT.

(snocList : T)
+ (tree′ : 1)
+ (inf : T)

Data′ : Type′→ Set
Data′ = νC. µI. λ t.

([] : ∃ (t′ : Type) . t ≡ snocList t′)
+ (:: : ∃ (t′ : Type) . t ≡ snocList t′ × I (snocList t′)× I t′)
+ (node : t ≡ tree′ tt × I (snocList (inf (tree′ tt))))
+ (] : ∃ (t′ : Type) . t ≡ inf t′ × C t′)

It is not too hard to see that Data (tree tt) and Data′ (tree′ tt) are isomorphic (and not only because
the types have the same size; the proof works also if we make Tree and Tree′ parametrised). As an in-

4

Termination Checking in the Presence of Nested Ind. and Coind. Types Altenkirch and Danielsson

mutual
from1 : Tree→ SnocList (∞ Tree′)
from1 (node ts) = from2 ts

from2 : Colist Tree→ SnocList (∞ Tree′)
from2 [] = []

from2 (t :: ts) = from1 t ::] node (from2 (
[ts))

from : Tree→ Tree′

from t = node (from1 t)

mutual
to1 : Tree′→ Colist Tree
to1 (node ts) = to2 ts

to2 : SnocList (∞ Tree′)→ Colist Tree
to2 [] = []

to2 (ts :: t) = node (to2 ts) ::] to1 (
[t)

to : Tree′→ Tree
to t = node (to1 t)

Figure 1: Functions witnessing the isomorphism between Tree and Tree′.

dication that Agda actually behaves in accordance with the translation we can also prove (inside Agda)
that Tree and Tree′ are isomorphic; for functions witnessing the isomorphism, see Figure 1.

As a final remark we note that the termination checker does seem to handle types like Tree′ correctly,
i.e. like the fixpoint νY. µX. 1 + X × Y: one cannot make (direct) use of delay constructors to define
infinitely long snoc-lists, because the left argument of :: has type SnocList A, not ∞ (SnocList A).

6 Discussion

We have sketched a simple method, due to Andreas Abel, for extending a termination checker aimed
at structural recursion so that it also handles guarded corecursion. We have also pointed out a prob-
lem with the method: it leads to “quantifier inversion”, which means that nested fixpoints of the form
µX. νY. F X Y cannot in general be handled directly.

Given the simplicity of the extension of the termination checker we raise a question: is it possible to
make a further small modification to it so that it can handle arbitrary nested fixpoints in a nice way? Note
that this involves two things: rejecting definitions like bad, but also accepting other, currently rejected,
definitions, corresponding to the recursion principles associated with types like µX. νY. F X Y .

References

Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion. Journal of Func-
tional Programming, 12(1):1–41, 2002.

The Agda Team. The Agda Wiki. Available at http://wiki.portal.chalmers.se/agda/, 2010.

Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, declaratively; an exercise in mixed in-
duction and coinduction. To appear in the proceedings of the Tenth International Conference on
Mathematics of Program Construction (MPC’10), 2010.

Peter Hancock, Dirk Pattinson, and Neil Ghani. Representations of stream processors using nested fixed
points. Logical Methods in Computer Science, 5(3:9), 2009.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers University of Technology and Göteborg University, 2007.

Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to a strict language, without even
being odd. In Proceedings of the 1998 ACM SIGPLAN Workshop on ML, 1998.

5

http://wiki.portal.chalmers.se/agda/

	Introduction
	foetus
	Coinductive Definitions in Agda
	An Extension of foetus Which Handles Guarded Corecursion
	Quantifier Inversion
	Discussion

