
Higher and/or dependent lenses

Nils Anders Danielsson

AIM XXII, Leuven, 2015-09-16

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n° 247219.
It has perhaps also received financial support from the Swedish Research Council, but I do not think that I am required to include a corresponding project number here. This presentation does not necessarily
reflect the views of the ERC or the EU. The EU is not liable for any use of the presented information.

Introduction

record R1 : Set where
field

x : Bool
f : Bool → Bool

record R2 : Set where
field

r1 : R1

record R3 : Set where
field

r2 : R2

Introduction
set -x1 : R1 → Bool → R1
set -x1 r x = record r {x = x}
set -x2 : R2 → Bool → R2
set -x2 r x = record r

{r1 = record (R2.r1 r)
{x = x}}

set -x3 : R3 → Bool → R3
set -x3 r x =

record r
{r2 = record (R3.r2 r)

{r1 = record (R2.r1 (R3.r2 r))
{x = x}}}

Introduction
With lenses:

x : Lens R1 Bool
r1 : Lens R2 R1
r2 : Lens R3 R2

set -x1 : R1 → Bool → R1
set -x1 = set x
set -x2 : R2 → Bool → R2
set -x2 = set (x ◦ r1)

set -x3 : R3 → Bool → R3
set -x3 = set (x ◦ r1 ◦ r2)

Introduction

In this talk:
▶ What happens if we view lenses

through the lens of homotopy type theory?
▶ What if we have dependent record types?

Note: Work in progress.

Preliminaries

H-levels

H -level : N → Set → Set
Is -proposition = H -level 1
Is -set = H -level 2

Is -proposition A ⇔ (x y : A) → x ≡ y
Is -set A ⇔

(x y : A) → Is -proposition (x ≡ y)

Propositional truncation

∥ ∥ : Set → Set
Is -proposition ∥ A ∥
| | : A → ∥ A ∥

Non-dependent eliminator:

Is -proposition B →
(A → B) →
∥ A ∥ → B

Assumptions

Used in various proofs/definitions:
▶ The propositional truncation.
▶ Extensionality (used silently).
▶ The univalence axiom (UA).
▶ The K rule (K).

TODO: Are K and ∥ ∥ mutually consistent?

Assumptions

Used in various proofs/definitions:
▶ The propositional truncation.
▶ Extensionality (used silently).
▶ The univalence axiom (UA).
▶ The K rule (K).

TODO: Are K and ∥ ∥ mutually consistent?

Equivalences

Equivalences:

≃ : Set → Set → Set

A ≃ B is logically equivalent to
“A is in bijective correspondence with B”.

Split surjections

Split surjections (functions with right inverses):

↠ : Set → Set → Set

Higher lenses

Traditional definition

Very well-behaved lenses:

TLens : Set → Set → Set
TLens A B =

(get : A → B) ×
(set : A → B → A) ×
(∀ a b. get (set a b) ≡ b) ×
(∀ a. set a (get a) ≡ a) ×
(∀ a b1 b2. set (set a b1) b2 ≡ set a b2)

Traditional definition

Can define id, ◦ , can prove

id ◦ l ≡ l,
l ◦ id ≡ l,
l1 ◦ (l2 ◦ l3) ≡ (l1 ◦ l2) ◦ l3,

without assuming that domains or codomains
are sets.

However, the last proof is rather long
(at least my proof).

First definition using equivalences

A well-known fact (for set-theoretic
presentations of lenses):

Lens A B → ∃ R : Set. A ↔ R × B

Can we use this to define what a lens is?

Lens′ A B = (R : Set) × (A ≃ R × B)

Getter, setter

Recall:

Lens′ A B = (R : Set) × (A ≃ R × B)

Getter:

get (, eq) a = snd (to eq a)

Setter:

set (, eq) a b = from eq (fst (to eq a), b)

First definition using equivalences

Recall:

Lens′ A B = (R : Set) × (A ≃ R × B)

Too big:

TLens ⊥ ⊥ ≃ ⊤
Lens′ ⊥ ⊥ ≃ Set

Higher lenses

Due to Paolo Capriotti:

HLens A B =
(get : A → B) ×
(H : ∥ B ∥ → Set) ×
(λ b. (a : A) × (get a ≡ b)) ≡ (λ b. H | b |)

Higher lenses

Andrea Vezzosi and I found the following definition:

ILens A B =
(R : Set) ×
(A ≃ R × B) ×
(R → ∥ B ∥)

▶ If B is empty, then R is empty.
▶ Equivalent to HLens (assuming UA).
▶ We can still define get and set.

Identity

Recall:

ILens A A def
=

(R : Set) × (A ≃ R × A) × (R → ∥ A ∥)

For ILens A A:

A ≃ ∥ A ∥ × A

Composition
Assume A ≃ R1 × B, B ≃ R2 × C. We get:

A ≃
R1 × B ≃
R1 × (R2 × C) ≃
(R1 × R2) × C

Also:

(R1 × R2) →
R2 →
∥ C ∥

or
(R1 × R2) →
R1 →
∥ B ∥ →
∥ C ∥

Composition

Can prove

UA → id ◦ l ≡ l,
UA → l ◦ id ≡ l,
UA → l1 ◦ (l2 ◦ l3) ≡ (l1 ◦ l2) ◦ l3.

The proofs are straightforward.

Relation between ILens and TLens
Easy:

ILens A B → TLens A B

If the domain is a set:

Is -set A → ILens A B ↠ TLens A B
UA → Is -set A → ILens A B ≃ TLens A B

When defining an ILens from a TLens:

R = (f : B → A) × (∀ b b′. set (f b) b′ ≡ f b′)

Relation between ILens and TLens

If the codomain is a proposition,
then an ILens is just a get function:

UA → Is -proposition B →
ILens A B ≃ (A → B)

This is not necessarily the case for TLenses:

Is -proposition B →
TLens A B ≃ (A → B) × ((a : A) → a ≡ a)

Relation between ILens and TLens

If the codomain is a proposition,
then an ILens is just a get function:

UA → Is -proposition B →
ILens A B ≃ (A → B)

This is not necessarily the case for TLenses:

Is -proposition B →
TLens A B ≃ (A → B) × ((a : A) → a ≡ a)

Relation between ILens and TLens

If the codomain is ⊤,
then an ILens is ⊤:

UA →
ILens A ⊤ ≃ ⊤

This is not necessarily the case for TLenses:

TLens A ⊤ ≃ ((a : A) → a ≡ a)

Relation between ILens and TLens

Kraus and Sattler have shown

UA → ¬ Is -proposition ((a : A) → a ≡ a),

where A = (B : Set) × (B ≡ B).

We get:

UA → ¬ (ILens ((B : Set) × (B ≡ B)) ⊤ ↠
TLens ((B : Set) × (B ≡ B)) ⊤)

Relation between ILens and TLens

Kraus and Sattler have shown

UA → ¬ Is -proposition ((a : A) → a ≡ a),

where A = (B : Set) × (B ≡ B).

We get:

UA → ¬ (ILens ((B : Set) × (B ≡ B)) ⊤ ↠
TLens ((B : Set) × (B ≡ B)) ⊤)

Relation between ILens and TLens

I don’t know if we can prove

TLens A B → ILens A B

or

¬ (TLens A B → ILens A B).

Relation between ILens and TLens
Both definitions satisfy:

Lens A B → A → H -level n A → H -level n B

All h-levels are closed under TLens:

H -level n A → H -level n B →
H -level n (TLens A B)

For ILens I have (so far?) only managed to prove:

UA → H -level n A →
H -level (1 + n) (ILens A B)

No first projection lens

For both definitions one can find A, B such that

¬ Lens (Σ A B) A.

Example: A = Bool, B a = a ≡ true.

Dependent
lenses

Second projection lens?

What if we want to define a lens
corresponding to the second projection?

Lens : (A : Set) → (A → Set) → Set
second -projection :

Lens (Σ A B) (λ (a,). B a)

Example
A dependent record type:

record R : Set where
field

x : Bool
f : Bool → Bool
f≡id : ∀ y. f y ≡ y

Should be possible to define:

x : Lens R (λ . Bool)
f : Lens R (λ . (f : Bool → Bool) ×

∀ y. f y ≡ y)
f≡id : Lens R (λ r. ∀ y. R1.f r y ≡ y)

Dependent lenses
Preliminary definition:

Lens : (A : Set) → (A → Set) → Set
Lens A B =

(R : Set) ×
(B′ : R → Set) ×
(eq : A ≃ Σ R B′) ×
(inhabited : (r : R) → ∥ B′ r ∥) ×
let remainder : A → R

remainder a = fst (to eq a)
in
(variant : ∀ a. B′ (remainder a) ≡ B a)

Dependent lenses

Equivalently:

Lens : (A : Set) → (A → Set) → Set
Lens A B =

(R : Set) ×
(B′ : R → Set) ×
(eq : A ≃ Σ R B′) ×
(inhabited : (r : R) → ∥ B′ r ∥) ×
(variant : (r : R) (b′ : B′ r) →

B′ r ≡ B (from eq (r, b′)))

Getter

Lens A B =
(R : Set) ×
(B′ : R → Set) ×
(eq : A ≃ Σ R B′) ×
(inhabited : (r : R) → ∥ B′ r ∥) ×
let remainder : A → R

remainder a = fst (to eq a)
in
(variant : ∀ a. B′ (remainder a) ≡ B a)

get : (a : A) → B a
get a = to (variant a) (snd (to eq a))

Setter

Lens A B =
(R : Set) ×
(B′ : R → Set) ×
(eq : A ≃ Σ R B′) ×
(inhabited : (r : R) → ∥ B′ r ∥) ×
let remainder : A → R

remainder a = fst (to eq a)
in
(variant : ∀ a. B′ (remainder a) ≡ B a)

set : (a : A) → B a → A
set a b = from eq (remainder a, from (variant a) b)

Lens laws

remainder (set a b) ≡ remainder a
unchanged : B (set a b) ≡ B a
set a (get a) ≡ a
get (set a b) ≡ from unchanged b
set (set a b1) b2 ≡ set a (to unchanged b2)

Propositional codomain

If the codomain is a family of propositions,
then a Lens is just a get function:

UA → (∀ a. Is -proposition (B a)) →
Lens A B ≃ ((a : A) → B a)

Composition
Can we define a composition operator?

◦ :
{A : Set} {B : A → Set}
{C : (a : A) → B a → Set}
(l1 : Lens A B)
(l2 : ∀ a. Lens (B a) (C a)) →
Lens A (λ a. C a (get l1 a))

A requirement on the resulting get function:

get a ≡ get (l2 a) (get l1 a)

Composition

If we can prove that non-dependent dependent
lenses are isomorphic to ILenses,
then the answer is no.

Assuming K:

K →
(eq : Lens A (λ . B) ≃ ILens A B) ×

∀ l a → get l a ≡ get (to eq l) a

(What if we have UA instead?)

Composition
Counterexample:

l1 : Lens Bool (λ . Bool)
l1 = id
l2 : Bool → Lens Bool (λ . Bool)
l2 true = id
l2 false = swap
∀ b. get b ≡ true
true ≡
get (set true false) ≡
false

Composition

A variant that is inhabited:

◦ :
{A : Set} {B C : A → Set} →
(l1 : Lens A B) →
(l2 : (r : R l1) →

Lens (B′ l1 r)
(λ b′. C (from (eq l1) (r, b′)))) →

Lens A C

Has worked well in the examples I have tried.

Discussion

▶ Higher lenses.
▶ Perhaps the definition of

HLens/ILens is OK.
▶ Some open questions.

▶ Dependent lenses.
▶ Perhaps one can find a better definition.
▶ The present definition might be OK

in the presence of K.
▶ Impossible to define composition.

	Introduction
	Preliminaries
	Higher lenses
	Dependent lenses
	Discussion

