Logical properties of a modality for erasure

Nils Anders Danielsson

IFIP WG 2.1 Meeting \#79,
Otterlo, January 2020

Erasure

- Lists of a given length in Agda:

$$
\begin{aligned}
& \text { data } \operatorname{Vec}(A: \text { Set }): \mathbb{N} \rightarrow \text { Set where } \\
& {[] \quad: \operatorname{Vec} A 0} \\
& -:-\quad:\{n: \mathbb{N}\} \rightarrow \\
& \\
& \\
& \\
& A \rightarrow \operatorname{Vec} A n \rightarrow \operatorname{Vec} A(1+n)
\end{aligned}
$$

- With a bad implementation:
$\Omega\left(n^{2}\right)$ space for lists of length n.
- It might make sense for the compiler to "erase" some data.

Erasure

With explicit erasure annotations:
data Vec (@0 A : Set) : @0 $\mathbb{N} \rightarrow$ Set where
[] : Vec A 0
$\begin{aligned}-:-\quad: & \{@ 0 n: \mathbb{N}\} \rightarrow \\ & A \rightarrow \operatorname{Vec} A n \rightarrow \operatorname{Vec} A(1+n)\end{aligned}$

- @0 is used to mark arguments and definitions that should be erased at run-time.
- Agda is supposed to make sure that:
- Things marked as erased are actually erased.
- There is never any data missing at run-time.
- The typing rules are based on work by McBride and Atkey.
- The implementation is mainly due to Abel.
ok: $\{@ 0 A:$ Set $\} \rightarrow A \rightarrow A$
ok $x=x$
-- not-ok : \{@0 A : Set $\} \rightarrow$ @0 A $\rightarrow \mathrm{A}$
-- not-ok $x=x$
-- also-not-ok : @0 Bool \rightarrow Bool
-- also-not-ok true = false
-- also-not-ok false = true

Erased

A type-level variant of @0:
record Erased (@0 A : Set a) : Set a where constructor [_] field

@0 erased: A

Monad

Erased is a monad:

return : $\{@ 0 A:$ Set $a\} \rightarrow @ 0 A \rightarrow$ Erased A return $x=[x]$

$$
\begin{aligned}
& \gg-A \\
& \{00: \text { Set } a\}\{@ 0 B: \text { Set } b\} \rightarrow \\
& \text { Erased } A \rightarrow(A \rightarrow \text { Erased } B) \rightarrow \text { Erased } B \\
& x \gg f=[\operatorname{erased}(f(\text { erased } x))]
\end{aligned}
$$

A toy
 application

An application

Natural numbers that...

- ...compute (roughly) like binary natural numbers at run-time.
- ...compute (roughly) like unary natural numbers at compile-time...
- ...for some operations.

The underlying representation

Lists of bits with the least significant digit first and no trailing zeros:
abstract
mutual
data Bin' : Set where
[] : Bin'
_: ____〉: $(b: \mathrm{Bool})(n: \mathrm{Bin}) \rightarrow$ @0 Invariant $b n \rightarrow$ Bin'
data Invariant: Bool \rightarrow Bin' \rightarrow Set where true-inv : Invariant true n false-inv : Invariant false ($b:: n\langle i n v\rangle$)

The underlying representation

Abstract:

- The representation can be changed without breaking client code.
- Does not "compute" at compile-time: The type-checker does not use definitional equalities.

The underlying representation

The representation of a given natural number is unique. An equivalence (\approx bijection):

$$
\text { to- } \mathbb{N}: \text { Bin' }^{\prime} \rightarrow \mathbb{N}
$$

Indexed binary numbers

Binary natural numbers representing a given natural number:

$$
\begin{aligned}
& \operatorname{Bin}-[-]: @ 0 \mathbb{N} \rightarrow \text { Set } \\
& \operatorname{Bin}-[n]=\Sigma \operatorname{Bin}(\lambda b \rightarrow \text { Erased }(\text { to- } \mathbb{N} b \equiv n))
\end{aligned}
$$

Indexed binary numbers

Binary natural numbers representing a given natural number:

$$
\begin{aligned}
& \operatorname{Bin}-[-]: @ 0 \mathbb{N} \rightarrow \text { Set } \\
& \operatorname{Bin}-[n]=\Sigma \operatorname{Bin}(\lambda b \rightarrow \text { Erased }(\text { to- } \mathbb{N} b \equiv n))
\end{aligned}
$$

The type is propositional:
$\{@ 0 n: \mathbb{N}\} \rightarrow$ Is-prop $\operatorname{Bin}-[n]$

Is-prop : Set $a \rightarrow$ Set a
Is-prop $A=(x y: A) \rightarrow x \equiv y$

Non-indexed binary numbers

Binary natural numbers:

$$
\begin{aligned}
& \operatorname{Bin}: \text { Set } \\
& \operatorname{Bin}=\Sigma(\text { Erased } \mathbb{N})(\lambda n \rightarrow \operatorname{Bin}-[\text { erased } n])
\end{aligned}
$$

Returns the erased index:

$$
\begin{aligned}
& \text { @0 }\left\lfloor _\right\rfloor: \operatorname{Bin} \rightarrow \mathbb{N} \\
& \lfloor([n],-)\rfloor=n
\end{aligned}
$$

[]-cong

A key lemma:
[]-cong :
$\{@ 0 A$: Set a\} $\{@ 0 \times y: A\} \rightarrow$
Erased $(x \equiv y) \rightarrow[x] \equiv[y]$

[]-cong

A key lemma:

$$
\begin{aligned}
& \text { []-cong: } \\
& \{@ 0 A: \text { Set } a\}\{@ 0 x y: A\} \rightarrow \\
& \text { Erased }(x \equiv y) \rightarrow[x] \equiv[y]
\end{aligned}
$$

With the K rule and propositional equality:

$$
[]-\text { cong }[\text { refl }]=\text { refl }
$$

[]-cong

A key lemma:

$$
\begin{aligned}
& \text { []-cong : } \\
& \{@ 0 A: \text { Set } a\}\{@ 0 x y: A\} \rightarrow \\
& \text { Erased }(x \equiv y) \rightarrow[x] \equiv[y]
\end{aligned}
$$

With the K rule and propositional equality:

$$
[]-\text { cong }[\text { refl }]=\text { refl }
$$

With Cubical Agda and paths:

$$
[]-\operatorname{cong}[e q]=\lambda i \rightarrow[\text { eq } i]
$$

[]-cong

A key lemma:

$$
\begin{aligned}
& \text { []-cong: } \\
& \{@ 0 A: \text { Set } a\}\{@ 0 x y: A\} \rightarrow \\
& \text { Erased }(x \equiv y) \rightarrow[x] \equiv[y]
\end{aligned}
$$

With the K rule and propositional equality:

$$
[]-\text { cong }[\text { refl }]=\text { refl }
$$

With Cubical Agda and paths:

$$
[]-c o n g[e q]=\lambda i \rightarrow[\text { eq } i]
$$

In both cases []-cong is an equivalence that $\operatorname{maps}[\operatorname{refl} x]$ to refl $[x]$.

Non-indexed binary numbers

Recall:

$$
\begin{aligned}
& \operatorname{Bin}: \text { Set } \\
& \operatorname{Bin}=\Sigma(\text { Erased } \mathbb{N})(\lambda n \rightarrow \operatorname{Bin}-[\text { erased } n]) \\
& \text { @0 }\lfloor-\rfloor: \operatorname{Bin} \rightarrow \mathbb{N} \\
& \lfloor([n],-)\rfloor=n
\end{aligned}
$$

Equality follows from equality for the erased indices:

$$
\begin{array}{ll}
\text { Erased }(\lfloor x\rfloor \equiv\lfloor y\rfloor) & \simeq \\
\operatorname{proj}_{1} x \equiv \operatorname{proj}_{1} y & \simeq \\
x \equiv y
\end{array}
$$

Addition

abstract

plus: Bin' \rightarrow Bin' \rightarrow Bin'
plus $=\ldots$-- Add with carry.
$__{-}^{\oplus}: \operatorname{Bin} \rightarrow \operatorname{Bin} \rightarrow \operatorname{Bin}$
$\left([m], m^{\prime}, p\right) \oplus\left([n], n^{\prime}, q\right)=$ ([$m+n]$, plus $\left.m^{\prime} n^{\prime},[\ldots]\right)$

Conversion to/from unary natural numbers?

Goal:

- $\operatorname{Bin} \simeq \mathbb{N}($ in a non-erased context $)$.
- With the forward direction pointwise equal to $\left.L_{-}\right\rfloor$(in an erased context).

Some theory

Some equivalences

Erased $\top \simeq \top$

Erased $\perp \simeq \perp$

Erased $((x: A) \rightarrow P x) \simeq((x: A) \rightarrow$ Erased $(P x))$
Erased $((x: A) \rightarrow P x) \simeq$
$((x:$ Erased $A) \rightarrow$ Erased $(P(\operatorname{erased} x)))$
Erased $(\Sigma A P) \simeq$
$\Sigma(\operatorname{Erased} A)(\lambda x \rightarrow \operatorname{Erased}(P(\operatorname{erased} x)))$

Some preservation lemmas

For erased A : Set a and $B:$ Set b :
@0 $(A \rightarrow B) \rightarrow$ Erased $A \rightarrow$ Erased B
@0 $A \Leftrightarrow B \rightarrow$ Erased $A \Leftrightarrow$ Erased B
@0 $A \rightarrow B \rightarrow$ Erased $A \rightarrow$ Erased B
©0 $A \leftrightarrow B \rightarrow$ Erased $A \leftrightarrow$ Erased B
@0 $A \simeq B \rightarrow$ Erased $A \simeq$ Erased B
©0 $A \succ B \rightarrow$ Erased $A \mapsto$ Erased B
@0 Embedding $A B \rightarrow$
Embedding (Erased A) (Erased B)

H-levels

Erased commutes with Is-prop:

Erased $($ Is-prop $A) \Leftrightarrow I s-p r o p(E r a s e d ~ A)$

More generally:
Erased $(\mathrm{H}$-level $n A) \Leftrightarrow \mathrm{H}$-level $n(\operatorname{Erased} A)$

Modality

Erased is a left exact modality in the sense of Rijke, Shulman and Spitters.

Back to the

 application
An equivalence

$\begin{array}{ll}\operatorname{Bin}-[n] & \simeq \\ \sum \operatorname{Bin}^{\prime}(\lambda b \rightarrow \operatorname{Erased}(\text { to- } \mathbb{N} b \equiv n)) & \simeq \\ \sum \mathbb{N}(\lambda m \rightarrow \operatorname{Erased}(m \equiv n))\end{array}$
Note that n can be erased.

Another equivalence

The binary natural numbers are equivalent to the unary ones, both at compile-time and at run-time:

Bin
$\Sigma($ Erased $\mathbb{N})(\lambda n \rightarrow \operatorname{Bin}-[$ erased $n])$
$\Sigma($ Erased $\mathbb{N})(\lambda n \rightarrow \Sigma \mathbb{N}(\lambda m \rightarrow$ Erased $(m \equiv$ erased $n))$)
$\Sigma \mathbb{N}(\lambda m \rightarrow \Sigma($ Erased $\mathbb{N})(\lambda n \rightarrow$
Erased $(m \equiv$ erased $n))$)
$\Sigma \mathbb{N}(\lambda m \rightarrow \operatorname{Erased}(\Sigma \mathbb{N}(\lambda n \rightarrow m \equiv n))) \simeq$
$\mathbb{N} \times$ Erased T
\simeq
$\mathbb{N} \times T$
\simeq
\mathbb{N}

Another equivalence

The binary natural numbers are equivalent to the unary ones, both at compile-time and at run-time:
$\operatorname{Bin} \simeq \mathbb{N}$
In an erased context the forward direction is pointwise equal to $\left.L_{-}\right\rfloor$(i.e. it returns the index).

Stability

Stability

A type A is stable if Erased A implies A :
Stable: Set $a \rightarrow$ Set a
Stable $A=$ Erased $A \rightarrow A$
A type is very stable (or modal) if [_] is an equivalence:

Very-stable: Set $a \rightarrow$ Set a
Very-stable $A=$ Is-equivalence ([_] $\{A=A\}$)

Double negation

Erased A implies $\neg \neg A$. Thus types that are stable for double negation are stable for Erased:
$\{@ 0 A:$ Set $a\} \rightarrow(\neg \neg A \rightarrow A) \rightarrow$ Stable A
Types for which it is known whether or not they are inhabited are also stable:
$\{@ 0 A$: Set $a\} \rightarrow A \uplus \neg A \rightarrow$ Stable A

Stability of equality

Variants of Stable and Very-stable:
Stable- \equiv : Set $a \rightarrow$ Set a
Stable- $\equiv A=(x y: A) \rightarrow$ Stable $(x \equiv y)$
Very-stable- $\equiv:$ Set $a \rightarrow$ Set a
Very-stable- $\equiv A=$

$$
(x y: A) \rightarrow \text { Very-stable }(x \equiv y)
$$

Decidable equality

Stable propositions are very stable:
Stable $A \rightarrow$ Is-prop $A \rightarrow$ Very-stable A
Thus types for which equality is decidable have very stable equality:

$$
\begin{aligned}
& ((x y: A) \rightarrow x \equiv y \uplus \neg x \equiv y) \rightarrow \\
& \text { Very-stable-三A}
\end{aligned}
$$

Propositions

However, it is not the case that every very stable type is a proposition:
$\neg(\{A:$ Set $a\} \rightarrow$ Very-stable $A \rightarrow$ Is-prop $A)$
Erased Bool is not a proposition, but it is very stable:
$\{@ 0 A:$ Set $a\} \rightarrow$ Very-stable $($ Erased $A)$

Why is $\operatorname{Bin}-[n]$ propositional?

Lemma:
$\{@ 0 x: A\} \rightarrow$
Very-stable- $\equiv A \rightarrow$
Is-prop $(\Sigma A(\lambda y \rightarrow$ Erased $(y \equiv x)))$
$\operatorname{Bin}-[n]$ is propositional:

$$
\begin{aligned}
& ((x y: \mathbb{N}) \rightarrow x \equiv y \uplus \neg x \equiv y) \\
& \text { Very-stable- } \equiv \mathbb{N} \\
& \text { Very-stable- } \equiv \text { Bin' }^{\prime}
\end{aligned}
$$

$$
\text { Is-prop }(\Sigma \operatorname{Bin}(\lambda b \rightarrow \text { Erased }(b \equiv \text { from- } \mathbb{N} n)))
$$

$$
\text { Is-prop }(\Sigma \operatorname{Bin} \prime(\lambda b \rightarrow \text { Erased }(\text { to- } \mathbb{N} b \equiv n)))
$$

$$
\text { Is-prop } \operatorname{Bin}-[n]
$$

Closure properties

For Π :
$(\forall x \rightarrow$ Stable $(P x)) \rightarrow$ Stable $((x: A) \rightarrow P x)$
$(\forall x \rightarrow \operatorname{Very}$-stable $(P x)) \rightarrow$
Very-stable $((x: A) \rightarrow P x)$
(The second property is proved using function extensionality.)

Closure properties

For Σ :
Very-stable $A \rightarrow(\forall x \rightarrow$ Stable $(P x)) \rightarrow$
Stable ($\Sigma A P$)
Very-stable $A \rightarrow(\forall x \rightarrow \operatorname{Very}$-stable $(P x)) \rightarrow$ Very-stable ($\Sigma A P$)

Closure properties

For equality:
Very-stable $A \rightarrow$ Very-stable- $\equiv A$

Closure properties

For List:
Stable- $\equiv A \rightarrow$ Stable $-\equiv($ List $A)$
Very-stable- $\equiv A \rightarrow$ Very-stable- $\equiv($ List $A)$

Universes

Universes of very stable types are very stable (assuming univalence):

Very-stable (Σ (Set a) Very-stable)

Discussion

- A surprising amount of theory for something as simple as Erased?
- Can []-cong be defined in plain Agda without K?
- Unclear whether erasure makes sense in Cubical Agda.

