Logical properties of a modality for erasure

Nils Anders Danielsson

IFIP WG 2.1 Meeting #79, Otterlo, January 2020

• Lists of a given length in Agda:

data Vec $(A : Set) : \mathbb{N} \rightarrow Set$ where [] : Vec A = 0_::_: : $\{n : \mathbb{N}\} \rightarrow$ $A \rightarrow Vec A = n \rightarrow Vec A (1 + n)$

- With a bad implementation:
 Ω(n²) space for lists of length n.
- It might make sense for the compiler to "erase" some data.

With explicit erasure annotations:

data Vec (@0 A : Set) : @0 $\mathbb{N} \rightarrow$ Set where [] : Vec A 0 _::_ : {@0 $n : \mathbb{N}$ } \rightarrow $A \rightarrow \text{Vec } A \ n \rightarrow \text{Vec } A \ (1 + n)$

- @0 is used to mark arguments and definitions that should be erased at run-time.
- Agda is supposed to make sure that:
 - Things marked as erased are actually erased.
 - There is never any data missing at run-time.
- The typing rules are based on work by McBride and Atkey.
- The implementation is mainly due to Abel.

- $\mathsf{ok} : \{ @0 \ A : \mathsf{Set} \} \rightarrow A \rightarrow A$ $\mathsf{ok} \ x = x$
- -- not-ok : {@O A : Set} \rightarrow @O A \rightarrow A
- -- not-ok x = x
- -- also-not-ok : @O Bool \rightarrow Bool
- -- also-not-ok true = false
- -- also-not-ok false = true

A type-level variant of @0:

record Erased (@0 A : Set a) : Set a where constructor [_] field @0 erased : A

Monad

Erased is a monad:

return : {@0 A : Set a} \rightarrow @0 A \rightarrow Erased A return x = [x]

$$\sum_{\substack{a \in A \\ b \in A}} : Set a \} \{ @0 \ B : Set b \} \rightarrow \\ Erased \ A \rightarrow (A \rightarrow Erased \ B) \rightarrow Erased \ B \\ x \gg f = [erased (f(erased x))]$$

A toy application

Natural numbers that...

- …compute (roughly) like binary natural numbers at run-time.
- …compute (roughly) like unary natural numbers at compile-time…
 - …for some operations.

The underlying representation

Lists of bits with the least significant digit first and no trailing zeros:

abstract mutual data Bin' : Set where [] : Bin' _::_ $\langle _$: (b : Bool) (n : Bin') \rightarrow @0 Invariant b n \rightarrow Bin'

> data Invariant : Bool \rightarrow Bin' \rightarrow Set where true-inv : Invariant true *n* false-inv : Invariant false ($b :: n \langle inv \rangle$)

Abstract:

- The representation can be changed without breaking client code.
- Does not "compute" at compile-time: The type-checker does not use definitional equalities.

The representation of a given natural number is unique. An equivalence (\approx bijection):

to- \mathbb{N} : Bin' $\rightarrow \mathbb{N}$

Indexed binary numbers

Binary natural numbers representing a given natural number:

Bin-[_] : $@0 \mathbb{N} \rightarrow Set$ Bin-[n] = Σ Bin' ($\lambda \ b \rightarrow Erased$ (to- $\mathbb{N} \ b \equiv n$))

Indexed binary numbers

Binary natural numbers representing a given natural number:

Bin-[_] : $@0 \mathbb{N} \rightarrow Set$ Bin-[n] = Σ Bin' ($\lambda \ b \rightarrow Erased$ (to- $\mathbb{N} \ b \equiv n$))

The type is propositional:

 $\{@0 \ n : \mathbb{N}\} \rightarrow \text{Is-prop Bin-[} n]$

Binary natural numbers:

Bin : Set Bin = Σ (Erased \mathbb{N}) ($\lambda \ n \rightarrow$ Bin-[erased n])

Returns the erased index:

 $\begin{array}{l} \textbf{[]-cong :} \\ \{@0 \ A : \mathsf{Set} \ a\} \ \{@0 \ x \ y : \ A\} \ \rightarrow \\ \mathsf{Erased} \ (x \equiv y) \rightarrow [x] \equiv [y] \end{array}$

With the K rule and propositional equality:

[]-cong [refl] = refl

$$\begin{array}{l} \textbf{[]-cong :} \\ \{@0 \ A : \mathsf{Set} \ a\} \ \{@0 \ x \ y : \ A\} \ \rightarrow \\ \mathsf{Erased} \ (x \equiv y) \ \rightarrow \ [x] \equiv \ [y] \end{array}$$

With the K rule and propositional equality:

[]-cong [refl] = refl

With Cubical Agda and paths:

[]-cong [eq] = $\lambda i \rightarrow$ [eq i]

$$\begin{array}{l} \textbf{[]-cong :} \\ \{ @0 \ A : \mathsf{Set} \ a \} \ \{ @0 \ x \ y : \ A \} \ \rightarrow \\ \mathsf{Erased} \ (x \equiv y) \rightarrow [\ x \] \equiv [\ y \] \end{array}$$

With the K rule and propositional equality:

[]-cong [refl] = refl

With Cubical Agda and paths:

$$[]\text{-cong} [eq] = \lambda i \rightarrow [eq i]$$

In both cases []-cong is an equivalence that maps [refl x] to refl [x].

Non-indexed binary numbers

Recall:

Bin : Set Bin = Σ (Erased \mathbb{N}) ($\lambda \ n \rightarrow$ Bin-[erased n]) @0 [_] : Bin $\rightarrow \mathbb{N}$ [([n] , _)] = n

Equality follows from equality for the erased indices:

Erased
$$(\lfloor x \rfloor \equiv \lfloor y \rfloor) \simeq$$

proj₁ $x \equiv \text{proj}_1 y \simeq$
 $x \equiv y$

abstract

plus : $Bin' \rightarrow Bin' \rightarrow Bin'$ plus = ... -- Add with carry.

Conversion to/from unary natural numbers?

Goal:

- Bin $\simeq \mathbb{N}$ (in a non-erased context).
- With the forward direction pointwise equal to
 [_] (in an erased context).

Some theory

$\mathsf{Erased} \; \top \simeq \top$

- $\mathsf{Erased} \perp \simeq \perp$
- $\mathsf{Erased} \ ((x: A) \to P \ x) \simeq ((x: A) \to \mathsf{Erased} \ (P \ x))$
- Erased $((x : A) \rightarrow P x) \simeq$ $((x : \text{Erased } A) \rightarrow \text{Erased } (P \text{ (erased } x)))$

Erased ($\Sigma \land P$) \simeq Σ (Erased A) ($\lambda \land x \rightarrow$ Erased (P (erased x)))

Some preservation lemmas

For erased A : Set a and B : Set b:

- Erased commutes with Is-prop:
 - Erased (Is-prop A) \Leftrightarrow Is-prop (Erased A)

More generally:

Erased (H-level n A) \Leftrightarrow H-level n (Erased A)

Erased is a *left exact modality* in the sense of Rijke, Shulman and Spitters.

Back to the application

$$\begin{array}{l} \mathsf{Bin-[} n \] &\simeq \\ \Sigma \ \mathsf{Bin'} \ (\lambda \ b \to \mathsf{Erased} \ (\mathsf{to-}\mathbb{N} \ b \equiv n)) &\simeq \\ \Sigma \ \mathbb{N} \ (\lambda \ m \to \mathsf{Erased} \ (m \equiv n)) & \end{array}$$

Note that *n* can be erased.

Another equivalence

The binary natural numbers are equivalent to the unary ones, both at compile-time and at run-time:

$$\begin{array}{ll} \mbox{Bin} &\simeq \\ \Sigma \ (\mbox{Erased } \mathbb{N}) \ (\lambda \ n \to \mbox{Bin-[erased } n \]) &\simeq \\ \Sigma \ (\mbox{Erased } \mathbb{N}) \ (\lambda \ n \to \Sigma \ \mathbb{N} \ (\lambda \ m \to \\ \mbox{Erased } (m \equiv \mbox{erased } n))) &\simeq \\ \Sigma \ \mathbb{N} \ (\lambda \ m \to \Sigma \ (\mbox{Erased } \mathbb{N}) \ (\lambda \ n \to \\ \mbox{Erased } (m \equiv \mbox{erased } n))) &\simeq \\ \Sigma \ \mathbb{N} \ (\lambda \ m \to \mbox{Erased } n))) &\simeq \\ \Sigma \ \mathbb{N} \ (\lambda \ m \to \mbox{Erased } (\Sigma \ \mathbb{N} \ (\lambda \ n \to m \equiv n))) &\simeq \\ \mathbb{N} \ \times \ \mbox{Erased } \top &\simeq \\ \mathbb{N} \end{array}$$

Another equivalence

The binary natural numbers are equivalent to the unary ones, both at compile-time and at run-time:

 $\mathsf{Bin}\simeq\mathbb{N}$

In an erased context the forward direction is pointwise equal to $\lfloor _ \rfloor$ (i.e. it returns the index).

Stability

A type A is *stable* if Erased A implies A:

Stable : Set $a \rightarrow$ Set aStable A = Erased $A \rightarrow A$

A type is *very stable* (or *modal*) if [_] is an equivalence:

Very-stable : Set $a \rightarrow \text{Set } a$ Very-stable $A = \text{Is-equivalence} ([] {<math>A = A$ }) Erased A implies $\neg \neg A$. Thus types that are stable for double negation are stable for Erased:

$$\{ @0 \ A : \mathsf{Set} \ a \} \rightarrow (\neg \neg A \rightarrow A) \rightarrow \mathsf{Stable} \ A$$

Types for which it is known whether or not they are inhabited are also stable:

 $\{ @0 \ A : Set \ a \} \rightarrow A \uplus \neg A \rightarrow Stable \ A$

Variants of Stable and Very-stable:

Stable= \equiv : Set $a \rightarrow$ Set aStable= $\equiv A = (x \ y : A) \rightarrow$ Stable $(x \equiv y)$

Very-stable= \equiv : Set $a \rightarrow$ Set aVery-stable= $\equiv A = (x \ y : A) \rightarrow$ Very-stable $(x \equiv y)$ Stable propositions are very stable:

Stable $A \rightarrow$ Is-prop $A \rightarrow$ Very-stable A

Thus types for which equality is decidable have very stable equality:

$$((x \ y : A) \rightarrow x \equiv y \uplus \neg x \equiv y) \rightarrow$$

Very-stable- $\equiv A$

However, it is not the case that every very stable type is a proposition:

 \neg ({*A* : Set *a*} \rightarrow Very-stable *A* \rightarrow Is-prop *A*)

Erased Bool is not a proposition, but it is very stable:

 $\{@0 A : Set a\} \rightarrow Very-stable (Erased A)$

Why is Bin-[*n*] propositional?

Lemma:

 $\{ @0 \ x : \ A \} \rightarrow \\ \mathsf{Very-stable} = \mathbb{A} \rightarrow \\ \mathsf{Is-prop} \ (\Sigma \ A \ (\lambda \ y \rightarrow \mathsf{Erased} \ (y \equiv x)))$

Bin-[n] is propositional:

 $\begin{array}{ll} ((x \ y : \mathbb{N}) \rightarrow x \equiv y \uplus \neg x \equiv y) & \rightarrow \\ \text{Very-stable} = \mathbb{N} & \rightarrow \\ \text{Very-stable} = \mathbb{Bin'} & \rightarrow \\ \text{Is-prop} (\Sigma \ \text{Bin'} (\lambda \ b \rightarrow \text{Erased} \ (b \equiv \text{from-}\mathbb{N} \ n))) & \rightarrow \\ \text{Is-prop} (\Sigma \ \text{Bin'} \ (\lambda \ b \rightarrow \text{Erased} \ (\text{to-}\mathbb{N} \ b \equiv n))) & \rightarrow \\ \text{Is-prop} \ \text{Bin-}[\ n \] \end{array}$

For Π :

$$(\forall x \rightarrow \mathsf{Stable} \ (P \ x)) \rightarrow \mathsf{Stable} \ ((x : A) \rightarrow P \ x)$$

$$(\forall x \rightarrow \text{Very-stable } (P x)) \rightarrow \text{Very-stable } ((x : A) \rightarrow P x)$$

(The second property is proved using function extensionality.)

For Σ :

Very-stable
$$A \rightarrow (\forall x \rightarrow \text{Stable } (P x)) \rightarrow \text{Stable } (\Sigma A P)$$

Very-stable $A \rightarrow (\forall x \rightarrow \text{Very-stable } (P x)) \rightarrow \text{Very-stable } (\Sigma A P)$

For equality:

Very-stable $A \rightarrow Very$ -stable- $\equiv A$

For List:

Stable- $\equiv A \rightarrow$ Stable- \equiv (List A) Very-stable- $\equiv A \rightarrow$ Very-stable- \equiv (List A) Universes of very stable types are very stable (assuming univalence):

Very-stable (Σ (Set *a*) Very-stable)

- A surprising amount of theory for something as simple as Erased?
- Can []-cong be defined in plain Agda without K?
- Unclear whether erasure makes sense in Cubical Agda.