Higher and/or dependent lenses

Nils Anders Danielsson

AIM XXII, Leuven, 2015-09-16

Introduction

record R_{1} : Set where field

$$
\begin{aligned}
& x: \text { Bool } \\
& f: \text { Bool } \rightarrow \text { Bool }
\end{aligned}
$$

record R_{2} : Set where field

$$
r_{1}: R_{1}
$$

record R_{3} : Set where
field

$$
r_{2}: R_{2}
$$

Introduction

$$
\begin{aligned}
& \text { set- } x_{1}: R_{1} \rightarrow \text { Sol } \rightarrow R_{1} \\
& \text { set- } x_{1} r x=\text { record } r\{x=x\} \\
& \text { set- } x_{2}: R_{2} \rightarrow \text { Sol } \rightarrow R_{2} \\
& \text { set- } x_{2} r x=\text { record } r
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\left\{r_{1}=\begin{array}{r}
\operatorname{record}\left(R_{2} \cdot r_{1} r\right) \\
\\
\\
\text { set } \left.\left.-x_{3}: R_{3} \rightarrow x\right\}\right\}
\end{array}\right. \\
\text { set- } x_{3} r x=
\end{array}
\end{aligned}
$$

record r

$$
\begin{aligned}
& \left\{r_{2}=\operatorname{record}\left(R_{3} \cdot r_{2} r\right)\right. \\
& \qquad\left\{r_{1}=\operatorname{record}\left(R_{2} \cdot r_{1}\left(R_{3} \cdot r_{2} r\right)\right)\right. \\
& \{x=x\}\}\}
\end{aligned}
$$

Introduction

With lenses:

$$
\begin{aligned}
& x: \text { Lens } R_{1} \text { Bool } \\
& r_{1}: \text { Lens } R_{2} R_{1} \\
& r_{2}: \text { Lens } R_{3} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { set- } x_{1}: R_{1} \rightarrow \text { Bool } \rightarrow R_{1} \\
& \text { set- } x_{1}=\text { set } x
\end{aligned}
$$

$$
\text { set-x } x_{2}: R_{2} \rightarrow \text { Bool } \rightarrow R_{2}
$$

$$
\operatorname{set}-x_{2}=\operatorname{set}\left(x \circ r_{1}\right)
$$

$$
\text { set-x } x_{3}: R_{3} \rightarrow \text { Bool } \rightarrow R_{3}
$$

$$
\text { set- } x_{3}=\operatorname{set}\left(x \circ r_{1} \circ r_{2}\right)
$$

Introduction

In this talk:

- What happens if we view lenses through the lens of homotopy type theory?
- What if we have dependent record types?

Note: Work in progress.

H-levels

$$
\begin{array}{ll}
\text { H-level }: \mathbb{N} \rightarrow \text { Set } \rightarrow \text { Set } \\
\text { Is-proposition } & =H \text {-level } 1 \\
\text { Is-set } & =H \text {-level } 2
\end{array}
$$

Is-proposition $A \Leftrightarrow(x y: A) \rightarrow x \equiv y$
Is-set $A \Leftrightarrow$

$$
(x y: A) \rightarrow \text { Is-proposition }(x \equiv y)
$$

Propositional truncation

Non-dependent eliminator:

$$
\begin{aligned}
& \text { Is-proposition } B \rightarrow \\
& (A \rightarrow B) \rightarrow \\
& \|A\| \rightarrow B
\end{aligned}
$$

Assumptions

Used in various proofs/definitions:

- The propositional truncation.
- Extensionality (used silently).
- The univalence axiom (UA).
- The K rule (K).

Assumptions

Used in various proofs/definitions:

- The propositional truncation.
- Extensionality (used silently).
- The univalence axiom ($U A$).
- The K rule (K).

TODO: Are K and $\|-\|$ mutually consistent?

Equivalences

Equivalences:

$$
\simeq_{-} \text {_ Set } \rightarrow \text { Set } \rightarrow \text { Set }
$$

$A \simeq B$ is logically equivalent to
" A is in bijective correspondence with B ".

Split surjections

Split surjections (functions with right inverses):

$$
\rightarrow_{-}: \text {Set } \rightarrow \text { Set } \rightarrow \text { Set }
$$

Higher lenses

Traditional definition

Very well-behaved lenses:

$$
\begin{aligned}
& \text { TLens }: \text { Set } \rightarrow \text { Set } \rightarrow \text { Set } \\
& \text { TLens } A B= \\
& \quad(\text { get }: A \rightarrow B) \times \\
& (\text { set }: A \rightarrow B \rightarrow A) \times \\
& (\forall a b . \quad \text { get }(\text { set } a b) \equiv b) \times \\
& (\forall a . \quad \text { set } a(\text { get } a) \equiv a) \times \\
& \left(\forall a b_{1} b_{2} . \text { set }\left(\text { set } a b_{1}\right) b_{2} \equiv \operatorname{set} a b_{2}\right)
\end{aligned}
$$

Traditional definition

Can define $i d,{ }_{c} \circ_{-}$, can prove

$$
\begin{aligned}
& i d \circ l \equiv l, \\
& l \circ i d \equiv l, \\
& l_{1} \circ\left(l_{2} \circ l_{3}\right) \equiv\left(l_{1} \circ l_{2}\right) \circ l_{3},
\end{aligned}
$$

without assuming that domains or codomains are sets.

However, the last proof is rather long (at least my proof).

First definition using equivalences

A well-known fact (for set-theoretic presentations of lenses):

$$
\text { Lens } A B \rightarrow \exists R: \text { Set. } A \leftrightarrow R \times B
$$

Can we use this to define what a lens is?

$$
\text { Lens }^{\prime} A B=(R: S e t) \times(A \simeq R \times B)
$$

Getter, setter

Recall:

$$
\text { Lens }^{\prime} A B=(R: S e t) \times(A \simeq R \times B)
$$

Getter:

$$
\operatorname{get}(-, e q) a=\operatorname{snd}(\text { to eq } a)
$$

Setter:

$$
\text { set }(-, e q) a b=\text { from eq }(\text { fst }(\text { to eq } a), b)
$$

First definition using equivalences

Recall:

$$
\text { Lens }^{\prime} A B=(R: \text { Set }) \times(A \simeq R \times B)
$$

Too big:

$$
\begin{aligned}
& \text { TLens } \perp \perp \simeq \top \\
& \text { Lens }^{\prime} \perp \perp \simeq \text { Set }
\end{aligned}
$$

Higher lenses

Due to Paolo Capriotti:

HLens $A B=$

$$
(\text { get }: A \rightarrow B) \times
$$

$$
(H:\|B\| \rightarrow \text { Set }) \times
$$

$$
(\lambda b .(a: A) \times(\text { get } a \equiv b)) \equiv(\lambda b . H|b|)
$$

Higher lenses

Andrea Vezzosi and I found the following definition:

$$
\begin{aligned}
& \text { ILens } A B= \\
& \quad(R: S e t) \times \\
& (A \simeq R \times B) \times \\
& (R \rightarrow\|B\|)
\end{aligned}
$$

- If B is empty, then R is empty.
- Equivalent to HLens (assuming $U A$).
- We can still define get and set.

Identity

Recall:

$$
\begin{aligned}
& \text { ILens } A A \stackrel{\text { def }}{=} \\
& \quad(R: \text { Set }) \times(A \simeq R \times A) \times(R \rightarrow\|A\|)
\end{aligned}
$$

For ILens A A:

$$
A \simeq\|A\| \times A
$$

Composition

Assume $A \simeq R_{1} \times B, B \simeq R_{2} \times C$. We get:

$$
\begin{array}{ll}
A & \simeq \\
R_{1} \times B & \simeq \\
R_{1} \times\left(R_{2} \times C\right) & \simeq \\
\left(R_{1} \times R_{2}\right) \times C &
\end{array}
$$

Also:

$$
\begin{array}{lll}
\left(R_{1} \times R_{2}\right) & \rightarrow & \\
R_{2} & \rightarrow & \text { or }
\end{array}
$$

$$
\begin{array}{ll}
\left(R_{1} \times R_{2}\right) & \rightarrow \\
R_{1} & \rightarrow \\
\|B\| & \rightarrow \\
\|C\| &
\end{array}
$$

Composition

Can prove

$$
\begin{aligned}
& U A \rightarrow i d \circ l \equiv l, \\
& U A \rightarrow l \circ i d \equiv l, \\
& U A \rightarrow l_{1} \circ\left(l_{2} \circ l_{3}\right) \equiv\left(l_{1} \circ l_{2}\right) \circ l_{3} .
\end{aligned}
$$

The proofs are straightforward.

Relation between ILens and TLens

Easy:

$$
\text { ILens } A B \rightarrow \text { TLens } A B
$$

If the domain is a set:

$$
\begin{aligned}
& \text { Is-set } A \rightarrow \text { ILens } A B \rightarrow \text { TLens } A B \\
& U A \rightarrow \text { Is-set } A \rightarrow \text { ILens } A \subset \text { TLens } A B
\end{aligned}
$$

When defining an ILens from a TLens:

$$
R=(f: B \rightarrow A) \times\left(\forall b b^{\prime} . \operatorname{set}(f b) b^{\prime} \equiv f b^{\prime}\right)
$$

Relation between ILens and TLens

If the codomain is a proposition, then an ILens is just a get function:

$$
\begin{aligned}
& \text { UA } \rightarrow \text { Is-proposition } B \rightarrow \\
& \text { ILens } A B \simeq(A \rightarrow B)
\end{aligned}
$$

Relation between ILens and TLens

If the codomain is a proposition, then an ILens is just a get function:

$$
\begin{aligned}
& \text { UA } \rightarrow \text { Is-proposition } B \rightarrow \\
& \text { ILens } A B \simeq(A \rightarrow B)
\end{aligned}
$$

This is not necessarily the case for TLenses:

$$
\begin{aligned}
& \text { Is-proposition } B \rightarrow \\
& \text { TLens } A B \simeq(A \rightarrow B) \times((a: A) \rightarrow a \equiv a)
\end{aligned}
$$

Relation between ILens and TLens

If the codomain is T, then an ILens is T :

$$
\begin{aligned}
& U A \rightarrow \\
& \text { ILens } A \top \simeq \top
\end{aligned}
$$

This is not necessarily the case for TLenses:

$$
\text { TLens } A \top \simeq((a: A) \rightarrow a \equiv a)
$$

Relation between ILens and TLens

Kraus and Sattler have shown

$$
U A \rightarrow \neg \text { Is-proposition }((a: A) \rightarrow a \equiv a)
$$

where $A=(B:$ Set $) \times(B \equiv B)$.

Relation between ILens and TLens

Kraus and Sattler have shown

$$
U A \rightarrow \neg \text { Is-proposition }((a: A) \rightarrow a \equiv a)
$$

where $A=(B:$ Set $) \times(B \equiv B)$.
We get:

$$
\begin{array}{r}
U A \rightarrow \neg(\text { ILens }((B: \text { Set }) \times(B \equiv B)) \top \rightarrow \\
\text { TLens }((B: \operatorname{Set}) \times(B \equiv B)) \top)
\end{array}
$$

Relation between ILens and TLens

I don't know if we can prove

$$
\text { TLens } A B \rightarrow \text { ILens } A B
$$

or

$$
\neg(\text { TLens } A B \rightarrow \text { ILens A B). }
$$

Relation between ILens and TLens

Both definitions satisfy:

$$
\text { Lens } A B \rightarrow A \rightarrow H \text {-level } n A \rightarrow H \text {-level } n B
$$

All h-levels are closed under TLens:

$$
\begin{aligned}
& H \text {-level } n A \rightarrow H \text {-level } n B \rightarrow \\
& H \text {-level } n(\text { TLens } A B)
\end{aligned}
$$

For ILens I have (so far?) only managed to prove:

$$
\begin{aligned}
& U A \rightarrow H \text {-level } n A \rightarrow \\
& H \text {-level }(1+n)(\text { ILens } A B)
\end{aligned}
$$

No first projection lens

For both definitions one can find A, B such that

$$
\neg \operatorname{Lens}(\Sigma A B) A
$$

Example: $A=$ Bool, $B a=a \equiv$ true.

Dependent

 lenses
Second projection lens?

What if we want to define a lens corresponding to the second projection?

$$
\begin{aligned}
& \text { Lens }:(A: \text { Set }) \rightarrow(A \rightarrow \text { Set }) \rightarrow \text { Set } \\
& \text { second-projection }: \\
& \quad \text { Lens }(\Sigma A B)\left(\lambda\left(a,_{-}\right) . B a\right)
\end{aligned}
$$

Example

A dependent record type:

record R : Set where

 field$$
\begin{array}{ll}
x & : \text { Bool } \\
f & : \text { Bool } \rightarrow \text { Bool } \\
f \equiv i d & : \forall y . f y \equiv y
\end{array}
$$

Should be possible to define:

$$
\begin{aligned}
x \quad & : \text { Lens } R\left(\lambda_{-} . \text {Bool }\right) \\
f \quad & : \text { Lens } R\left(\lambda_{-} \cdot(f: \text { Bool } \rightarrow \text { Bool }) \times\right. \\
& \forall y \cdot f y \equiv y) \\
f \equiv i d & : \text { Lens } R\left(\lambda r . \forall y \cdot R_{1} \cdot f r y \equiv y\right)
\end{aligned}
$$

Dependent lenses

Preliminary definition:

$$
\begin{aligned}
& \text { Lens }:(A: \text { Set }) \rightarrow(A \rightarrow \text { Set }) \rightarrow \text { Set } \\
& \text { Lens } A B=
\end{aligned}
$$

$$
(R \quad: S e t) \times
$$

$$
\left(B^{\prime} \quad: R \rightarrow \text { Set }\right) \times
$$

$$
\left(e q \quad: A \simeq \Sigma R B^{\prime}\right) \times
$$

$$
\text { (inhabited } \left.:(r: R) \rightarrow\left\|B^{\prime} r\right\|\right) \times
$$

$$
\text { let } \quad \text { remainder }: A \rightarrow R
$$

$$
\text { remainder } a=\text { fst }(\text { to eq a) }
$$

in
$\left(\right.$ variant $: \forall a \cdot B^{\prime}($ remainder $\left.a) \equiv B a\right)$

Dependent lenses

Equivalently:

$$
\begin{aligned}
& \text { Lens }:(A: \text { Set }) \rightarrow(A \rightarrow \text { Set }) \rightarrow \text { Set } \\
& \text { Lens } A B=
\end{aligned}
$$

$$
\begin{array}{ll}
(R & : S e t) \times \\
\left(B^{\prime}\right. & : R \rightarrow S e t) \times \\
(e q & \left.: A \simeq \Sigma R B^{\prime}\right) \times \\
\text { (inhabited } & \left.:(r: R) \rightarrow\left\|B^{\prime} r\right\|\right) \times \\
\text { (variant } & :(r: R)\left(b^{\prime}: B^{\prime} r\right) \rightarrow \\
& \left.B^{\prime} r \equiv B\left(\text { fromeq }\left(r, b^{\prime}\right)\right)\right)
\end{array}
$$

Getter

$$
\begin{aligned}
& \text { Lens } A B= \\
& (R \quad: S e t) \times \\
& \left(B^{\prime} \quad: R \rightarrow S e t\right) \times \\
& \left(e q \quad: A \simeq \Sigma R B^{\prime}\right) \times \\
& \text { (inhabited } \left.:(r: R) \rightarrow\left\|B^{\prime} r\right\|\right) \times \\
& \text { let remainder : } A \rightarrow R \\
& \text { remainder } a=f s t(\text { to eq a) } \\
& \text { (variant } \left.: \forall a \cdot B^{\prime}(\text { remainder } a) \equiv B a\right) \\
& \text { get : }(a: A) \rightarrow B a \\
& \text { get } a=\text { to }(\text { variant } a)(\text { snd }(\text { to eq } a))
\end{aligned}
$$

Setter

Lens $A B=$
$(R \quad: S e t) \times$
$\left(B^{\prime} \quad: R \rightarrow S e t\right) \times$
$\left(e q \quad: A \simeq \Sigma R B^{\prime}\right) \times$
(inhabited $\left.:(r: R) \rightarrow\left\|B^{\prime} r\right\|\right) \times$
let remainder : $A \rightarrow R$
remainder $a=f s t($ to eq $a)$

in

(variant $: \forall a . B^{\prime}($ remainder $\left.a) \equiv B a\right)$
set : $(a: A) \rightarrow B a \rightarrow A$
set $a b=$ from eq (remainder a, from (variant a) b)

Lens laws

remainder (set $a b) \equiv$ remainder a
unchanged : $B($ set $a b) \equiv B a$
set $a($ get $a) \equiv a$
get $($ set $a b) \quad \equiv$ from unchanged b
set $\left(\right.$ set $\left.a b_{1}\right) b_{2} \equiv$ set $a\left(\right.$ to unchanged $\left.b_{2}\right)$

Propositional codomain

If the codomain is a family of propositions, then a Lens is just a get function:

$$
\begin{aligned}
& \text { UA } \rightarrow(\forall a . \text { Is-proposition }(B a)) \rightarrow \\
& \text { Lens } A B \simeq((a: A) \rightarrow B a)
\end{aligned}
$$

Composition

Can we define a composition operator?

$$
\begin{aligned}
& \text { _o_ : } \\
& \quad\{A: \text { Set }\}\{B: A \rightarrow \text { Set }\} \\
& \{C:(a: A) \rightarrow B a \rightarrow \text { Set }\} \\
& \left(l_{1}: \text { Lens } A B\right) \\
& \left(l_{2}: \forall a . \text { Lens }(B a)(C a)\right) \rightarrow \\
& \text { Lens } A\left(\lambda a . C a\left(\text { get } l_{1} a\right)\right)
\end{aligned}
$$

A requirement on the resulting get function:

$$
\text { get } a \equiv \operatorname{get}\left(l_{2} a\right)\left(\text { get } l_{1} a\right)
$$

Composition

If we can prove that non-dependent dependent lenses are isomorphic to ILenses, then the answer is no.

Assuming K :

$$
\begin{aligned}
& K \rightarrow \\
& \left(e q: \operatorname{Lens} A\left(\lambda_{-} B\right) \simeq \text { ILens } A B\right) \times \\
& \quad \forall l a \rightarrow \text { get } l a \equiv \operatorname{get}(\text { to eq } l) a
\end{aligned}
$$

(What if we have $U A$ instead?)

Composition

Counterexample:

$$
\begin{aligned}
& l_{1}: \text { Lens Bool }\left(\lambda_{-} . \text {Bool }\right) \\
& l_{1}=\text { id } \\
& l_{2}: \text { Bool } \rightarrow \text { Lens Bool }\left(\lambda_{-} . \text {Bool }\right) \\
& l_{2} \text { true }=\text { id } \\
& l_{2} \text { false }=\text { swap } \\
& \forall \text { b. get } b \equiv \text { true } \\
& \text { true } \equiv \\
& \text { get }(\text { set true false }) \equiv \\
& \text { false }
\end{aligned}
$$

Composition

A variant that is inhabited:

$$
\begin{aligned}
& __{-}^{\circ_{-}}: \\
& \begin{array}{l}
\{A: S e t\}\{B C: A \rightarrow \text { Set }\} \rightarrow \\
\left(l_{1}: \operatorname{Lens} A B\right) \rightarrow \\
\left(l_{2}:\left(r: R l_{1}\right) \rightarrow\right. \\
\\
\quad \operatorname{Lens}\left(B^{\prime} l_{1} r\right) \\
\left.\quad\left(\lambda b^{\prime} . C\left(\text { from }\left(\text { eq } l_{1}\right)\left(r, b^{\prime}\right)\right)\right)\right) \rightarrow
\end{array} \\
& \quad \text { Lens } A C
\end{aligned}
$$

Has worked well in the examples I have tried.

Discussion

- Higher lenses.
- Perhaps the definition of HLens/ILens is OK.
- Some open questions.
- Dependent lenses.
- Perhaps one can find a better definition.
- The present definition might be OK in the presence of K.
- Impossible to define composition.

