Bag Equivalence via a Proof-Relevant Membership Relation

Nils Anders Danielsson (Gothenburg)

ITP 2012, Princeton

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n° 24/219. This presentation does not necessarily reflect the views of the ERC or the EU. The EU is not liable for any use of the presented information. I do not hold the copyright to the EU emblem or the ERC logo. Equality up to reordering of elements, or equality when seen as bags:

$$\begin{array}{l} [1,2,1] \approx_{bag} [2,1,1] \\ [1,2,1] \not\approx_{bag} [2,1] \\ [1,2,1] \approx_{set} [2,1] \end{array}$$

Partial specification of sorting algorithm:

 \forall xs. sort xs \approx_{bag} xs

Not restricted to lists

Why?

Tree sort:

We can prove

$$\forall$$
 xs. tree-sort xs \approx_{bag} xs

by first proving

$$\forall xs. to-search-tree xs \approx_{bag} xs$$

 $\forall t. flatten t \approx_{bag} t$

Not restricted to finite things

$[1, 2, 1, 2, \ldots] \approx_{bag} [2, 1, 2, 1, \ldots]$

Assume semantics of grammar given by

 \mathcal{L} : Grammar \rightarrow Colist String

Language equivalence:

 $\mathcal{L} \ G_1 \ \approx_{set} \mathcal{L} \ G_2$

If we want to distinguish between ambiguous and unambiguous grammars:

$$\mathcal{L} \ G_1 \ \approx_{bag} \mathcal{L} \ G_2$$

How is bag equivalence defined?

- ► Finite sequence of swaps of adjacent elements.
- Counting.
- Bijections.
- •

Bag equivalence via bijections

Bijection on positions which relates equal elements:

$$\begin{array}{rcl} xs \approx_{bag} ys \Leftrightarrow \\ \exists f : \text{positions of } xs \leftrightarrow \text{positions of } ys. \\ \forall p. \ lookup \ xs \ p \ = \ lookup \ ys \ (f \ p) \end{array}$$

Generalises to anything with positions and lookup.

New definition of bag equivalence, with the following properties:

- Many equivalences provable using "bijectional reasoning".
- Works for arbitrary unary containers (lists, streams, trees, ...).
- Generalises to set equivalence and subset and subbag preorders.
- ► Formalised in Agda, but the K rule is not used.

Definition

Any (Morris)

Any P xs means that P x holds for some x in xs.

Any $P[1,2,3] = P1 + P2 + P3 + \bot$

Membership

$$\begin{array}{l} Any : (A \rightarrow Set) \rightarrow List \ A \rightarrow Set \\ Any \ P \left[\right] \qquad = \ \bot \\ Any \ P \left(x :: xs \right) \ = \ P \ x + Any \ P \ xs \end{array}$$

$$\begin{array}{l} _\in_: A \rightarrow \textit{List } A \rightarrow \textit{Set} \\ x \in xs \ = \ \textit{Any} \ (\lambda \ y. \ x \equiv y) \ xs \end{array}$$

$$\begin{array}{l} x \in [1,2,3] = (x \equiv 1) + (x \equiv 2) + (x \equiv 3) + \bot \\ 2 \in [2,2] = (2 \equiv 2) + (2 \equiv 2) + \bot \end{array}$$

$$\begin{array}{l} _\in_: A \rightarrow \textit{List } A \rightarrow \textit{Set} \\ x \in xs \ = \ \textit{Any} \ (\lambda \ y. \ x \equiv y) \ xs \end{array}$$

$$\begin{array}{rcl} _\approx_{bag-} & : \ \textit{List } A \ \rightarrow \ \textit{List } A \ \rightarrow \ \textit{Set} \\ xs \ \approx_{bag} \ ys \ = \ \forall \ z. \quad z \in xs \ \leftrightarrow \ z \in ys \end{array}$$

What if there are several distinct proofs of $2 \equiv 2$?

$$2 \in [2,2] = (2 \equiv 2) + (2 \equiv 2) + \bot$$

The two definitions are equivalent (without K):

$$\begin{array}{rcl} xs \approx_{bag} ys \Leftrightarrow \\ \exists f : \text{positions of } xs \leftrightarrow \text{positions of } ys. \\ \forall p. \ lookup \ xs \ p = \ lookup \ ys \ (f \ p) \end{array}$$

$$\begin{array}{rcl} _{-}\approx_{\mathit{bag}-}: \ \mathit{List} \ A \ \rightarrow \ \mathit{List} \ A \ \rightarrow \ \mathit{Set} \\ xs \ \approx_{\mathit{bag}} \ \mathit{ys} \ = \ \forall \ \mathit{z}. \quad \mathit{z} \in \mathit{xs} \ \leftrightarrow \ \mathit{z} \in \mathit{ys} \end{array}$$

If \leftrightarrow is replaced by weak equivalence: *isomorphic*.

Bijectional reasoning

$$\begin{array}{l} xs \gg (\lambda \ y. \ f \ y \ + \ g \ y) \\ (xs \gg f) \ + \ (xs \gg g) \end{array}$$

$$\sum_{x \in A} : List A \to (A \to List B) \to List B$$

$$xs \gg f = concat (map f xs)$$

$$\begin{array}{l} xs \gg (\lambda \ y. \ f \ y \ + \ g \ y) \approx_{bag} \\ (xs \gg f) \ + \ (xs \gg g) \end{array}$$

$$\begin{array}{l} [1,2] \gg (\lambda \ y. \ [y] \ + \ [y]) \approx_{bag} \\ ([1,2] \gg \lambda \ y. \ [y]) \ + \ ([1,2] \gg \lambda \ y. \ [y]) \end{array}$$

$$\begin{array}{l} xs \gg (\lambda \ y. \ f \ y \ + \ g \ y) \\ (xs \gg f) \ + \ (xs \gg g) \end{array} \approx_{bag}$$

$$\begin{array}{l} [1,1,2,2] \approx_{bag} \\ ([1,2] \gg \lambda \ y. \ [y]) \ + \ ([1,2] \gg \lambda \ y. \ [y]) \end{array}$$

$$\begin{array}{l} xs \gg (\lambda \ y. \ f \ y \ + \ g \ y) \\ (xs \gg f) \ + \ (xs \gg g) \end{array}$$

$$[1, 1, 2, 2] \approx_{bag}$$

 $[1, 2, 1, 2]$

Bijectional reasoning combinators Any lemmas Left distributivity

$$\begin{array}{cccc} -\Box & : (A : Set) \rightarrow A \leftrightarrow A \\ _{\rightarrow} \leftrightarrow \langle _{-} \rangle _{-} & : (A : Set) \{ B \ C : Set \} \rightarrow \\ & A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C \end{array}$$

Assume $p : A \leftrightarrow B, q : B \leftrightarrow C$.

$$\begin{array}{rcl} A & \leftrightarrow \langle p \rangle \\ B & \leftrightarrow \langle q \rangle \\ C & \Box \end{array}$$

$\begin{array}{cccc} -\Box & : & (A : Set) \rightarrow A \leftrightarrow A \\ _{\rightarrow} \leftrightarrow \langle _{-} \rangle _{-} & : & (A : Set) \{ B \ C : Set \} \rightarrow \\ & A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C \end{array}$

Assume $p : A \leftrightarrow B, q : B \leftrightarrow C$.

$C \Box \quad : \quad C \; \leftrightarrow \; C$

$$\begin{array}{cccc} -\Box & : & (A : Set) \rightarrow A \leftrightarrow A \\ _{-} \leftrightarrow \langle_{-} \rangle_{-} & : & (A : Set) \{B \ C : Set\} \rightarrow \\ & A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C \end{array}$$

Assume $p : A \leftrightarrow B, q : B \leftrightarrow C$.

 $B \leftrightarrow \langle q \rangle (C \Box) : B \leftrightarrow C$

$$\begin{array}{cccc} -\Box & : (A : Set) \rightarrow A \leftrightarrow A \\ _{\rightarrow} \leftrightarrow \langle _{-} \rangle _{-} & : (A : Set) \{ B \ C : Set \} \rightarrow \\ & A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C \end{array}$$

Assume $p : A \leftrightarrow B, q : B \leftrightarrow C$.

 $A \leftrightarrow \langle p \rangle (B \leftrightarrow \langle q \rangle (C \Box)) : A \leftrightarrow C$

$$\begin{array}{cccc} -\Box & : (A : Set) \rightarrow A \leftrightarrow A \\ _{\rightarrow} \leftrightarrow \langle _{-} \rangle _{-} & : (A : Set) \{ B \ C : Set \} \rightarrow \\ & A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C \end{array}$$

Assume $p : A \leftrightarrow B, q : B \leftrightarrow C$.

$$\begin{array}{rcl} A & \leftrightarrow \langle p \rangle \\ B & \leftrightarrow \langle q \rangle \\ C & \Box \end{array}$$

Bijectional reasoning combinators *Any* lemmas Left distributivity

$\begin{array}{l} Any-\# : (P : A \rightarrow Set) (xs \ ys : List \ A) \rightarrow \\ Any \ P (xs \ \# \ ys) \ \leftrightarrow \ Any \ P \ xs + Any \ P \ ys \end{array}$

Any-# P xs ys = ?

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

Any + P[] ys = ?Any + P(x :: xs) ys = ?

Any-# : (P : $A \rightarrow Set$) (xs ys : List A) \rightarrow Any $P(xs + ys) \leftrightarrow Any Pxs + Any Pys$

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

Any-# : (P : $A \rightarrow Set$) (xs ys : List A) \rightarrow Any $P(xs + ys) \leftrightarrow Any Pxs + Any Pys$

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

$$++-comm$$
 : (xs ys : List A) →
xs ++ ys ≈_{bag} ys ++ xs
++-comm xs ys = ?

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

 $\begin{array}{rl} ++-comm : (xs ys : List A) \rightarrow \\ & xs + ys \approx_{bag} ys + xs \\ ++-comm xs ys = \lambda z. \\ z \in xs + ys \leftrightarrow \langle ? \rangle \\ z \in ys + xs \Box \end{array}$

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

 $\begin{array}{rl} \text{++-comm} : (xs \ ys \ : \ List \ A) \rightarrow & \\ & xs \ + ys \ \approx_{bag} \ ys \ + \ xs \\ \text{++-comm} \ xs \ ys \ = \ \lambda \ z. \\ & z \ \in \ xs \ + \ ys & \leftrightarrow \langle \ Any \ + \ \rangle \\ & z \ \in \ xs \ + \ z \ \in \ ys & \leftrightarrow \langle \ ? \ \rangle \\ & z \ \in \ ys \ + \ xs & \Box \end{array}$

(With $P = \lambda y. z \equiv y.$)

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

 $\begin{array}{rl} \text{++-comm} : (xs \ ys \ : \ List \ A) \rightarrow \\ & xs \ + ys \ \approx_{bag} \ ys \ + \ xs \\ \text{++-comm} \ xs \ ys \ = \ \lambda \ z. \\ & z \ \in \ xs \ + \ ys \qquad \leftrightarrow \langle \ Any - + \ \rangle \\ & z \ \in \ xs \ + \ z \ \in \ ys \qquad \leftrightarrow \langle \ 2 \ \rangle \\ & z \ \in \ ys \ + \ z \ \in \ xs \qquad \leftrightarrow \langle \ Any - + \ \rangle \end{array}$

 $z \in ys + xs$

(With $P = \lambda y. z \equiv y.$)

$$\begin{array}{rcl} Any-++ & : & (P : A \rightarrow Set) (xs \ ys : \ List \ A) \rightarrow \\ Any \ P (xs \ ++ \ ys) \ \leftrightarrow \ Any \ P \ xs + \ Any \ P \ ys \end{array}$$

$$\begin{array}{rl} \text{++-comm} : (xs \ ys \ : \ List \ A) \rightarrow & \\ & xs \ + \ ys \ \approx_{bag} \ ys \ + \ xs \\ \text{++-comm} \ xs \ ys \ = \ \lambda \ z. \\ & z \ \in \ xs \ + \ ys & \leftrightarrow \langle \ Any - + \ \rangle \\ & z \ \in \ ys \ + \ z \ \in \ ys & \leftrightarrow \langle \ Any - + \ \rangle \\ & z \ \in \ ys \ + \ z \ \in \ xs & \leftarrow \langle \ Any - + \ \rangle \\ & z \ \in \ ys \ + \ xs & \Box \end{array}$$

(With $P = \lambda y. z \equiv y.$)

Proof of bind lemma:

Any
$$P(xs \gg f)$$
 $\leftrightarrow \langle \text{ by definition } \rangle$ Any $P(\text{concat } (\text{map } f xs))$ $\leftrightarrow \langle \text{ concat } \rangle$ Any $(Any P)(\text{map } f xs)$ $\leftrightarrow \langle \text{ map } \rangle$ Any $(Any P \circ f) xs$ \Box

Any $P xs \leftrightarrow \exists z. P z \times z \in xs$

Bijectional reasoning combinators Any lemmas Left distributivity

$$xs \gg (\lambda y. f y + g y) \approx_{bag} (xs \gg f) + (xs \gg g)$$

$z \in xs \gg (\lambda y. f y + g y) \quad \leftrightarrow \langle ? \rangle$ $z \in (xs \gg f) + (xs \gg g) \quad \Box$

$\begin{array}{ll} Any (_\equiv_z) (xs \gg (\lambda \ y. \ f \ y + g \ y)) & \leftrightarrow \langle ? \rangle \\ z \in (xs \gg f) + (xs \gg g) & \Box \end{array}$

$$\begin{array}{ll} Any (_\equiv_z) (xs \gg (\lambda \ y. \ f \ y + g \ y)) & \leftrightarrow \langle \text{ bind } \rangle \\ Any (Any (_\equiv_z) \circ (\lambda \ y. \ f \ y + g \ y)) xs & \leftrightarrow \langle ? \rangle \\ z \ \in \ (xs \gg f) \ + \ (xs \gg g) & \Box \end{array}$$

$\begin{array}{ll} Any (\lambda \ y. \ P \ y + Q \ y) \ xs & \leftrightarrow \langle \ ? \ \rangle \\ Any \ P \ xs + Any \ Q \ xs & \Box \end{array}$

Membership defined in terms of Any,

used Any lemmas,

to reduce left distributivity to

$$\begin{array}{ll} (A+B)\times C & \leftrightarrow \ A\times C \ + \ B\times C, \\ (\exists \ y. \ P \ y + Q \ y) \ \leftrightarrow \ (\exists \ y. \ P \ y) + (\exists \ y. \ Q \ y). \end{array}$$

Variations

Variations

► Set equivalence:

$$xs \approx_{set} ys = \forall z. z \in xs \Leftrightarrow z \in ys$$

Subset preorder:

$$xs \lesssim_{set} ys = \forall z. z \in xs \rightarrow z \in ys$$

► Subbag preorder:

$$xs \lesssim_{bag} ys = \forall z. z \in xs \rightarrow z \in ys$$

Other types: Change the definition of Any.

$$\begin{array}{rcl} _\approx_{\mathit{bag-}} & : \ \mathit{List} \ A \ \rightarrow \ \mathit{Tree} \ A \ \rightarrow \ \mathit{Set} \\ \times s \ \approx_{\mathit{bag}} \ t \ = \ \forall \ z. \quad z \in_{\mathit{List}} \ xs \ \leftrightarrow \ z \in_{\mathit{Tree}} \ t \end{array}$$

Works for arbitrary unary containers (Abbot et al.; compare Hoogendijk & de Moor).

Conclusions

- Bag equivalence.
- Bijectional reasoning.
- Arbitrary unary containers.
- Set equivalence and subset and subbag preorders.

Conclusions

- Bag equivalence.
- Bijectional reasoning.
- Arbitrary unary containers.
- Set equivalence and subset and subbag preorders.