Bag Equivalence via a Proof-Relevant Membership Relation

Nils Anders Danielsson (Gothenburg)

ITP 2012, Princeton

Bag equivalence

Equality up to reordering of elements, or equality when seen as bags:

$$
\begin{aligned}
& {[1,2,1] \approx_{\text {bag }}[2,1,1]} \\
& {[1,2,1] \not \ddot{\nexists}_{\text {bag }}[2,1]} \\
& {[1,2,1] \approx_{\text {set }}[2,1]}
\end{aligned}
$$

Why?

Partial specification of sorting algorithm:
$\forall x s . \quad$ sort $x s \approx_{b a g} x s$

Not restricted to lists

Why?

Tree sort:

$$
\begin{aligned}
& \text { to-search-tree : List } \mathbb{N} \rightarrow \text { Tree } \mathbb{N} \\
& \text { flatten }: \text { Tree } \mathbb{N} \rightarrow \text { List } \mathbb{N} \\
& \text { tree-sort }: \text { List } \mathbb{N} \rightarrow \text { List } \mathbb{N} \\
& \text { tree-sort }=\text { flatten } \circ \text { to-search-tree }
\end{aligned}
$$

We can prove
$\forall x s$. tree-sort xs $\approx_{\text {bag }} x s$
by first proving
$\forall x s$. to-search-tree $x s \approx_{\text {bag }} \times s$
$\forall t$. flatten $t \quad \approx_{b a g} t$

Not restricted to finite things

$$
[1,2,1,2, \ldots] \approx_{\text {bag }}[2,1,2,1, \ldots]
$$

Why?

Assume semantics of grammar given by

$$
\mathcal{L}: \text { Grammar } \rightarrow \text { Colist String }
$$

Language equivalence:

$$
\mathcal{L} G_{1} \approx_{\text {set }} \mathcal{L} G_{2}
$$

If we want to distinguish between ambiguous and unambiguous grammars:

$$
\mathcal{L} G_{1} \approx_{\text {bag }} \mathcal{L} G_{2}
$$

Definitions

How is bag equivalence defined?

- Finite sequence of swaps of adjacent elements.
- Counting.
- Bijections.

Bag equivalence via bijections

Bijection on positions which relates equal elements:
$x s \approx_{\text {bag }} y s \Leftrightarrow$
$\exists f$: positions of $x s \leftrightarrow$ positions of $y s$.
$\forall p$. lookup xs $p=$ lookup ys (f p)

Generalises to anything with positions and lookup.

This talk

New definition of bag equivalence, with the following properties:

- Many equivalences provable using "bijectional reasoning".
- Works for arbitrary unary containers (lists, streams, trees, ...).
- Generalises to set equivalence and subset and subbag preorders.
- Formalised in Agda, but the K rule is not used.

Any (Morris)

Any P xs means that $P x$ holds for some x in x.
Any $:(A \rightarrow$ Set $) \rightarrow$ List $A \rightarrow$ Set
Any $P[] \quad \perp$
Any $P(x:: x s)=P x+$ Any $P x s$

Any $P[1,2,3]=P 1+P 2+P 3+\perp$

Membership

$$
\begin{aligned}
& \text { Any : }(A \rightarrow \text { Set }) \rightarrow \text { List } A \rightarrow \text { Set } \\
& \text { Any } P[]=\perp \\
& \text { Any } P(x:: x s)=P x+\text { Any } P x s \\
& __{-}: A \rightarrow \text { List } A \rightarrow \text { Set } \\
& x \in x s=\operatorname{Any}(\lambda y \cdot x \equiv y) x s \\
& x \in[1,2,3]=(x \equiv 1)+(x \equiv 2)+(x \equiv 3)+\perp \\
& 2 \in[2,2]=(2 \equiv 2)+(2 \equiv 2)+\perp
\end{aligned}
$$

Bag equivalence

$$
\begin{aligned}
& \text { Any : }(A \rightarrow \text { Set }) \rightarrow \text { List } A \rightarrow \text { Set } \\
& \text { Any } P[]=\perp \\
& \text { Any } P(x:: x s)=P x+\text { Any } P x s
\end{aligned}
$$

$$
__{-}: A \rightarrow \text { List } A \rightarrow \text { Set }
$$

$$
x \in x s=\operatorname{Any}(\lambda y \cdot x \equiv y) x s
$$

$\mathcal{Z}_{\text {bag- }}:$ List $A \rightarrow$ List $A \rightarrow$ Set
$x s \approx_{b a g} y s=\forall z . \quad z \in x s \leftrightarrow z \in y s$

Caveat

What if there are several distinct proofs of $2 \equiv 2$?

$$
2 \in[2,2]=(2 \equiv 2)+(2 \equiv 2)+\perp
$$

Correct

The two definitions are equivalent (without K):
$x s \approx_{\text {bag }} y s \Leftrightarrow$
$\exists f$: positions of $x s \leftrightarrow$ positions of ys.
\forall p. lookup xs $p=$ lookup ys (f p)
${ }_{-} \approx_{\text {bag- }}:$ List $A \rightarrow$ List $A \rightarrow$ Set
$x s \approx_{\text {bag }} y s=\forall z . \quad z \in x s \leftrightarrow z \in y s$
If \leftrightarrow is replaced by weak equivalence: isomorphic.

Bijectional reasoning

Example

Bind distributes from the left over append:

$$
\begin{aligned}
& x s \gg(\lambda y \cdot f y+g y) \approx_{b a g} \\
& (x s \gg f)+(x s \gg g) \\
& \ggg=: \text { List } A \rightarrow(A \rightarrow \text { List } B) \rightarrow \text { List } B \\
& x s \gg f=\operatorname{concat}(\operatorname{map} f x s)
\end{aligned}
$$

Example

Bind distributes from the left over append:

$$
\begin{aligned}
& x s \gg(\lambda y \cdot f y+g y) \approx_{\text {bag }} \\
& (x s \gg=f)+(x s \gg g) \\
& {[1,2] \gg=(\lambda y \cdot[y]+[y]) \approx_{\text {bag }}} \\
& ([1,2] \gg \lambda y \cdot[y])+([1,2] \gg=\lambda y \cdot[y])
\end{aligned}
$$

Example

Bind distributes from the left over append:

$$
\begin{aligned}
& x s \gg(\lambda y \cdot f y+g y) \approx_{b a g}+(x s \gg f)+(x s \gg g) \\
& (x s)
\end{aligned}
$$

$$
\begin{aligned}
& {[1,1,2,2] \approx_{\text {bag }}} \\
& ([1,2] \gg \lambda y \cdot[y])+([1,2] \gg \lambda y \cdot[y])
\end{aligned}
$$

Example

Bind distributes from the left over append:

$$
x s \gg(\lambda y \cdot f y+g y) \approx_{b a g}
$$

$$
\begin{aligned}
& (x s \gg f)+(x s \gg g) \\
& {[1,1,2,2] \approx_{\text {bag }}} \\
& {[1,2,1,2]}
\end{aligned}
$$

Outline of proof

Bijectional reasoning combinators
Any lemmas
Left distributivity

Bijectional reasoning combinators

$$
\begin{array}{ll}
-\square & :(A: \operatorname{Set}) \rightarrow A \leftrightarrow A \\
-\leftrightarrow\langle-\rangle_{-} & :(A: \operatorname{Set})\{B C: \operatorname{Set}\} \rightarrow \\
& A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C
\end{array}
$$

Assume $p: A \leftrightarrow B, q: B \leftrightarrow C$.

$$
\begin{array}{ll}
A & \leftrightarrow\langle p\rangle \\
B & \leftrightarrow\langle q\rangle \\
C & \square
\end{array}
$$

Bijectional reasoning combinators

$$
\begin{aligned}
-\square & (A: \operatorname{Set}) \rightarrow A \leftrightarrow A \\
-\leftrightarrow\langle-\rangle_{-} & :(A: \operatorname{Set})\{B C: \operatorname{Set}\} \rightarrow \\
& A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C
\end{aligned}
$$

Assume $p: A \leftrightarrow B, q: B \leftrightarrow C$.

$$
C \square: C \leftrightarrow C
$$

Bijectional reasoning combinators

$$
\begin{aligned}
-\square & (A: \operatorname{Set}) \rightarrow A \leftrightarrow A \\
-\leftrightarrow\langle-\rangle_{-} & :(A: \operatorname{Set})\{B C: \operatorname{Set}\} \rightarrow \\
& A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C
\end{aligned}
$$

Assume $p: A \leftrightarrow B, q: B \leftrightarrow C$.

$$
B \leftrightarrow\langle q\rangle(C \square) \quad: \quad B \leftrightarrow C
$$

Bijectional reasoning combinators

$$
\begin{aligned}
-\square & :(A: \operatorname{Set}) \rightarrow A \leftrightarrow A \\
-\leftrightarrow\langle-\rangle_{-} & :(A: \operatorname{Set})\{B C: \operatorname{Set}\} \rightarrow \\
& A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C
\end{aligned}
$$

Assume $p: A \leftrightarrow B, q: B \leftrightarrow C$.

$$
A \leftrightarrow\langle p\rangle(B \leftrightarrow\langle q\rangle(C \square)) \quad: \quad A \leftrightarrow C
$$

Bijectional reasoning combinators

$$
\begin{array}{ll}
-\square & :(A: \operatorname{Set}) \rightarrow A \leftrightarrow A \\
-\leftrightarrow\langle-\rangle_{-} & :(A: \operatorname{Set})\{B C: \operatorname{Set}\} \rightarrow \\
& A \leftrightarrow B \rightarrow B \leftrightarrow C \rightarrow A \leftrightarrow C
\end{array}
$$

Assume $p: A \leftrightarrow B, q: B \leftrightarrow C$.

$$
\begin{array}{ll}
A & \leftrightarrow\langle p\rangle \\
B & \leftrightarrow\langle q\rangle \\
C & \square
\end{array}
$$

Outline of proof

Bijectional reasoning combinators
Any lemmas
Left distributivity

First lemma

Any-H : $(P: A \rightarrow$ Set $)(x s$ ys : List $A) \rightarrow$
Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P ys

Any-H P xs ys $=$?

First lemma

Any-H : $(P: A \rightarrow$ Set $)(x s$ ys : List $A) \rightarrow$ Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P ys

Any-H P [] ys $=$?
Any-H $P(x:: x s) y s=$?

First lemma

Any-H : $(P: A \rightarrow$ Set $)(x s$ vs : List $A) \rightarrow$
Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P gs

Any-\# P [] os =
Any P([] + gs) $\leftrightarrow\langle$? \rangle
Any $P[]+$ Any P gs \square
Any-H $P(x:: x s) y s=$?

First lemma

Any-H : $(P: A \rightarrow$ Set $)(x s$ gs : List $A) \rightarrow$
Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P gs

Any-\# P [] os $=$
Any P ss $\quad \leftrightarrow\langle$? \rangle
Any $P[]+$ Any P gs \square
Any-H $P(x:: x s) y s=$?

First lemma

Any-H : $(P: A \rightarrow$ Set $)(x s$ gs : List $A) \rightarrow$ Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P gs

Any-H P [] ss =
Any P ys $\quad \leftrightarrow\langle$? \rangle
$\perp+$ Any Prs \square
Any-+ $P(x:: x s)$ ss $=$?

First lemma

> Any-H:(P:A Set)(xs ys : List $A) \rightarrow$ \quad Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P gs

$$
\begin{array}{cl}
\text { Any-+P[] } & \text { gs }= \\
\text { Any } P \text { ys } & \leftrightarrow\langle\perp \text { identity of }+\rangle \\
\perp+\text { Any } P \text { ys } & \square \\
\text { Any- }+P(x:: x s) \text { ys }=?
\end{array}
$$

First lemma

Any-\# : $(P: A \rightarrow$ Set $)(x s$ ss : List $A) \rightarrow$ Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P ss

Any-H P [] os $=$
Any P ys $\quad \leftrightarrow\langle\perp$ identity of +\rangle
$\perp+$ Any P gs
\square
Any-+ $P(x:: x s)$ ss $=$

$$
P x+\operatorname{Any} P(x s+y s)
$$

$$
\leftrightarrow\langle ?\rangle
$$

$(P x+$ Any $P x s)+$ Any P ss \square

First lemma

Any-\# : $(P: A \rightarrow \operatorname{Set})(x s y s: L i s t A) \rightarrow$ Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P ss

Any-- P [] os $=$
Any P ys $\quad \leftrightarrow\langle\perp$ identity of +\rangle
$\perp+$ Any P ss
\square
Any- $P(x:: x s) y s=$
$P x+$ Any $P(x s+y s) \quad \leftrightarrow\langle$ ind. hyp. \rangle
$P x+($ Any $P x s+$ Any $P y s) \leftrightarrow\langle ?\rangle$
$(P x+$ Any $P \times s)+$ Any P ss \square

First lemma

Any-\# : $(P: A \rightarrow \operatorname{Set})(x s y s: L i s t A) \rightarrow$ Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P ss

Any-- P [] os $=$
Any P ys $\quad \leftrightarrow\langle\perp$ identity of +\rangle
$\perp+$ Any P ss
\square
Any- $P(x:: x s) y s=$
$P x+$ Any $P(x s+y s) \quad \leftrightarrow\langle$ ind. hyp. \rangle
$P x+($ Any $P x s+$ Any $P y s) \leftrightarrow\langle+$ associative \rangle
($P x+$ Any $P \times s)+$ Any P ss \square

First lemma

$$
\begin{aligned}
& \text { Any-H: }(P: A \rightarrow \text { Set })(x s \text { ys }: \text { List } A) \rightarrow \\
& \text { Any } P(x s+y s) \leftrightarrow \text { Any } P \text { xs }+ \text { Any } P \text { ys } \\
& H \text {-comm }:(x s \text { ys }: \text { List } A) \rightarrow \\
& x s+y s \approx_{\text {bag }} y s+x s \\
& H \text {-comm xs ys }=?
\end{aligned}
$$

First lemma

$$
\begin{aligned}
& \text { Any-H: }(P: A \rightarrow \text { Set })(x s y s: \text { List } A) \rightarrow \\
& \text { Any } P(x s+y s) \leftrightarrow \text { Any } P \text { xs }+ \text { Any } P \text { ys }
\end{aligned}
$$

H-comm : (xs ys : List A) \rightarrow $x s+y s \approx_{b a g} y s+x s$ H-comm xs ys $=\lambda z$.
$z \in \mathrm{xs}+\mathrm{ys} \leftrightarrow\langle ?\rangle$
$z \in$ es $\#$ xs \square

First lemma

Any-\# : $(P: A \rightarrow$ Set $)(x s$ vs : List $A) \rightarrow$ Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P ss

H-comm : (xs ys : List A) \rightarrow $x s+y s \approx_{b a g} y s+x s$
H-comm xs ys $=\lambda z$.

$$
\begin{array}{ll}
z \in \mathrm{xs}+\mathrm{ys} & \leftrightarrow\langle\text { Any- }+\rangle \\
z \in \mathrm{xs}+z \in \mathrm{ys} & \leftrightarrow\langle ?\rangle \\
z \in \mathrm{ys}+\mathrm{xs} & \square
\end{array}
$$

(With $P=\lambda y . z \equiv y$.

First lemma

Any-\# : $(P: A \rightarrow$ Set $)(x s y s: L i s t A) \rightarrow$ Any $P(x s+y s) \leftrightarrow$ Any P xs + Any P ss

H-comm : (xs ys : List A) \rightarrow $x s+y s \approx_{\text {bag }} y s+x s$ \#-comm xs ys $=\lambda z$.

$$
\begin{array}{ll}
z \in x s+y s & \leftrightarrow\langle A n y-\#\rangle \\
z \in x s+z \in y s & \leftrightarrow\langle ?\rangle \\
z \in y s+z \in \mathrm{xs} & \leftrightarrow\langle\text { Any- }+\rangle \\
z \in \mathrm{ys}+\mathrm{xs} & \square
\end{array}
$$

(With $P=\lambda y . z \equiv y$.

First lemma

$$
\begin{aligned}
& \text { Any- - : }(P: A \rightarrow \text { Set })(x s \text { ys : List } A) \rightarrow \\
& \text { Any } P(x s+y s) \leftrightarrow \text { Any } P \text { xs }+ \text { Any } P \text { xs }
\end{aligned}
$$

$$
\text { H-comm : (xs ys : List } A) \rightarrow
$$

$$
x s+y s \approx_{b a g} y s+x s
$$

$$
\# \text {-comm xs ys }=\lambda z
$$

$$
\begin{array}{ll}
z \in \mathrm{xs}+\mathrm{ys} & \leftrightarrow\langle\text { Any- }+\rangle \\
z \in \mathrm{xs}+z \in \mathrm{ys} & \leftrightarrow\langle+ \text { commutative }\rangle \\
z \in \mathrm{ys}+z \in \mathrm{xs} & \leftrightarrow\langle\text { Any- }+\rangle \\
z \in \text { ys }+\mathrm{xs} & \square
\end{array}
$$

(With $P=\lambda y . z \equiv y$.

Similar lemmas

Any P (concat xss) \leftrightarrow Any (Any P) xss
Any $P($ map $f \times s) \leftrightarrow A n y(P \circ f) \times s$
Any $P(x s \gg f) \leftrightarrow$ Any $($ Any $P \circ f) x s$
Proof of bind lemma:
Any $P(x s \gg f)$
$\leftrightarrow\langle$ by definition \rangle
Any $P($ concat (map $f \times s)) \leftrightarrow\langle$ concat \rangle
Any (Any P) (map $f \times s) \leftrightarrow\langle$ map \rangle
Any (Any $P \circ f$) xs
\square

More lemmas

Any P xs $\leftrightarrow \exists z . P z \times z \in x s$

Any-cong : $(\forall x . P \times \leftrightarrow Q x) \rightarrow$ $x s \approx_{\text {bag }} y s \rightarrow$ Any P xs \leftrightarrow Any Q ys
Any-cong p eq $=$
Any P xs $\quad \leftrightarrow\langle$ Any $\rightarrow \exists\rangle$
$(\exists z . P z \times z \in x s) \leftrightarrow\langle$ assumptions \rangle
$(\exists z . Q z \times z \in y s) \leftrightarrow\langle$ Any $\rightarrow \exists\rangle$
Any Q ys

Outline of proof

Bijectional reasoning combinators
Any lemmas
Left distributivity

Left distributivity

$x s \gg(\lambda y . f y+g y) \approx_{b a g}$
$(x s \gg f)+(x s \gg g)$

Left distributivity

$$
\begin{array}{ll}
z \in x s \gg(\lambda y \cdot f y+g y) & \leftrightarrow\langle ?\rangle \\
z \in(x s \gg=f)+(x s \gg g) & \square
\end{array}
$$

Left distributivity

$$
\begin{array}{ll}
\text { Any }(-\equiv z)(x s \gg(\lambda y . f y+g y)) & \leftrightarrow\langle ?\rangle \\
z \in(x s \gg f)+(x s \gg g) & \square
\end{array}
$$

Left distributivity

$\begin{array}{ll}\text { Any }(\ldots \equiv z)(x s \gg(\lambda y \cdot f y+g y)) & \leftrightarrow\langle\text { bind }\rangle \\ \text { Any }(\operatorname{Any}(-\equiv z) \circ(\lambda y \cdot f y+g y)) x s & \leftrightarrow\langle ?\rangle \\ z \in(x s \gg f)+(x s \gg g) & \square\end{array}$

Left distributivity

$$
\begin{array}{ll}
\text { Any }(-\equiv z)(x s \gg(\lambda y \cdot f y+g y)) & \leftrightarrow\langle\text { bind }\rangle \\
\text { Any }(\lambda y \cdot z \in f y+g y) x s & \leftrightarrow\langle ?\rangle \\
z \in(x s \gg f)+(x s \gg g) & \square
\end{array}
$$

Left distributivity

$$
\begin{array}{ll}
\text { Any }(\ldots \equiv z)(x s \gg(\lambda y \cdot f y+g y)) & \leftrightarrow\langle\text { bind }\rangle \\
\text { Any }(\lambda y \cdot z \in f y+g y) x s & \leftrightarrow\langle \#\rangle \\
\text { Any }(\lambda y \cdot z \in f y+z \in g y) x s & \leftrightarrow\langle ?\rangle \\
z \in(x s \gg=f)+(x s \gg g) & \square
\end{array}
$$

Left distributivity

$$
\begin{array}{ll}
\text { Any }(\ldots \equiv z)(x s \gg(\lambda y \cdot f y+g y)) & \leftrightarrow\langle\text { bind }\rangle \\
\text { Any }(\lambda y \cdot z \in f y+g y) x s & \leftrightarrow\langle \#\rangle \\
\text { Any }(\lambda y \cdot z \in f y+z \in g y) x s & \leftrightarrow\langle ?\rangle \\
z \in x s \gg f+z \in x s \gg g & \leftrightarrow\langle H\rangle \\
z \in(x s \gg f)+(x s \gg g) & \square
\end{array}
$$

Left distributivity

$$
\begin{array}{ll}
\text { Any }(\ldots \equiv z)(x s \gg(\lambda y \cdot f y+g y)) & \leftrightarrow\langle\text { bind }\rangle \\
\text { Any }(\lambda y \cdot z \in f y+g y) x s & \leftrightarrow\langle+\rangle \\
\text { Any }(\lambda y \cdot z \in f y+z \in g y) x s & \leftrightarrow\langle ?\rangle \\
\text { Any }(\lambda y \cdot z \in f y) x s+ & \\
\quad \text { Any }(\lambda y \cdot z \in g y) x s & \leftrightarrow\langle\text { bind }\rangle \\
z \in x s \gg f+z \in x s \gg g & \leftrightarrow\langle+\rangle \\
z \in(x s \gg f)+(x s \gg g) & \square
\end{array}
$$

Left distributivity

$$
\begin{array}{ll}
\text { Any }(\lambda y \cdot z \in f y+z \in g y) x s & \leftrightarrow\langle ?\rangle \\
\text { Any }(\lambda y \cdot z \in f y) x s+ & \\
\quad \text { Any }(\lambda y \cdot z \in g y) x s & \square
\end{array}
$$

Left distributivity

Any $(\lambda y . P y+z \in g y) x s \leftrightarrow\langle ?\rangle$
Any ($\lambda y . P y$) xs +
Any $(\lambda y . z \in g y) x s$ \square

Left distributivity

Any (λ y. P y $+Q$ y) xs $\leftrightarrow\langle ?\rangle$ Any P xs + Any Q xs \square

Left distributivity

Any $(\lambda y . P y+Q y) x s \quad \leftrightarrow\langle$ Any $\rightarrow \exists\rangle$
$(\exists y .(P y+Q y) \times y \in x s) \leftrightarrow\langle ?\rangle$
Any P xs + Any Q xs \square

Left distributivity

Any ($\lambda y . P y+Q y$) xs
$\leftrightarrow\langle A n y \rightarrow \exists\rangle$
$(\exists y .(P y+Q y) \times y \in x s) \leftrightarrow\langle ?\rangle$
$(\exists y . P y \times y \in x s)+$
$(\exists y . Q y \times y \in x s)$
Any P xs + Any Q xs
$\leftrightarrow\langle A n y \rightarrow \exists\rangle$
\square

Left distributivity

Any (λy. $P y+Q y$) xs
$\leftrightarrow\langle$ Any $\rightarrow \exists\rangle$
$(\exists y .(P y+Q y) \times y \in x s) \leftrightarrow\langle\times$ distrib. +\rangle
$(\exists y . P y \times y \in x s+$
$Q y \times y \in x s)$
$\leftrightarrow\langle$? \rangle
$(\exists y . P y \times y \in x s)+$
$(\exists y . Q y \times y \in x s)$
$\leftrightarrow\langle$ Any $\rightarrow \exists\rangle$
Any P xs + Any Q xs

Left distributivity

Any (λy. $P y+Q y$) xs
$\leftrightarrow\langle$ Any $\rightarrow \exists\rangle$
$(\exists y .(P y+Q y) \times y \in x s) \leftrightarrow\langle\times$ distrib. +\rangle
$(\exists y . P y \times y \in x s+$
$Q y \times y \in x s)$
$\leftrightarrow\langle\exists$ distrib. +\rangle
$(\exists y . P y \times y \in x s)+$

$$
(\exists y \cdot Q y \times y \in x s)
$$

$\leftrightarrow\langle$ Any $\rightarrow \exists\rangle$
Any P xs + Any Q xs

Summary of proof

Membership defined in terms of Any,
used Any lemmas,

$$
\begin{array}{ll}
\text { Any } P(x s+y s) & \leftrightarrow \text { Any } P \times s+\text { Any } P y s, \\
\text { Any } P(x s \gg f) & \leftrightarrow \text { Any }(\text { Any } P \circ f) x s, \\
\text { Any } P \times s & \leftrightarrow \exists z . P z \times z \in x s,
\end{array}
$$

to reduce left distributivity to

$$
\begin{array}{ll}
(A+B) \times C & \leftrightarrow A \times C+B \times C, \\
(\exists y \cdot P y+Q y) & \leftrightarrow(\exists y \cdot P y)+(\exists y \cdot Q y) .
\end{array}
$$

Variations

Variations

- Set equivalence:

$$
x s \approx_{\text {set }} y s=\forall z . \quad z \in x s \Leftrightarrow z \in y s
$$

- Subset preorder:

$$
x s \lesssim s e t^{y s}=\forall z . \quad z \in x s \rightarrow z \in y s
$$

- Subbag preorder:

$$
x s \lesssim \text { bag } y s=\forall z . \quad z \in x s \mapsto z \in y s
$$

Variations

Other types: Change the definition of Any.

$$
\begin{aligned}
& -\approx_{\text {bag- }}: \text { List } A \rightarrow \text { Tree } A \rightarrow \text { Set } \\
& x s \approx_{\text {bag }} t=\forall z . \quad z \in \in_{\text {List }} \times s \leftrightarrow z \in_{\text {Tree }} t
\end{aligned}
$$

Works for arbitrary unary containers
(Abbot et al.; compare Hoogendijk \& de Moor).

Conclusions

- Bag equivalence.
- Bijectional reasoning.
- Arbitrary unary containers.
- Set equivalence and subset and subbag preorders.

Conclusions

- Bag equivalence.
- Bijectional reasoning.
- Arbitrary unary containers.
- Set equivalence and subset and subbag preorders.

