
Up-to Techniques
Using Sized Types

Nils Anders Danielsson

IFIP WG 2.1 Meeting #76,
Lesbos, 2017-10-17



When using a type theory with sized types to define
bisimilarity a useful class of up-to techniques falls
out naturally.



The
traditional
approach



The traditional approach

Traditional coinduction:
▶ 𝐹 : A monotone function on a complete lattice.
▶ 𝜈𝐹 : Its greatest post-fixpoint.
▶ Coinduction: 𝑅 ≤ 𝐹 𝑅 implies 𝑅 ≤ 𝜈𝐹 .



The traditional approach
𝑅 is a bisimulation:

P

P ′

Q

Q ′

𝑅

𝑅

μ μ
P

P ′

Q

Q ′

𝑅

𝑅

μ μ



The traditional approach
𝑅 is a bisimulation:

P

P ′

Q

Q ′

𝑅

𝑅

μ μ
P

P ′

Q

Q ′

𝑅

𝑅

μ μ

Can be turned into a monotone function:

𝐵 𝑅 = { (𝑃 , 𝑄) | … }

𝑅 is a bisimulation iff 𝑅 ⊆ 𝐵 𝑅.



The traditional approach
𝑅 is a bisimulation:

P

P ′

Q

Q ′

𝑅

𝑅

μ μ
P

P ′

Q

Q ′

𝑅

𝑅

μ μ

Bisimilarity: 𝑃 ∼ 𝑄 if (𝑃 , 𝑄) ∈ 𝜈𝐵.



The traditional approach
𝑅 is a bisimulation:

P

P ′

Q

Q ′

𝑅

𝑅

μ μ
P

P ′

Q

Q ′

𝑅

𝑅

μ μ

Coinduction: 𝑅 ⊆ 𝐵 𝑅 implies 𝑅 ⊆ 𝜈𝐵.



The traditional approach
𝑅 is a bisimulation:

P

P ′

Q

Q ′

𝑅

𝑅

μ μ
P

P ′

Q

Q ′

𝑅

𝑅

μ μ

Coinduction: 𝑅 ⊆ 𝐵 𝑅 implies 𝑅 ⊆ 𝜈𝐵.
Up-to techniques are used to make proofs easier.
𝐺 is an up-to technique if
𝑅 ⊆ 𝐵 (𝐺 𝑅) implies 𝑅 ⊆ 𝜈𝐵 (for all 𝑅).



The traditional approach
𝑅 is a bisimulation:

P

P ′

Q

Q ′

𝑅

𝑅

μ μ
P

P ′

Q

Q ′

𝑅

𝑅

μ μ

𝑅 is a bisimulation up to bisimilarity:

P

P ′

Q

Q ′

𝑅

∼ 𝑅 ∼

μ μ
P

P ′

Q

Q ′

𝑅

∼ 𝑅 ∼

μ μ



Coinductive
data types



Coinduction without sized types

The delay monad, roughly 𝜈X . A + X :

mutual

data Delay (A ∶ Set) ∶ Set where
now ∶ A → Delay A
later ∶ Delay′ A → Delay A

record Delay′ (A ∶ Set) ∶ Set where
coinductive
field force ∶ Delay A



Corecursion using copatterns

never ≈ later (later (later (…))):
mutual

never ∶ ∀ {A} → Delay A
never = later never′

never′ ∶ ∀ {A} → Delay′ A
force never′ = never

Guarded, productive.



Corecursion using copatterns

never ≈ later (later (later (…))):

never ∶ ∀ {A} → Delay A
never = later (λ { .force → never })

Guarded, productive.



Corecursion using copatterns

never ≈ later (later (later (…))):

never ∶ ∀ {A} → Delay A
never = later (λ { .force → never })

Guarded, productive.



Guardedness
Not guarded, rejected:

unfold ∶ ∀ {X A} →
(X → A + X ) → X → Delay A

unfold f =
inD ∘ map (λ x → λ { .force → unfold f x }) ∘ f

inD ∶ ∀ {A} → A + Delay′ A → Delay A

map ∶ {X Y A ∶ Set} →
(X → Y ) → A + X → A + Y



Sized types



Sized types

The delay monad:

mutual

data Delay (A ∶ Set) (i ∶ Size) ∶ Set where
now ∶ A → Delay A i
later ∶ Delay′ A i → Delay A i

record Delay′ (A ∶ Set) (i ∶ Size) ∶ Set where
coinductive
field force ∶ {j ∶ Size< i} → Delay A j



Sized types

▶ Sizes can be thought of as ordinals.
▶ Delay′ A i : Partially defined values.
▶ Deflationary iteration:

Delay′ A i ≈ ⋂
𝑗<𝑖

A + Delay′ A j

▶ ∞: Closure ordinal.
▶ Delay′ A ∞: Fully defined values.



Sized types

The size is smaller in every corecursive call:

unfold ∶ ∀ {X A i} →
(X → A + X ) → X → Delay A i

unfold f =
inD ∘ map (λ x → λ { .force → unfold f x }) ∘ f



Sized types

The size is smaller in every corecursive call:

unfold ∶ ∀ {X A i} →
(X → A + X ) → X → Delay A i

unfold f =
inD ∘
map (λ x → λ { .force →

unfold f x }) ∘
f



Sized types

The size is smaller in every corecursive call:

unfold ∶ ∀ {X A i} →
(X → A + X ) → X → Delay A i

unfold {i = i} f =
inD ∘
map (λ x → λ { .force {j = j} →

unfold {i = j} f x }) ∘
f



Greatest
post-

fixpoints



Index-preserving functions

Functions that preserve the index:

_⊆_ ∶ {X ∶ Set} →
(X → Set) → (X → Set) → Set

R ⊆ S = ∀ {x} → R x → S x



Containers
▶ Indexed containers,

representing strictly positive functors:
Container ∶ Set → Set1

▶ Interpretation:
⟦_⟧ ∶ ∀ {X } →

Container X →
(X → Set) → (X → Set)

▶ Map function:
map ∶ ∀ {X } (C ∶ Container X ) {A B} →

A ⊆ B → ⟦ C ⟧ A ⊆ ⟦ C ⟧ B



Greatest post-fixpoints

mutual

ν ∶ ∀ {X } → Container X → Size → (X → Set)
ν C i = ⟦ C ⟧ (ν′ C i)

record ν′ {X } (C ∶ Container X ) (i ∶ Size)
(x ∶ X ) ∶ Set where

coinductive
field force ∶ {j ∶ Size< i} → ν C j x



Greatest post-fixpoints

out ∶ ∀ {X } (C ∶ Container X ) →
ν C ∞ ⊆ ⟦ C ⟧ (ν C ∞)

out C = map C (λ x → force x )

unfold ∶ ∀ {X A i} (C ∶ Container X ) →
A ⊆ ⟦ C ⟧ A → A ⊆ ν C i

unfold C f =
map C (λ a → λ { .force → unfold C f a }) ∘ f



CCS



CCS
A variant of a fragment of CCS:

data Label ∶ Set where
∙ ∶ Label



CCS
A variant of a fragment of CCS:

mutual

data Proc ∶ Set where
∅ ∶ Proc
_∣_ ∶ Proc → Proc → Proc
∙ ∶ Proc′ → Proc

record Proc′ ∶ Set where
coinductive
field force ∶ Proc



CCS
A variant of a fragment of CCS:

data _[_]→_ ∶ Proc → Label → Proc → Set where
action ∶ ∀ {P} → ∙ P [ ∙ ]→ force P

par‐left ∶ ∀ {P P ′ Q μ} →
P [ μ ]→ P ′ → P ∣ Q [ μ ]→ P ′ ∣ Q

par‐right ∶ ∀ {P Q Q ′ μ} →
Q [ μ ]→ Q ′ → P ∣ Q [ μ ]→ P ∣ Q ′



Bisimilarity

𝑅 is a bisimulation:

P

P ′

Q

Q ′

𝑅

𝑅

μ μ
P

P ′

Q

Q ′

𝑅

𝑅

μ μ



Bisimilarity
R is a bisimulation iff R ⊆ B R:

record B (R ∶ Proc × Proc → Set)
(PQ ∶ Proc × Proc) ∶ Set where

field
left‐to‐right ∶

∀ {μ P ′} → fst PQ [ μ ]→ P ′ →
∃ λ Q ′ → snd PQ [ μ ]→ Q ′ × R (P ′ , Q ′)

right‐to‐left ∶
∀ {μ Q ′} → snd PQ [ μ ]→ Q ′ →
∃ λ P ′ → fst PQ [ μ ]→ P ′ × R (P ′ , Q ′)



Bisimilarity

▶ B can also be defined as a container.
▶ Bisimilarity:

[_]_∼_ ∶ Size → Proc → Proc → Set
[ i ] P ∼ Q = ν B i (P , Q)

[_]_∼′_ ∶ Size → Proc → Proc → Set
[ i ] P ∼′ Q = ν′ B i (P , Q)



Examples



Examples
∅ is a left and right identity of parallel composition:

∅‐left‐identity ∶ ∀ {i P} → [ i ] ∅ ∣ P ∼ P
left‐to‐right ∅‐left‐identity (par‐left ())
left‐to‐right ∅‐left‐identity (par‐right tr) =

(_ , tr , λ { .force → ∅‐left‐identity })

right‐to‐left ∅‐left‐identity tr =
(_ , par‐right tr , λ { .force → ∅‐left‐identity })

∅‐right‐identity ∶ ∀ {i P} → [ i ] P ∣ ∅ ∼ P
-- Similarly.



Examples

Prefixing preserves bisimilarity:

∙‐cong ∶ ∀ {i P Q} →
[ i ] force P ∼′ force Q →
[ i ] ∙ P ∼ ∙ Q

left‐to‐right (∙‐cong p) action = (_ , action , p)
right‐to‐left (∙‐cong p) action = (_ , action , p)

Note that the proof is size-preserving.



Examples

Bisimilarity is symmetric and transitive:

sym ∶ ∀ {i P Q} →
[ i ] P ∼ Q → [ i ] Q ∼ P

trans ∶ ∀ {i P Q R} →
[ i ] P ∼ Q → [ i ] Q ∼ R → [ i ] P ∼ R

Note that the proofs are size-preserving.



Examples
Two processes:

P Q ∶ Proc
P = ∅ ∣ ∙ (λ { .force → P })
Q = ∙ (λ { .force → Q }) ∣ ∅

P and Q are bisimilar:

P∼Q ∶ ∀ {i} → [ i ] P ∼ Q
P∼Q = trans ∅‐left‐identity (

trans (∙‐cong λ { .force → P∼Q })
(sym ∅‐right‐identity))



Examples
P and Q are bisimilar:

P∼Q ∶ ∀ {i} → [ i ] P ∼ Q
P∼Q = trans ∅‐left‐identity (

trans (∙‐cong λ { .force → P∼Q })
(sym ∅‐right‐identity))

Compare to “up to context and bisimilarity”:

P

P ′

Q

Q ′

𝑅

∼ 𝐶[𝑅] ∼

μ μ
P

P ′

Q

Q ′

𝑅

∼ 𝐶[𝑅] ∼

μ μ



Some further comments

▶ Pous has identified a useful class of
up-to techniques:
functions below the companion.

▶ This class seems to be closely related to
size-preserving functions.



Some further comments

▶ Weak bisimulations up to weak bisimilarity are
not in general contained in weak bisimilarity.

▶ Transitivity is not in general size-preserving
for weak bisimilarity.



Conclusion

When using a type theory with sized types to define
bisimilarity a useful class of up-to techniques falls
out naturally.



Extra
material



Containers

record Container (X ∶ Set) ∶ Set1 where
constructor _◁_
field
Shape ∶ X → Set
Position ∶ ∀ {x} → Shape x → X → Set

⟦_⟧ ∶ ∀ {X } →
Container X → (X → Set) → (X → Set)

⟦ S ◁ P ⟧ A = λ x → ∃ λ (s ∶ S x ) → P s ⊆ A

map ∶ ∀ {X } (C ∶ Container X ) {A B} →
A ⊆ B → ⟦ C ⟧ A ⊆ ⟦ C ⟧ B

map _ f (s , g) = (s , f ∘ g)


	Introduction
	The traditional approach
	Coinductive data types
	Sized types
	Greatest post-fixpoints
	CCS
	Examples
	Conclusion
	Extra material

