
Bag Equivalence via a
Proof-Relevant Membership Relation

Nils Anders Danielsson

Chalmers University of Technology and University of Gothenburg

Abstract. Two lists are bag equivalent if they are permutations of each
other, i.e. if they contain the same elements, with the same multiplic-
ity, but perhaps not in the same order. This paper describes how one
can define bag equivalence as the presence of bijections between sets of
membership proofs. This definition has some desirable properties:

– Many bag equivalences can be proved using a flexible form of equa-
tional reasoning.

– The definition generalises easily to arbitrary unary containers, in-
cluding types with infinite values, such as streams.

– By using a slight variation of the definition one gets set equivalence
instead, i.e. equality up to order and multiplicity. Other variations
give the subset and subbag preorders.

– The definition works well in mechanised proofs.

1 Introduction

Bag (or multiset) equivalence is equality up to reordering of elements. For sim-
plicity we can start by considering lists. The lists [1, 2, 1] and [2, 1, 1] are bag
equivalent: [1, 2, 1] ≈bag [2, 1, 1]. These lists are not bag equivalent to [1, 2], be-
cause of differing multiplicities. Set equivalence, equality up to reordering and
multiplicity, identifies all three lists: [1, 2, 1] ≈set [2, 1, 1] ≈set [1, 2].

Bag equivalence is useful when specifying the correctness of certain algo-
rithms. The most obvious example may be provided by sorting. The result of
sorting something should be bag equivalent to the input: ∀ xs. sort xs ≈bag xs.
In many cases the two sides of a bag equivalence (in this case sort xs and xs)
have the same type, but this is not necessary. Consider tree sort, for instance:

tree-sort : List N→ List N
tree-sort = flatten ◦ to-search-tree

The function to-search-tree constructs binary search trees from lists, and flatten
flattens trees. We can prove ∀ xs. tree-sort xs ≈bag xs by first establishing the
following two lemmas:

∀ xs. to-search-tree xs ≈bag xs ∀ t . flatten t ≈bag t

These lemmas relate trees and lists.

Another example of the utility of bag equivalence is provided by grammars.
Two grammars are typically said to be equivalent if they generate the same
language, i.e. the same set of strings. However, this is a coarse form of equivalence
which identifies ambiguous and unambiguous grammars. If the languages are
instead seen as bags, then one gets a form of equivalence which takes ambiguity
into account.

Assume that Grammar represents grammars annotated with semantic ac-
tions, and that we have a function parse : Grammar → (String → List Result)
which gives the semantics of a grammar as a function from strings to lists of re-
sults (multiple results in the case of ambiguous grammars). It is then reasonable
to require that a program opt which transforms grammars into more optimised
forms should satisfy the following property:

∀ g s. parse (opt g) s ≈set parse g s ∧ parse (opt g) s .bag parse g s

Here .bag is the subbag preorder : xs .bag ys if every element in xs occurs at
least as often in ys. The property states that the new grammar should yield the
same results as the old grammar (≈set), with no more ambiguity (.bag).
The order of the results is unspecified. Note that if we have infinitely ambiguous
grammars, then the lists returned by parse can be infinite, in which case we need
notions of set equivalence and subbag preorder adapted to such lists.

Many definitions of bag equivalence and related concepts are available in
the literature, including classical definitions of permutations; definitions of bag
equivalence for lists in the Coq [19], Ssreflect [7] and Coccinelle [5] libraries; and
definitions of the type of bags in the Boom hierarchy [14], in terms of quotient
containers [2], and in terms of combinatorial species [21, 13]. However, I want
to propose another definition, based on bijections between sets of membership
proofs (Sect. 3). This definition has several useful properties:

– It makes it possible to prove many equivalences using a flexible form of
equational reasoning. This is demonstrated using examples in Sects. 4, 5
and 7.

– By modifying the definition slightly one gets definitions of set equivalence
and the subset and subbag preorders (Sect. 8). By taking advantage of the
similarity of these definitions one can avoid proof duplication: many preser-
vation results, such as the fact that the list monad’s bind operation preserves
the various equivalences and preorders, can be established uniformly for all
the relations with a single proof.

– The definition works for any type with a suitable membership predicate.
Hoogendijk and de Moor [10] characterise a container type as a “relator” with
an associated membership relation, so one might expect that the definition
should work for many container types. Section 6 shows that it works for
arbitrary unary containers, defined in the style of Abbott et al. [1]; this
includes containers with infinite values, such as infinite streams.

– The definition works well in mechanised proofs, and has been used in prac-
tice: I used it to state and formally prove many properties of a parser com-
binator library [6].

Section 9 compares the definition to other definitions of bag equivalence.
To demonstrate that the definition works well in a formal setting I will use

the dependently typed, functional language Agda [16, 18] below. The language is
introduced briefly in Sect. 2. Code which includes all the main results in the text
is, at the time of writing, available to download from my web page. (The code
does not match the paper exactly. The main difference is that many definitions
are universe-polymorphic, and hence a bit more general.)

2 Brief Introduction to Agda

In Agda one can define the types of finite (inductive) lists and unary natural
numbers as follows:

data List (A : Set) : Set where
[] : List A

:: : A→ List A→ List A

data N : Set where
zero : N
suc : N→ N

Here Set is a type of (small) types, and :: is an infix constructor; the under-
scores mark the argument positions. Values inhabiting inductive types can be
destructed using structural recursion. For instance, the length of a list can be
defined as follows:

length : {A : Set} → List A→ N
length [] = zero
length (x :: xs) = suc (length xs)

Here {A : Set} is an implicit argument. If Agda can infer such an argument
uniquely from the context, then the argument does not need to be given explic-
itly, as witnessed by the recursive call to length. In some cases explicit arguments
can be inferred from the context, and then one has the option of writing an un-
derscore () instead of the full expression.

Types do not have to be defined using data declarations, they can also be
defined using functions. For instance, we can define the type Fin n, which has
exactly n elements, as follows:

Fin : N→ Set
Fin zero = ⊥
Fin (suc n) = > + Fin n

data + (A B : Set) : Set where
left : A → A + B
right : B → A + B

Here ⊥ is the empty type, > the unit type (with sole inhabitant tt), and A + B
is the disjoint sum of the types A and B . By treating Fin n as a bounded number
type we can define a safe lookup function:

lookup : {A : Set} (xs : List A)→ Fin (length xs)→ A
lookup [] ()
lookup (x :: xs) (left) = x
lookup (x :: xs) (right i) = lookup xs i

This function has a dependent type: the type of the index depends on the length
of the list. The first clause contains an absurd pattern, (). This pattern is used
to indicate to Agda that there are no values of type Fin (length []) = Fin zero
= ⊥; note that type-checking can involve normalisation of terms, and that Agda
would not have accepted this definition if we had omitted one of the cases.

Below we will use equivalences and bijections. One can introduce a type of
equivalences between the types A and B using a record type as follows:

record ⇔ (A B : Set) : Set where
field to : A→ B

from : B → A

To get a type of bijections we can add the requirement that the functions to and
from are inverses:

record ↔ (A B : Set) : Set where
field to : A→ B

from : B → A
from-to : ∀ x → from (to x) ≡ x
to-from : ∀ x → to (from x) ≡ x

Here ∀ x → . . . means the same as (x :)→ . . .; Agda can infer the type of x
automatically.

The type x ≡ y is a type of equality proofs showing that x and y are equal:

≡ : {A : Set} → A→ A→ Set

I take ≡ to be the ordinary identity type of intensional Martin-Löf type theory.
In particular, I do not assume that the K rule [17], which implies that all proofs
of type x ≡ y are equal, is available.1 (The reason for this choice is discussed in
Sect. 10.) However, for the most part it should be fine to assume that ≡ is
the usual notion of equality used in informal mathematics.

Note that ↔ is a dependent record type; later fields mention earlier ones.
We can use a dependent record type to define an existential quantifier (a Σ -type):

record ∃ {A : Set} (B : A→ Set) : Set where
constructor ,
field fst : A

snd : B fst

A value of type ∃ (λ (x : A)→ B x) is a pair (x , y) containing a value x of type
A and a value y of type B x . We can project from a record using the notation
“record type.field”. For instance, ∃ comes with the following two projections:

∃.fst : {A : Set} {B : A→ Set} → ∃ B → A
∃.snd : {A : Set} {B : A→ Set} (p : ∃ B)→ B (∃.fst p)

We can also use the existential quantifier to define the cartesian product of two
types:

1 By default the K rule is available in Agda, but in recent versions there is a flag that
appears to turn it off.

× : Set → Set → Set
A × B = ∃ (λ (: A)→ B)

The relations ⇔ and ↔ are equivalence relations. We can for instance
prove that ↔ is symmetric in the following way:

sym : {A B : Set} → A ↔ B → B ↔ A
sym p = record { to = ↔ .from p ; from-to = ↔ .to-from p

; from = ↔ .to p ; to-from = ↔ .from-to p}

I will also use the following combinators, corresponding to reflexivity and tran-
sitivity:

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Here � is a unary postfix operator and ↔〈 〉 a right-associative ternary
mixfix operator. The choice of names and the choice of which arguments are
explicit and which are implicit may appear strange, but they allow us to use a
notation akin to equational reasoning for “bijectional reasoning”. For instance,
if we have proofs p : A ↔ B and q : C ↔ B , then we can prove A ↔ C as
follows:

A ↔〈 p 〉
B ↔〈 sym q 〉
C �

The idea to use mixfix operators to mimic equational reasoning notation comes
from Norell [16].

To avoid clutter I will usually suppress implicit argument declarations below.

3 Bag Equivalence for Lists

For simplicity, let us start by restricting the discussion to (finite) lists. When
are two lists xs and ys bag equivalent? One answer: when there is a bijection f
from the positions of xs to the positions of ys, such that the value at position i
in xs is equal to the value at position f i in ys. We can formalise this as follows:

record ≈′bag (xs ys : List A) : Set where

field bijection : Fin (length xs) ↔ Fin (length ys)
related : ∀ i → lookup xs i ≡ lookup ys (↔ .to bijection i)

However, I prefer a different (but equivalent) definition.
Let us first define the Any predicate transformer [15]:

Any : (A→ Set)→ List A→ Set
Any P [] = ⊥
Any P (x :: xs) = P x + Any P xs

Any P xs holds if P x holds for at least one element x of xs: Any P [x1, . . . , xn]
reduces to P x1 + . . . + P xn + ⊥. Using Any we can define a list membership
predicate:

∈ : A→ List A→ Set
x ∈ xs = Any (λ y → x ≡ y) xs

This can be read as “x is a member of xs if there is any element y of xs which
is equal to x”: x ∈ [x1, . . . , xn] = (x ≡ x1) + . . . + (x ≡ xn) + ⊥. Note that
x ∈ xs is basically a subset of the positions of xs, namely those positions which
contain x . Bag equivalence can then be defined as follows:

≈bag : List A→ List A→ Set
xs ≈bag ys = ∀ z → z ∈ xs ↔ z ∈ ys

Two lists xs and ys are bag equivalent if, for any element z , the type of positions
z ∈ xs is isomorphic to (in bijective correspondence with) z ∈ ys.

It is important that x ∈ xs can (in general) contain more than one value,
i.e. that the relation is “proof-relevant”. This explains the title of the paper:
bag equivalence via a proof-relevant membership relation. If the relation were
proof-irrelevant, i.e. if any two elements of x ∈ xs were identified, then we would
get set equivalence instead of bag equivalence.

The intuitive explanation above has a flaw. It is based on the unstated as-
sumption that the equality type itself is proof-irrelevant: if there are several
distinct proofs of x ≡ x , then x ∈ [x] does not correspond directly to the po-
sitions of x in [x]. However, in the absence of the K rule the equality type is
not necessarily proof-irrelevant [9]. Fortunately, and maybe surprisingly, one can
prove that the two definitions of bag equivalence above are equivalent even in
the absence of proof-irrelevance (see Sect. 5).

The first definition of bag equivalence above is, in some sense, less compli-
cated than ≈bag , because it does not in general involve equality of equality
proofs. One may hence wonder what the point of the new, less intuitive, more
complicated definition is. My main answer to this question is that ≈bag lends
itself well to bijectional reasoning.

4 Bijectional Reasoning

How can we prove that two lists are bag equivalent? In this section I will use an
example to illustrate some of the techniques that are available. The task is the
following: prove that bind distributes from the left over append,

xs >>= (λ x → f x ++ g x) ≈bag (xs >>= f) ++ (xs >>= g).

Here bind is defined as follows:

>>= : List A→ (A→ List B)→ List B
xs >>= f = concat (map f xs)

The concat function flattens a list of lists, map applies a function to every element
in a list, and ++ appends one list to another.

Bag equivalence is reflexive, so any equation which holds for ordinary list
equality also holds for bag equivalence. To see that the equation above does
not (in general) hold for ordinary list equality, let xs be 1 :: 2 :: [] and f and
g both be λ x → x :: [], in which case the equivalence specialises as follows:
1 :: 1 :: 2 :: 2 :: [] ≈bag 1 :: 2 :: 1 :: 2 :: [].

Before proving the left distributivity law I will introduce some basic lemmas.
The first one states that Any is homomorphic with respect to ++ / + . The
lemma is proved by induction on the structure of the first list:

Any-++ : (P : A→ Set) (xs ys : List A)→
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 sym +-left-identity 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 +-cong (P x �) (Any-++ P xs ys) 〉
P x + (Any P xs + Any P ys) ↔〈 +-assoc 〉
(P x + Any P xs) + Any P ys �

Note that the list xs in the recursive call Any-++ P xs ys is structurally smaller
than the input, x :: xs. The proof uses the following lemmas:

+-left-identity : ⊥ + A ↔ A
+-assoc : A + (B + C) ↔ (A + B) + C
+-cong : A1 ↔ A2 → B1 ↔ B2 →

A1 + B1 ↔ A2 + B2

They state that the empty type is a left identity of + , and that + is asso-
ciative and preserves bijections. These lemmas can all be proved by defining two
simple functions and proving that they are inverses.

Some readers may wonder why I did not include the step Any P ([] ++ ys) ↔
Any P ys in the first case of Any-++. This step can be omitted because the two
sides are equal by definition: [] ++ ys reduces to ys. For the same reason the
step Any P ((x :: xs) ++ ys) ↔ P x + Any P (xs ++ ys), which involves two
reductions, can be omitted in the lemma’s second case.

Note that if Any-++ is applied to ≡ z , then we get that list membership is
homomorphic with respect to ++ / + : z ∈ xs ++ ys ↔ z ∈ xs + z ∈ ys.
We can use this fact to prove that ++ is commutative:

++-comm : (xs ys : List A) → xs ++ ys ≈bag ys ++ xs
++-comm xs ys = λ z →

z ∈ xs ++ ys ↔〈 Any-++ (≡ z) xs ys 〉
z ∈ xs + z ∈ ys ↔〈 +-comm 〉
z ∈ ys + z ∈ xs ↔〈 sym (Any-++ (≡ z) ys xs) 〉
z ∈ ys ++ xs �

x ≡ y → (z ≡ x) ↔ (z ≡ y)
∀ x → (∃ λ y → y ≡ x) ↔ >
B x ↔ (∃ λ y → B y × y ≡ x)

(∃ λ (i : Fin zero)→ P i) ↔ ⊥

A1 ↔ A2 → B1 ↔ B2 →
A1 × B1 ↔ A2 × B2

A × ⊥ ↔ ⊥
A × > ↔ A
(A + B) × C ↔ (A × C) + (B × C)
(∃ λ x → B x + C x) ↔ ∃ B + ∃ C

(∃ λ (i : Fin (suc n))→ P i) ↔
P (left tt) + (∃ λ (i : Fin n)→ P (right i))

(∃ λ (x : A)→ ∃ λ (y : B)→ C x y) ↔
(∃ λ (y : B)→ ∃ λ (x : A)→ C x y)

(p : A1 ↔ A2) → (∀ x → B1 x ↔ B2 (↔ .to p x)) → ∃ B1 ↔ ∃ B2

Fig. 1. Unnamed lemmas used in proofs in Sects. 4–5 (some are consequences of others).

Here I have used the fact that + is commutative: +-comm : A + B ↔ B + A.
Note how commutativity of ++ follows from commutativity of + .

In the remainder of the text I will conserve space and reduce clutter by
not writing out the explanations within brackets, such as 〈 +-comm 〉. For
completeness I list various (unnamed) lemmas used in the proofs below in Fig. 1.

Let us now consider two lemmas that relate Any with concat and map:

Any-concat : (P : A→ Set) (xss : List (List A))→
Any P (concat xss) ↔ Any (Any P) xss

Any-concat P [] = ⊥ �
Any-concat P (xs :: xss) = Any P (xs ++ concat xss) ↔

Any P xs + Any P (concat xss) ↔
Any P xs + Any (Any P) xss �

Any-map : (P : B → Set) (f : A→ B) (xs : List A)→
Any P (map f xs) ↔ Any (P ◦ f) xs

Any-map P f [] = ⊥ �
Any-map P f (x :: xs) = P (f x) + Any P (map f xs) ↔

(P ◦ f) x + Any (P ◦ f) xs �

Here ◦ is function composition. If we combine Any-concat and Any-map, then
we can also relate Any and bind:

Any->>= : (P : B → Set) (xs : List A) (f : A→ List B)→
Any P (xs >>= f) ↔ Any (Any P ◦ f) xs

Any->>= P xs f = Any P (concat (map f xs)) ↔
Any (Any P) (map f xs) ↔
Any (Any P ◦ f) xs �

Note that these lemmas allow us to move things between the two arguments
of Any , the list and the predicate. When defining bag equivalence I could have
defined the list membership predicate ∈ directly, without using Any , but I
like the flexibility which Any provides.

Sometimes it can be useful to switch between Any and ∈ using the following
lemma (which can be proved by induction on xs):

Any-∈ : Any P xs ↔ (∃ λ x → P x × x ∈ xs)

This lemma can for instance be used to show that Any preserves bijections and
respects bag equivalence:

Any-cong : (P Q : A→ Set) (xs ys : List A)→
(∀ x → P x ↔ Q x) → xs ≈bag ys →
Any P xs ↔ Any Q ys

Any-cong P Q xs ys p eq =
Any P xs ↔
(∃ λ z → P z × z ∈ xs) ↔
(∃ λ z → Q z × z ∈ ys) ↔
Any Q ys �

We can now prove the left distributivity law using the following non-recursive
definition:

>>=-left-distributive : (xs : List A) (f g : A→ List B)→
xs >>= (λ x → f x ++ g x) ≈bag (xs >>= f) ++ (xs >>= g)

>>=-left-distributive xs f g = λ z →
z ∈ xs >>= (λ x → f x ++ g x) ↔
Any (λ x → z ∈ f x ++ g x) xs ↔
Any (λ x → z ∈ f x + z ∈ g x) xs ↔
Any (λ x → z ∈ f x) xs + Any (λ x → z ∈ g x) xs ↔
z ∈ xs >>= f + z ∈ xs >>= g ↔
z ∈ (xs >>= f) ++ (xs >>= g) �

The proof amounts to starting from both sides, using the lemmas introduced
above to make the list arguments as simple as possible, and finally proving the
following lemma in order to tie the two sides together in the middle:

Any-+ : (P Q : A→ Set) (xs : List A)→
Any (λ x → P x + Q x) xs ↔ Any P xs + Any Q xs

Any-+ P Q xs =
Any (λ x → P x + Q x) xs ↔
(∃ λ x → (P x + Q x) × x ∈ xs) ↔
(∃ λ x → P x × x ∈ xs + Q x × x ∈ xs) ↔
(∃ λ x → P x × x ∈ xs) + (∃ λ x → Q x × x ∈ xs) ↔
Any P xs + Any Q xs �

Note how the left distributivity property for bind is reduced to the facts that
× and ∃ distribute over + (second and third steps above).

The example above suggests that the definition of bag equivalence presented
in this paper makes it possible to establish equivalences in a modular way, us-
ing a flexible form of equational reasoning: even though we are establishing a
correspondence of the form xs ≈bag ys the reasoning need not have the form
xs ≈bag xs ′ ≈bag . . . ≈bag ys.

5 The Definitions Are Equivalent

Before generalising the definition of bag equivalence I want to show that the two
definitions given in Sect. 3 are equivalent.

Let us start by showing that ≈bag is complete with respect to ≈′bag . We
can relate the membership predicate and the lookup function as follows:

∈-lookup : z ∈ xs ↔ ∃ (λ (i : Fin (length xs))→ z ≡ lookup xs i)

This lemma can be proved by induction on the list xs. It is then easy to establish
completeness:

complete : (xs ys : List A) → xs ≈′bag ys → xs ≈bag ys

complete xs ys eq = λ z →
z ∈ xs ↔
∃ (λ (i : Fin (length xs))→ z ≡ lookup xs i) ↔
∃ (λ (i : Fin (length ys))→ z ≡ lookup ys i) ↔
z ∈ ys �

The second step uses the two components of eq .
Using the ∈-lookup lemma we can also construct an isomorphism between

the type of positions ∃ λ z → z ∈ xs and the corresponding type of indices:

Fin-length : (xs : List A) → (∃ λ z → z ∈ xs) ↔ Fin (length xs)
Fin-length xs =

(∃ λ z → z ∈ xs) ↔
(∃ λ z → ∃ λ (i : Fin (length xs))→ z ≡ lookup xs i) ↔
(∃ λ (i : Fin (length xs))→ ∃ λ z → z ≡ lookup xs i) ↔
Fin (length xs) × > ↔
Fin (length xs) �

The penultimate step uses the fact that, for any x , types of the form ∃ λ y →
y ≡ x are “contractible” [20, Lemma idisweq], and hence isomorphic to the unit
type. One can easily reduce this fact to the problem of proving that (x , refl) is
equal to (y , eq), for arbitrary y and eq : y ≡ x , where refl : {A : Set} {z : A} →
z ≡ z is the canonical proof of reflexivity. This follows from a single application
of the J rule—the usual eliminator for the Martin-Löf identity type—which in
this case allows us to pattern match on eq , replacing it with refl and unifying y
and x .

As an aside one can note that Fin-length is a generalisation of the fact above
(this observation is due to Thierry Coquand). The statement of Fin-length may
be a bit more suggestive if the existential is written as a Σ -type:

(Σ x : A. x ≡ x1 + . . . + x ≡ xn) ↔ Fin n.

Note that this statement is proved without assuming that the equality type is
proof-irrelevant. We can for instance instantiate A with the universe Set and all

the xi with the type N.2 In homotopy type theory [20] there are infinitely many
distinct proofs of N ≡ N, but Fin-length is still valid.

We can use Fin-length to construct an index bijection from a bag equivalence:

Fin-length-cong : (xs ys : List A) → xs ≈bag ys →
Fin (length xs) ↔ Fin (length ys)

Fin-length-cong xs ys eq =
Fin (length xs) ↔
∃ (λ z → z ∈ xs) ↔
∃ (λ z → z ∈ ys) ↔
Fin (length ys) �

All that remains in order to establish soundness of ≈bag with respect to ≈′bag
is to show that the positions which the bijection Fin-length-cong xs ys eq re-
lates contain equal elements. This bijection is defined using a number of lemmas
which I have postulated above. If these lemmas are instantiated with concrete
definitions in a suitable way (as in the code which accompanies the paper), then
the result can be established using a short proof. Thus we get soundness:

sound : (xs ys : List A) → xs ≈bag ys → xs ≈′bag ys

6 Bag Equivalence for Arbitrary Containers

The definition of bag equivalence given in Sect. 3 generalises from lists to many
other types. Whenever we can define the Any type we get a corresponding notion
of bag equivalence. The definition is not limited to types with finite values. We
can for instance define Any for infinite streams (but in that case Any can not
be defined by structural recursion as in Sect. 3).

It turns out that containers, in the style of Abbott et al. [1], make it very
easy to define Any . The unary containers which I will present below can be
used to represent arbitrary strictly positive simple types in one variable (in a
certain extensional type theory [1]), so we get a definition of bag equivalence
which works for a very large set of types. By using n-ary containers, or indexed
containers [4], it should be possible to handle even more types, but I fear that
the extra complexity would obscure the main idea, so I stick to unary containers
here.

A (unary) container consists of a type of shapes and, for every shape, a type
of positions:

record Container : Set1 where
constructor �

field Shape : Set
Position : Shape → Set

J K : Container → Set → Set
J S � P K A =
∃ λ (s : S) → (P s → A)

2 After making the definitions universe-polymorphic; see the accompanying code.

(Set1 is a type of large types.) A container C can be interpreted as a type
constructor J C K. Values of type J S � P K A have the form (s, f), where s is a
shape and f is a function mapping the positions corresponding to s to values.

Let us take some examples:

– We can represent finite lists using N � Fin: the shape is the length of the
list, and a list of length n has n positions.

– Infinite streams can be represented as follows: > � (λ → N). There is only
one shape, and this shape comes with infinitely many positions.

– Consider finite binary trees with values in the internal nodes:

data Tree (A : Set) : Set where
leaf : Tree A
node : Tree A→ A→ Tree A→ Tree A

This type can be represented by S � P , where S and P are defined as follows
(note that Agda supports overloaded constructors):

data S : Set where
leaf : S
node : S → S → S

P : S → Set
P leaf = ⊥
P (node l r) = P l + > + P r

The shapes are unlabelled finite binary trees, and the positions are paths to
the internal nodes.

Note that the type of shapes can be obtained by applying the container’s type
constructor to the unit type. For instance, S is isomorphic to Tree >.

Given a container we can define Any as follows [3] (where I have written out
the implicit argument {S � P} in order to be able to give a type signature for p):

Any : {C : Container} {A : Set} → (A→ Set)→ (J C K A→ Set)
Any {S � P} Q (s, f) = ∃ λ (p : P s)→ Q (f p)

Any Q (s, f) consists of pairs (p, q) where p is an s-indexed position and q is a
proof showing that the value at position p satisfies the predicate Q .

We can now define bag equivalence as before. In fact, we can define bag
equivalence for values of different container types, as long as the elements they
contain have the same type:

∈ : A→ J C K A→ Set
x ∈ xs = Any (λ y → x ≡ y) xs

≈bag : J C1 K A→ J C2 K A→ Set
xs ≈bag ys =
∀ z → z ∈ xs ↔ z ∈ ys

We can also generalise the alternative definition ≈′bag from Sect. 3:

≈′bag : {C1 C2 : Container} {A : Set} → J C1 K A→ J C2 K A→ Set

≈′bag {S1 � P1} {S2 � P2} (s1, f1) (s2, f2) =

∃ λ (b : P1 s1 ↔ P2 s2) → ∀ p → f1 p ≡ f2 (↔ .to b p)

This definition states that two values are bag equivalent if there is a bijection be-
tween their positions which relates equal elements. As before ≈bag and ≈′bag
are equivalent. The proof is easier than the one in Sect. 5: the generalisation of
∈-lookup holds by definition.

7 More Bijectional Reasoning

Let us now revisit the tree sort example from the introduction. To avoid minor
complications related to the container encoding I use the direct definition of the
Tree type from Sect. 6, and define Any and membership explicitly:

AnyTree : (A→ Set)→ (Tree A→ Set)
AnyTree P leaf = ⊥
AnyTree P (node l x r) =

AnyTree P l + P x + AnyTree P r

∈Tree : A→ Tree A→ Set
x ∈Tree t =

AnyTree (λ y → x ≡ y) t

The flatten function can be defined (inefficiently) as follows:

flatten : Tree A→ List A
flatten leaf = []
flatten (node l x r) = flatten l ++ x :: flatten r

The flatten lemma from the introduction can then be proved as follows (where
∈List refers to the definition of list membership from Sect. 3):

flatten-lemma : (t : Tree A) → ∀ z → z ∈List flatten t ↔ z ∈Tree t
flatten-lemma leaf = λ z → ⊥ �
flatten-lemma (node l x r) = λ z →

z ∈List flatten l ++ x :: flatten r ↔
z ∈List flatten l + z ≡ x + z ∈List flatten r ↔
z ∈Tree l + z ≡ x + z ∈Tree r �

In the leaf case the two sides evaluate to the empty type. The node case contains
two steps: the first one uses Any-++, and the second one uses the inductive
hypothesis twice.

With a suitable definition of to-search-tree it is not much harder to prove
the following lemma (see the accompanying code):

to-search-tree-lemma :
(xs : List N) → ∀ z → z ∈Tree to-search-tree xs ↔ z ∈List xs

It is then easy to prove that tree-sort produces a permutation of its input:

tree-sort-permutes : (xs : List N) → tree-sort xs ≈bag xs
tree-sort-permutes xs = λ z →

z ∈List flatten (to-search-tree xs) ↔
z ∈Tree to-search-tree xs ↔
z ∈List xs �

8 Set Equivalence, Subsets and Subbags

It is easy to tweak the definition of bag equivalence so that we get set equivalence:

≈set : List A→ List A→ Set
xs ≈set ys = ∀ z → z ∈ xs ⇔ z ∈ ys

This definition states that xs and ys are set equivalent if, for any value z , z is
a member of xs iff it is a member of ys. We can also define subset and subbag
relations:

.set : List A→ List A→ Set
xs .set ys =
∀ z → z ∈ xs → z ∈ ys

.bag : List A→ List A→ Set

xs .bag ys =

∀ z → z ∈ xs � z ∈ ys

Here A� B stands for the type of injections from A to B : xs is a subbag of ys
if every element occurs at least as often in ys as in xs.

It is now easy to generalise over the kind of function space used in the four
definitions and define xs ∼[k] ys, meaning that xs and ys are k -related, where k
ranges over subset, set, subbag and bag. Using this definition one can prove many
preservation properties uniformly for all four relations at once (given suitable
combinators, some of which may not be defined uniformly). Here is one example
of such a preservation property:

>>=-cong : (xs ys : List A) (f g : A→ List B)→
xs ∼[k] ys → (∀ x → f x ∼[k] g x)→ xs >>= f ∼[k] ys >>= g

Details of these constructions are not provided in the paper due to lack of space.
See the accompanying code for more information.

9 Related Work

Morris [15] defines Any for arbitrary indexed strictly positive types. The dual
of Any , All , goes back at least to Hermida and Jacobs [8], who define it for
polynomial functors. In Hoogendijk and de Moor’s treatment of containers [10]
membership is a lax natural transformation, and this implies that the follow-
ing variant of Any-map (with ⇔ rather than ↔) holds: x ∈ map f ys ⇔
∃ λ y → x ≡ f y × y ∈ ys.

In a previous paper I used the definitions of bag and set equivalence given
above in order to state and formally prove properties of a parser combinator
library [6]. That paper did not discuss bijectional reasoning, did not discuss
alternative definitions of bag equivalence such as ≈′bag , and did not define
bag and set equivalence for arbitrary containers, so the overlap with the present
paper is very small. The paper did define something resembling bag and set
equivalence for parsers. Given that x ∈ p · s means that x is one possible result
of applying the parser p to the string s we can define the relations as follows:

p1 ≈ p2 = ∀ x s → x ∈ p1 · s ∼ x ∈ p2 · s. When ∼ is ⇔ we get language
equivalence, and when it is ↔ we get the stronger notion of parser equivalence,
which distinguishes parsers that exhibit differing amounts of ambiguity. Correct-
ness of the parse function, which takes a parser and an input string to a list of
results, was stated as follows: x ∈ p · s ↔ x ∈ parse p s. Notice the flexibility
provided by the use of bijections: the two sides of the correctness statement refer
to different things—an inductive definition of the semantics of parsers to the left,
and list membership to the right—and yet they can be usefully related.

Abbott et al. [2] define bags using quotient containers. A quotient container
is a container S � P plus, for each shape s, a set G s of automorphisms on
P s, containing the identity and closed under composition and inverse. Quotient
containers are interpreted as ordinary containers, except that the position-to-
value functions of type P s → A (for some A) are quotiented by the equivalence
relation that identifies f1 and f2 if f2 = f1 ◦ g for some g : G s. Abbott et al.
define bags by taking the list container N � Fin and letting G n be the symmet-
ric group on Fin n: G n = Fin n ↔ Fin n. The position-to-value functions of
N � Fin correspond to the lookup function, so this definition of bags is very close
to what you get if you quotient lists by ≈′bag , the alternative definition of bag
equivalence given in Sect. 3. Quotient containers only allow us to identify values
which have the same shape, so one could not define bags by starting from the bi-
nary tree container defined in Sect. 6 and turning this into a quotient container,
at least not in an obvious way.

In the SSReflect [7] library bag equivalence (for finite lists containing elements
with decidable equality) is defined as a boolean-valued computable function: the
list xs is a permutation of ys if, for every element z of xs ++ ys, the number of
occurrences of z in xs is equal to the number of occurrences in ys.

The Coq [19] standard library contains (at least) two definitions related to
bag equivalence. A multiset containing values of type A, where A comes with
decidable equality, is defined as a function of type A → N, i.e. as a function
associating a multiplicity with every element. There is also an inductive definition
of bag equivalence which states (more or less) that xs and ys are bag equivalent
if xs can be transformed into ys using a finite sequence of transpositions of
adjacent elements. It is easy to tweak this definition to get set equivalence, but
it does not seem easy to generalise it to arbitrary containers.

Contejean [5] defines bag equivalence for lists inductively by, in effect, enu-
merating where every element in the left list occurs in the right one. It seems
likely that this definition can be adapted to streams, but it is not obvious how
to generalise it to branching structures such as binary trees.

In the Boom hierarchy (attributed to Boom by Meertens [14]) the type of
bags containing elements of type A is defined as the free commutative monoid
on A, i.e. bags are lists where the append operation is taken to be commutative.
The type of sets is defined by adding the requirement that the append opera-
tion is idempotent. Generalising to types with infinite values seems nontrivial.
Hoogendijk [11] and Hoogendijk and Backhouse [12], working with the Boom
hierarchy in a relational setting, prove various laws related to bags and sets (as

well as lists and binary trees). One result is that the map function preserves bag
and set equivalence.

Yorgey [21] points out that one can define the type of bags as a certain
(finitary) combinatorial species [13]. A species is an endofunctor in the category
of finite sets and bijections; one can see the endofunctor as mapping a set of
position labels to a labelled structure. Bags correspond to the species which
maps a set A to the singleton set {A }, and lifts a bijection A ↔ B in the
obvious way.

10 Conclusions

Through a number of examples, proofs and generalisations I hope to have shown
that the definition of bag equivalence presented in this paper is useful. I do
not claim that this definition is always preferable to others. For instance, in
the absence of proof-irrelevance it seems to be easier to prove that cons is left
cancellative using the definition ≈′bag from Sect. 3 (see the accompanying
code). However, ≈bag and ≈′bag are equivalent, so in many cases it should
be possible to use one definition in one proof and another in another.

As mentioned above I have been careful not to use the K rule when formal-
ising this work. The reason is the ongoing work on homotopy type theory [20], a
form of type theory where equality of types is (equivalent to) isomorphism and
equality of functions is pointwise equality. With this kind of type theory bag
equivalence can be stated as xs ≈bag ys = (λ z → z ∈ xs) ≡ (λ z → z ∈ ys),
the bijectional reasoning in this paper can be turned into equational reasoning,
and preservation lemmas like +-cong do not need to be proved (because equality
is substitutive). However, homotopy type theory is incompatible with the K rule,
which implies that all proofs of A ≡ B are equal: the equalities corresponding
to the identity function and the not function should be distinct elements of
Bool ≡ Bool .

Acknowledgements. I would like to thank Simon Thompson and Bengt Nord-
ström for suggesting that my definition of bag and set equivalence could be
generalised further, to include other relations; and Fritz Henglein for suggesting
that I should use the term “bag equivalence” rather than “bag equality”. I would
also like to thank Thierry Coquand for suggesting that Any could be defined as
an iterated sum rather than as an inductive family, and for urging me to make
sure that the results are valid also in the absence of the K rule. Finally I would
like to thank several anonymous reviewers for useful feedback. In particular, one
reviewer suggested that I could use tree sort as an example.

Large parts of this work were done when I was working at the University of
Nottingham, with financial support from EPSRC (grant code: EP/E04350X/1).
I have also received support from the ERC: “The research leading to these results
has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agree-
ment n◦ 247219.”

References

[1] Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing strictly positive
types. Theoretical Computer Science 342, 3–27 (2005)

[2] Abbott, M., Altenkirch, T., Ghani, N., McBride, C.: Constructing polymorphic
programs with quotient types. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125,
pp. 2–15. Springer, Heidelberg (2004)

[3] Altenkirch, T., Levy, P., Staton, S.: Higher-order containers. In: Ferreira, F.,
Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158,
pp. 11–20. Springer, Heidelberg (2010)

[4] Altenkirch, T., Morris, P.: Indexed containers. In: LICS ’09. pp. 277–285 (2009)
[5] Contejean, E.: Modeling permutations in Coq for Coccinelle. In: Comon-Lundh,

H., Kirchner, C., Kirchner, H. (eds.) Rewriting, Computation and Proof, LNCS,
vol. 4600, pp. 259–269. Springer, Heidelberg (2007)

[6] Danielsson, N.A.: Total parser combinators. In: ICFP’10. pp. 285–296 (2010)
[7] Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the

Coq system. Tech. Rep. inria-00258384, version 10, INRIA (2011)
[8] Hermida, C., Jacobs, B.: An algebraic view of structural induction. In: Pacholski,

L., Tiuryn, J. (eds.) CSL ’94. LNCS, vol. 933, pp. 412–426. Springer, Heidelberg
(1995)

[9] Hofmann, M., Streicher, T.: The groupoid model refutes uniqueness of identity
proofs. In: LICS ’94. pp. 208–212 (1994)

[10] Hoogendijk, P., de Moor, O.: Container types categorically. Journal of Functional
Programming 10(2), 191–225 (2000)

[11] Hoogendijk, P.F.: (Relational) programming laws in the Boom hierarchy of types.
In: Bird, R.S., Morgan, C.C., Woodcock, J.C.P. (eds.) Mathematics of Program
Construction, Second International Conference. LNCS, vol. 669, pp. 163–190.
Springer, Heidelberg (1993)

[12] Hoogendijk, P.F., Backhouse, R.C.: Relational programming laws in the tree, list,
bag, set hierarchy. Science of Computer Programming 22(1–2), 67–105 (1994)

[13] Joyal, A.: Une théorie combinatoire des séries formelles. Advances in Mathematics
42(1), 1–82 (1981)

[14] Meertens, L.: Algorithmics: Towards programming as a mathematical activity.
In: Mathematics and Computer Science, CWI Monographs, vol. 1, pp. 289–334.
North-Holland (1986)

[15] Morris, P.W.J.: Constructing Universes for Generic Programming. Ph.D. thesis,
The University of Nottingham (2007)

[16] Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology and Göteborg University
(2007)

[17] Streicher, T.: Investigations Into Intensional Type Theory. Habilitationsschrift,
Ludwig-Maximilians-Universität München (1993)

[18] The Agda Team: The Agda Wiki. Available at http://wiki.portal.chalmers.

se/agda/ (2012)
[19] The Coq Development Team: The Coq Proof Assistant Reference Manual, Version

8.3pl3 (2011)
[20] Voevodsky, V.: Univalent foundations project (a modified version of an NSF grant

application) (2010), unpublished
[21] Yorgey, B.A.: Species and functors and types, oh my! In: Haskell’10. pp. 147–158

(2010)

http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/

	Bag Equivalence via a Proof-Relevant Membership Relation

