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Introduction

record R1 : Set where
field

x : Bool
f : Bool → Bool

record R2 : Set where
field

r1 : R1

record R3 : Set where
field

r2 : R2



Introduction
set -x1 : R1 → Bool → R1
set -x1 r x = record r {x = x}
set -x2 : R2 → Bool → R2
set -x2 r x = record r

{r1 = record (R2.r1 r)
{x = x}}

set -x3 : R3 → Bool → R3
set -x3 r x =

record r
{r2 = record (R3.r2 r)

{r1 = record (R2.r1 (R3.r2 r))
{x = x}}}



Introduction
With lenses:

x : Lens R1 Bool
r1 : Lens R2 R1
r2 : Lens R3 R2

set -x1 : R1 → Bool → R1
set -x1 = set x
set -x2 : R2 → Bool → R2
set -x2 = set (x ◦ r1)

set -x3 : R3 → Bool → R3
set -x3 = set (x ◦ r1 ◦ r2)



Introduction

In this talk:
▶ What happens if we view lenses

through the lens of homotopy type theory?
▶ What if we have dependent record types?

Note: Work in progress.



Preliminaries



H-levels

H -level : N → Set → Set
Is -proposition = H -level 1
Is -set = H -level 2

Is -proposition A ⇔ (x y : A) → x ≡ y
Is -set A ⇔

(x y : A) → Is -proposition (x ≡ y)



Propositional truncation

∥ ∥ : Set → Set
Is -proposition ∥ A ∥
| | : A → ∥ A ∥

Non-dependent eliminator:

Is -proposition B →
(A → B) →
∥ A ∥ → B



Assumptions

Used in various proofs/definitions:
▶ The propositional truncation.
▶ Extensionality (used silently).
▶ The univalence axiom (UA).
▶ The K rule (K).

TODO: Are K and ∥ ∥ mutually consistent?
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Equivalences

Equivalences:

≃ : Set → Set → Set

A ≃ B is logically equivalent to
“A is in bijective correspondence with B”.



Split surjections

Split surjections (functions with right inverses):

↠ : Set → Set → Set



Higher lenses



Traditional definition

Very well-behaved lenses:

TLens : Set → Set → Set
TLens A B =

(get : A → B) ×
(set : A → B → A) ×
(∀ a b. get (set a b) ≡ b) ×
(∀ a. set a (get a) ≡ a) ×
(∀ a b1 b2. set (set a b1) b2 ≡ set a b2)



Traditional definition

Can define id, ◦ , can prove

id ◦ l ≡ l,
l ◦ id ≡ l,
l1 ◦ (l2 ◦ l3) ≡ (l1 ◦ l2) ◦ l3,

without assuming that domains or codomains
are sets.

However, the last proof is rather long
(at least my proof).



First definition using equivalences

A well-known fact (for set-theoretic
presentations of lenses):

Lens A B → ∃ R : Set. A ↔ R × B

Can we use this to define what a lens is?

Lens′ A B = (R : Set) × (A ≃ R × B)



Getter, setter

Recall:

Lens′ A B = (R : Set) × (A ≃ R × B)

Getter:

get ( , eq) a = snd (to eq a)

Setter:

set ( , eq) a b = from eq (fst (to eq a), b)



First definition using equivalences

Recall:

Lens′ A B = (R : Set) × (A ≃ R × B)

Too big:

TLens ⊥ ⊥ ≃ ⊤
Lens′ ⊥ ⊥ ≃ Set



Higher lenses

Due to Paolo Capriotti:

HLens A B =
(get : A → B) ×
(H : ∥ B ∥ → Set) ×
(λ b. (a : A) × (get a ≡ b)) ≡ (λ b. H | b |)



Higher lenses

Andrea Vezzosi and I found the following definition:

ILens A B =
(R : Set) ×
(A ≃ R × B) ×
(R → ∥ B ∥)

▶ If B is empty, then R is empty.
▶ Equivalent to HLens (assuming UA).
▶ We can still define get and set.



Identity

Recall:

ILens A A def
=

(R : Set) × (A ≃ R × A) × (R → ∥ A ∥)

For ILens A A:

A ≃ ∥ A ∥ × A



Composition
Assume A ≃ R1 × B, B ≃ R2 × C. We get:

A ≃
R1 × B ≃
R1 × (R2 × C) ≃
(R1 × R2) × C

Also:

(R1 × R2) →
R2 →
∥ C ∥

or
(R1 × R2) →
R1 →
∥ B ∥ →
∥ C ∥



Composition

Can prove

UA → id ◦ l ≡ l,
UA → l ◦ id ≡ l,
UA → l1 ◦ (l2 ◦ l3) ≡ (l1 ◦ l2) ◦ l3.

The proofs are straightforward.



Relation between ILens and TLens
Easy:

ILens A B → TLens A B

If the domain is a set:

Is -set A → ILens A B ↠ TLens A B
UA → Is -set A → ILens A B ≃ TLens A B

When defining an ILens from a TLens:

R = (f : B → A) × (∀ b b′. set (f b) b′ ≡ f b′)



Relation between ILens and TLens

If the codomain is a proposition,
then an ILens is just a get function:

UA → Is -proposition B →
ILens A B ≃ (A → B)

This is not necessarily the case for TLenses:

Is -proposition B →
TLens A B ≃ (A → B) × ((a : A) → a ≡ a)
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Relation between ILens and TLens

If the codomain is ⊤,
then an ILens is ⊤:

UA →
ILens A ⊤ ≃ ⊤

This is not necessarily the case for TLenses:

TLens A ⊤ ≃ ((a : A) → a ≡ a)



Relation between ILens and TLens

Kraus and Sattler have shown

UA → ¬ Is -proposition ((a : A) → a ≡ a),

where A = (B : Set) × (B ≡ B).

We get:

UA → ¬ (ILens ((B : Set) × (B ≡ B)) ⊤ ↠
TLens ((B : Set) × (B ≡ B)) ⊤)
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Relation between ILens and TLens

I don’t know if we can prove

TLens A B → ILens A B

or

¬ (TLens A B → ILens A B).



Relation between ILens and TLens
Both definitions satisfy:

Lens A B → A → H -level n A → H -level n B

All h-levels are closed under TLens:

H -level n A → H -level n B →
H -level n (TLens A B)

For ILens I have (so far?) only managed to prove:

UA → H -level n A →
H -level (1 + n) (ILens A B)



No first projection lens

For both definitions one can find A, B such that

¬ Lens (Σ A B) A.

Example: A = Bool, B a = a ≡ true.



Dependent
lenses



Second projection lens?

What if we want to define a lens
corresponding to the second projection?

Lens : (A : Set) → (A → Set) → Set
second -projection :

Lens (Σ A B) (λ (a, ). B a)



Example
A dependent record type:

record R : Set where
field

x : Bool
f : Bool → Bool
f≡id : ∀ y. f y ≡ y

Should be possible to define:

x : Lens R (λ . Bool)
f : Lens R (λ . (f : Bool → Bool) ×

∀ y. f y ≡ y)
f≡id : Lens R (λ r. ∀ y. R1.f r y ≡ y)



Dependent lenses
Preliminary definition:

Lens : (A : Set) → (A → Set) → Set
Lens A B =

(R : Set) ×
(B′ : R → Set) ×
(eq : A ≃ Σ R B′) ×
(inhabited : (r : R) → ∥ B′ r ∥) ×
let remainder : A → R

remainder a = fst (to eq a)
in
(variant : ∀ a. B′ (remainder a) ≡ B a)



Dependent lenses

Equivalently:

Lens : (A : Set) → (A → Set) → Set
Lens A B =

(R : Set) ×
(B′ : R → Set) ×
(eq : A ≃ Σ R B′) ×
(inhabited : (r : R) → ∥ B′ r ∥) ×
(variant : (r : R) (b′ : B′ r) →

B′ r ≡ B (from eq (r, b′)))



Getter

Lens A B =
(R : Set) ×
(B′ : R → Set) ×
(eq : A ≃ Σ R B′) ×
(inhabited : (r : R) → ∥ B′ r ∥) ×
let remainder : A → R

remainder a = fst (to eq a)
in
(variant : ∀ a. B′ (remainder a) ≡ B a)

get : (a : A) → B a
get a = to (variant a) (snd (to eq a))



Setter

Lens A B =
(R : Set) ×
(B′ : R → Set) ×
(eq : A ≃ Σ R B′) ×
(inhabited : (r : R) → ∥ B′ r ∥) ×
let remainder : A → R

remainder a = fst (to eq a)
in
(variant : ∀ a. B′ (remainder a) ≡ B a)

set : (a : A) → B a → A
set a b = from eq (remainder a, from (variant a) b)



Lens laws

remainder (set a b) ≡ remainder a
unchanged : B (set a b) ≡ B a
set a (get a) ≡ a
get (set a b) ≡ from unchanged b
set (set a b1) b2 ≡ set a (to unchanged b2)



Propositional codomain

If the codomain is a family of propositions,
then a Lens is just a get function:

UA → (∀ a. Is -proposition (B a)) →
Lens A B ≃ ((a : A) → B a)



Composition
Can we define a composition operator?

◦ :
{A : Set} {B : A → Set}
{C : (a : A) → B a → Set}
(l1 : Lens A B)
(l2 : ∀ a. Lens (B a) (C a)) →
Lens A (λ a. C a (get l1 a))

A requirement on the resulting get function:

get a ≡ get (l2 a) (get l1 a)



Composition

If we can prove that non-dependent dependent
lenses are isomorphic to ILenses,
then the answer is no.

Assuming K:

K →
(eq : Lens A (λ . B) ≃ ILens A B) ×

∀ l a → get l a ≡ get (to eq l) a

(What if we have UA instead?)



Composition
Counterexample:

l1 : Lens Bool (λ . Bool)
l1 = id
l2 : Bool → Lens Bool (λ . Bool)
l2 true = id
l2 false = swap
∀ b. get b ≡ true
true ≡
get (set true false) ≡
false



Composition

A variant that is inhabited:

◦ :
{A : Set} {B C : A → Set} →
(l1 : Lens A B) →
(l2 : (r : R l1) →

Lens (B′ l1 r)
(λ b′. C (from (eq l1) (r, b′)))) →

Lens A C

Has worked well in the examples I have tried.



Discussion

▶ Higher lenses.
▶ Perhaps the definition of

HLens/ILens is OK.
▶ Some open questions.

▶ Dependent lenses.
▶ Perhaps one can find a better definition.
▶ The present definition might be OK

in the presence of K.
▶ Impossible to define composition.
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