
Total Definitional Interpreters for
Time and Space Complexity

Nils Anders Danielsson
University of Gothenburg and Chalmers University of Technology

Abstract
Definitional interpreters are sometimes used to specify the
semantics of programming languages and to reason about
the semantics of programs. This text presents one way in
which total definitional interpreters defined using the delay
monad can be used to specify and reason about time and
space complexity. The approach works for non-terminating
programs, and the text is supported by machine-checked
proofs.

1 Introduction
Definitional interpreters [Reynolds 1972] are sometimes used
to give the semantics of programming languages, also for
languages with non-terminating programs. Several tech-
niques are available to handle non-termination, including
step-counting/fuel [Boyer and Moore 1997; Leroy and Grall
2009; Siek 2013; Owens et al. 2016; Amin and Rompf 2017;
Bach Poulsen et al. 2018], the delaymonad and other coinduc-
tive types [Capretta 2005; Nakata and Uustalu 2009; Paulin-
Mohring 2009; Benton et al. 2009; Danielsson 2012], and
guarded recursive types [Paviotti et al. 2015].

One application of total definitional interpreters has been
to define operational semantics and prove compiler correct-
ness [Young 1989; Danielsson 2012]; in particular, this ap-
proach is taken in the CakeML project [Owens et al. 2016]. In
this work I show that it is possible to reason about time and
space complexity (at least stack space usage) in this setting:
I present a simple λ-calculus along with instrumented inter-
preters that make it possible to reason about the stack space
usage and number of reduction steps for the corresponding
compiled programs running on a virtual machine, without
referring directly to the compiler or virtual machine. For
stack usage I pay particular attention to programs that might
fail to terminate: it can be important to be able to distinguish
between a non-terminating program that runs in bounded
stack space and one that does not.
The most closely related work is perhaps that of Young

[1989], who discusses two languages and a compiler from
one to the other. The semantics of the languages are given
as definitional interpreters that use step-counting: each in-
terpreter is defined by recursion on a number, and if this
number becomes zero, then the interpreter stops. Programs
in the target language can run out of stack space, and this is
handled by also tracking stack space in the interpreter for the
source language: if stack space runs out, then the interpreter
returns an error value. Young proves compiler correctness

under the assumption that the program terminates and stack
space does not run out.

In this work I return a trace of stack sizes instead of crash-
ing when stack space runs out (similarly to how Owens et al.
[2016] return traces of input/output actions), and I prove
compiler correctness for all programs, also those that re-
quire unbounded stack space. Furthermore, instead of using
step-counting like Young and Owens et al., I follow Daniels-
son [2012] and use the coinductively defined delay monad
(see Section 5) to model the effect of non-termination. See
Section 11 for further discussion of related work.

The main technical contributions of this text are perhaps
definitions of some (hopefully reusable) relations, and associ-
ated combinators, that are used to prove various properties:

• Twoways to relate upper bounds of potentially infinite
lists of natural numbers (Sections 4 and 9).

• A variant of weak bisimilarity for the delay monad that
can be used to quantify the difference in the number
of steps in two computations (Section 10).

In order to make it convenient to use these relations I have
defined them using sized types (Section 2), and I describe a
number of combinators—inmany cases size-preserving—that
can be used to construct inhabitants of these relations.
All the main results and examples in this text have been

formalised using Agda [Agda Team 2018], with the K rule
turned off, and the code is available to inspect (at the time of
writing from http://www.cse.chalmers.se/~nad/). The formal-
isation makes heavy use of sized types. In order to provide
readers with some experience of what it is like to use sized
types in practice, and because Agda is perhaps the only fairly
mature proof assistant with support for sized types, I will
use code that is close to actual Agda code in the text be-
low. (There are some differences between the code presented
below and the actual formalisation, but they are minor.)

2 Sized Types
Agda provides sized types as a mechanism to make it easier
to write corecursive definitions. This section contains a quick
introduction to (one kind of) sized types as implemented in
Agda. Sized types can be used for both induction and coin-
duction, but in this text they are only used for coinduction.

I will introduce the concept by showing how to define the
type of “conatural numbers”—the greatest fixpoint νX .1+X ,
representing natural numbers extended with infinity—along
with some related definitions.

1 Draft from 2018-10-18.

http://www.cse.chalmers.se/~nad/

Nils Anders Danielsson

The conatural numbers can be defined in the following
rather verbose way using sized types:

data Conat (i : Size) : Set where
zero : Conat i
suc : Conat ′ i � Conat i

record Conat ′ (i : Size) : Set where
coinductive
field force : {j : Size< i} � Conat j

The constructor zero stands for the conatural number zero,
and suc n is the successor of n. An intuitive way to think
about this definition is that the primed type Conat ′ is a sus-
pended computation, and when you “force” such a computa-
tion you get a value, which can contain further suspended
computations. (Set is a type of small types. The full code
includes themutual keyword as well, but I have omitted it
in order to save some space.)

Sizes can be thought of as some kind of ordinals, and the
type Conat i can be thought of as a type of possibly not fully
defined conatural numbers of size at least i . The notation
j : Size< i means (roughly) that j is strictly smaller than i . The
type Conat ′ i can be seen as standing for conatural numbers
of size at least j, for any j : Size< i .
There is a special size ∞, and Conat ∞ can be seen as a

type of fully defined conatural numbers of any size. The size
∞ can be thought of as a closure ordinal for which there is
some kind of isomorphism between Conat ∞ and Conat ′ ∞:
we have that i : Size< ∞ holds for every size i (including∞).

Agda also supports a notion of subtyping: values of type
Conat i (“conatural numbers of size at least i”) can be used
where values of type Conat j (“conatural numbers of size at
least j”) are expected, for any j : Size< i .

A basic method for defining values in coinductive types is
to use corecursion. Agda supports corecursion with copat-
terns [Abel et al. 2013]. Here is one way to define “infinity”:

infinity : ∀ {i} � Conat i
infinity = suc infinity′

infinity′ : ∀ {i} � Conat ′ i
infinity′ .force = infinity

The code above states that infinity is the successor of infinity′.
Agda treats infinity′ as a value that is only unfolded if the
force projection is applied to it, in which case the result is
infinity (which can be unfolded further). A more compact
notation with an anonymous copattern is also available:

infinity = suc λ { .force � infinity }

Notation like ∀ {i} � . . . means that the argument i is an
implicit argument. Implicit arguments do not need to be
given explicitly if Agda manages to infer them. However, it
is possible to give a fully explicit definition of infinity:

infinity {i} = suc λ { .force {j} � infinity {j} }

There is no way to match on a size, sizes are only used
to give information to the termination checker. The termi-
nation checker accepts the last definition of infinity above

because, for every cycle in the call graph, there is a strict
decrease in the size (if we ignore∞), and the strictly smaller
size (j : Size< i) is associated in a certain way to a copattern
corresponding to a field (force) of the coinductive record type
Conat ′. If ∞ is ignored, then one can see infinity as being
defined by some kind of transfinite recursion.

Note that the current, experimental Agda implementation
of sized types is buggy. The fact that ∞ : Size< ∞ has led to
problems, and a slightly different design has been discussed.
I would be surprised if any bugs in Agda invalidated the
main ideas presented below, but readers are of course free
to be more sceptical.
The approach to sized types presented here is based on

deflationary iteration [Abel 2012]. Abel and Pientka [2016]
present a normalisation proof for this approach to sized
types, but for a language without dependent types (and with-
out ∞ : Size< ∞). Sacchini [2015] studies a language with
dependent types, and sketches a normalisation proof, but his
language is designed somewhat differently from Agda.

As an example of a coinductively defined relation, consider
the following definition of “less than or equals”:

data [_]_≤_ (i : Size) : (m n : Conat ∞) � Set where
zero : ∀ {n} � [i] zero ≤ n

suc : ∀ {m n} �
[i] m .force ≤′ n .force � [i] suc m ≤ suc n

record [_]_≤′_ (i : Size) (m n : Conat ∞) : Set where
coinductive
field force : {j : Size< i} � [j] m ≤ n

Note that Agda allows constructors to be overloaded. This
definition states that the number zero is less than or equal to
any conatural number, and that suc preserves the ordering
relation (in a coinductive sense). Note also that the “primed”
variant of the relation is defined in the same way as the
primed variant of the conatural numbers. From now on most
definitions of primed record types are omitted; all the omitted
definitions have the same form.
For technical reasons Agda’s equality type is not always

appropriate to use with coinductive types. For the conatural
numbers it often makes more sense to use the following
notion of bisimilarity:

data [_]_∼N_ (i : Size) : (m n : Conat ∞) � Set where
zero : [i] zero ∼N zero
suc : [i] m .force ∼N

′ n .force � [i] suc m ∼N suc n

(Here and below I sometimes omit argument declarations,
in this case for m and n, from type signatures.)

3 A Very Simple Language
Let us begin by studying a very basic programming language,
where programs consist of potentially infinite lists of instruc-
tions, and there are only two instructions, alloc and dealloc:

2

Total Definitional Interpreters for Time and Space Complexity

data Stmt : Set where
alloc dealloc : Stmt

Program : Size � Set
Program i = Colist Stmt i

Potentially infinite lists, or colists, are defined coinductively
in the following way:

data Colist (A : Set) (i : Size) : Set where
[] : Colist A i

:: : A � Colist ′ A i � Colist A i

The semantics of a program is taken to be a trace of heap
sizes. This makes the definitional interpreter very simple.
The function modify computes the new heap size, given an
instruction and the previous heap size:

modify : Stmt � N � N
modify alloc = suc
modify dealloc = pred

(Here suc is the overloaded successor constructor for the
unary, inductive representation of natural numbers that I use,
and pred is the predecessor function, with pred 0 defined to
be 0.) The interpreter uses this function repeatedly, returning
all the encountered heap sizes, including the initial one:

J_K : ∀ {i} � Program i � N � Colist N i

J p K h = h :: J p K′ h

J_K′ : ∀ {i} � Program i � N � Colist ′ N i

J [] K′ h .force = []
J s :: p K′ h .force = J p .force K (modify s h)

This may not seem like much of an interpreter. However, in
Section 9 below a similar technique is used to instrument
a definitional interpreter for a λ-calculus with information
about stack sizes. The current section and Section 4 introduce
some of the main ideas and definitions that will be used later.
An upper bound predicate for colists can be defined in

the following way (where ⌜_⌝ maps natural numbers to the
corresponding conatural numbers):

[_]_⊑_ : Size � Colist N∞ � Conat ∞ � Set
[i] ms ⊑ n = □ i (λ m � [∞] ⌜ m ⌝ ≤ n) ms

This says that the conatural number n is an upper bound of
ms if every natural number inms is bounded by n;□∞ P xs
means that the predicate P holds for every element in xs:

data □ (i : Size) (P : A � Set) : Colist A∞ � Set where
[] : □ i P []
:: : P x � □′ i P (xs .force) � □ i P (x :: xs)

Below a primed variant of [_]_⊑_, defined using □′ instead
of □, will also be used.
A least upper bound is an upper bound that is bounded

by every upper bound:

LUB : Colist N∞ � Conat ∞ � Set
LUB ns n = [∞] ns ⊑ n ×

(∀ n′ � [∞] ns ⊑ n′ � [∞] n ≤ n′)

Least upper bounds are unique up to bisimilarity:

LUB ns n1 � LUB ns n2 � [i] n1 ∼N n2

This follows from antisymmetry for conatural numbers.
Least upper bounds exist for every colist if and only if

WLPO holds. WLPO is the classically valid “weak limited
principle of omniscience”, a constructive taboo that should
neither be provable nor disprovable in Agda (in the absence
of bugs). See the accompanying code for the formal state-
ment and proof of this property, which was obtained in
collaboration with Andreas Abel and Ulf Norell.
The maximum heap usage of a program that starts with

an empty heap can be defined as follows:

Heap-usage : Program ∞ � Conat ∞ � Set
Heap-usage p n = LUB (J p K 0) n

Because least upper bounds are unique the maximum heap
usage is also unique.

Let us now consider some examples. Here are three loop-
ing programs:

bounded bounded2 unbounded : Program i

bounded = alloc ::′ dealloc :: λ { .force � bounded }

bounded2 = alloc ::′ alloc ::′ dealloc ::′ dealloc ::
λ { .force � bounded2 }

unbounded = alloc :: λ { .force � unbounded }

The first two definitions make use of _::′_, a variant of _::_
with an unprimed second argument, in order to avoid some
clutter:

::′ : A � Colist A i � Colist A i

x ::′ xs = x :: λ { .force � xs }

The three programs above are all non-terminating, in the
sense that their traces are infinitely long. However, they
have different space complexities. The programs bounded
and bounded2 run in bounded space, while unbounded re-
quires unbounded space:

Heap-usage bounded ⌜ 1 ⌝
Heap-usage bounded2 ⌜ 2 ⌝
Heap-usage unbounded infinity

The first two statements are easy to prove. For the last one I
made use of the following lemma:

(∀ n � ¬ [∞] J p K 0 ⊑ ⌜ n ⌝) � Heap-usage p infinity

(The negation of A is the type of functions from A to the
empty type.) If no natural number is an upper bound of the
heap usage ofp, then themaximum heap usage ofp is infinity.
This lemma can be proved by using the following lemma:

(∀ n � ¬ [∞] ms ⊑ ⌜ n ⌝) � [∞] ms ⊑ m �
[∞] m ∼N infinity

If no natural number is an upper bound of ms, but the conat-
ural number m is, then m is bisimilar to infinity.

3

Nils Anders Danielsson

4 An Optimiser
In this section an optimiser is defined for the simple alloca-
tion language, and it is proved that this optimiser works as
it should. The point of this exercise is to introduce a relation
that will be used to prove compiler correctness in Section 9.

The optimiser takes subsequences consisting of alloc, alloc
and dealloc, and replaces them with alloc:

opt : ∀ {i} � Program ∞ � Program i

opt [] = []
opt (dealloc :: p) = dealloc :: λ { .force � opt (p .force) }
opt {i} (alloc :: p) = opt1 (p .force)
module Opt where
default : Program i

default = alloc :: λ { .force � opt (p .force) }

opt2 : Program ∞ � Program i

opt2 (dealloc :: p′′) = alloc ::
λ { .force � opt (p′′ .force) }

opt2 _ = default

opt1 : Program ∞ � Program i

opt1 (alloc :: p′) = opt2 (p′ .force)
opt1 _ = default

The named where clause makes it possible to refer to the
local definitions in the proof below. For instance, the name
Opt.opt2 refers to the local definition opt2. Note thatOpt.opt2
takes two extra arguments, one implicit and one explicit,
corresponding to the bound variables i and p from the left-
hand side opt {i} (alloc :: p).
One might think that it would be better to replace subse-

quences consisting of alloc and dealloc with nothing, but if
such an optimiser could be implemented, then it would not
produce any output at all (not even []) for bounded.
The optimiser improves the space complexity of at least

one program, because opt bounded2 has the same semantics
(up to bisimilarity) as bounded:

[i] J opt bounded2 K n ∼L J bounded K n

Here [∞] ms ∼L ns means that the colists ms and ns are
bisimilar. Bisimilarity for colists is defined analogously to
bisimilarity for conatural numbers.
It remains to prove that the maximum heap usage of an

optimised program is at most as high as that of the original
program (assuming that these maximums exist):

Heap-usage (opt p) m � Heap-usage p n � [i] m ≤ n

Proving this directly using corecursion might be tricky. In-
stead I will make use of the following relation, which states
that every upper bound of the second colist is also an upper
bound of the first:

[_]_≲_ : Size � Colist N∞ � Colist N∞ � Set
[i] ms ≲ ns = ∀ {n} � [∞] ns ⊑ n � [i] ms ⊑ n

Read [∞] ms ≲ ns as “ms is bounded by ns”. If ms has the
least upper bound m, and ns has the least upper bound n,
then ms is bounded by ns if and only if m is bounded by n:

LUB ms m � LUB ns n � [∞] ms ≲ ns ⇔ [∞] m ≤ n

Thus the optimiser correctness property given above follows
from the following statement:

[i] J opt p K h ≲ J p K h

I have defined four combinators which can be used to
prove that one colist is bounded by another (I give their types
but no names here; the implementations are straightforward
and omitted):

[i] [] ≲ ns
[i] ms ≲ ns .force � [i] ms ≲ n :: ns
Bounded m ns � [i] ms .force ≲′ ns � [i] m :: ms ≲ ns
[i] ms .force ≲′ ns .force � [i] m :: ms ≲ m :: ns

Here Bounded m ns means thatm is either less than or equal
to some element in ns, or equal to zero. The last combinator
is implemented using the previous two.
The last two combinators take a primed variant of the

relation as an argument:

[_]_≲′_ : Size � Colist N∞ � Colist N∞ � Set
[i] ms ≲′ ns = ∀ {n} � [∞] ns ⊑ n � [i] ms ⊑′ n

However, the second combinator takes the unprimed variant
of the relation as an argument instead. This means that, while
the second combinator can be used in corecursive proofs, it
does not introduce a size change, whereas the others do.
If the second combinator had taken the primed variant

of the relation as an argument instead, then one could have
proved that any colist was bounded by any infinite colist by
using this combinator repeatedly in a corecursive proof. This
implies that the type of such a combinator is contradictory:

¬ (∀ {i ms ns n} �
[i] ms ≲′ ns .force � [i] ms ≲ n :: ns)

The “bounded by” relation is a preorder. However, the
transitivity proof is only size-preserving in the first argu-
ment:

[i] ms ≲ ns � [∞] ns ≲ os � [i] ms ≲ os

One can derive a contradiction from the assumption that the
transitivity proof is size-preserving in the other argument
(see the accompanying code for details):

¬ (∀ {i ms ns os} �
[∞] ms ≲ ns � [i] ns ≲ os � [i] ms ≲ os)

This means, roughly speaking, that one can only use corecur-
sive calls in the first argument of transitivity. As aworkaround
one can sometimes use the following variant of transitivity,
which takes a bisimilarity proof as the first argument:

[i] ms ∼L ns � [i] ns ≲ os � [i] ms ≲ os
4

Total Definitional Interpreters for Time and Space Complexity

For more discussion of transitivity proofs that are not size-
preserving, see Danielsson [2018].
Let me now show how I finished the correctness proof

([i] J opt p K h ≲ J p K h). The proof is corecursive, based on
the call structure of the optimiser, and uses the combinators
discussed above. The most interesting case is perhaps the
one for the first clause of Opt.opt2. I focus on that one. The
goal is to prove the following statement (in the presence of
some assumptions that are not needed):

[i] J Opt.opt2 p (dealloc :: p′′) K h ≲

h ::′ 1 + h ::′ J dealloc :: p′′ K (2 + h)

The proof proceeds in the following way:

J Opt.opt2 p (dealloc :: p′′) K h ∼

h ::′ J opt (p′′ .force) K (1 + h) ≲

h ::′ J p′′ .force K (1 + h) ≲

h ::′ 1 + h ::′ 2 + h ::′ J p′′ .force K (1 + h) ∼

h ::′ 1 + h ::′ J dealloc :: p′′ K (2 + h)

The first and last steps basically amount to unfolding of
definitions. The second step uses the last proof combina-
tor mentioned above (which—importantly—has a primed
argument), followed by a corecursive call to the top-level
correctness proof. The third step uses three applications of
the proof combinators mentioned above (first the last one,
and then two applications of the second one), followed by a
use of reflexivity.
The formal proof in the accompanying source code is

written using equational reasoning combinators (based on
an idea due to Norell [2007]) that allow it to be formatted like
the chain of reasoning steps above, but with an explanation
inserted for every step.

5 The Delay Monad
This section contains a brief presentation of the delay monad
[Capretta 2005], which is used to define an interpreter in
Section 6. The delay monad represents computations that
are potentially non-terminating:

data Delay (A : Set) (i : Size) : Set where
now : A � Delay A i

later : Delay′ A i � Delay A i

The application now x represents a situation in which a
computation terminates immediately with the value x , and
later x stands for a program that may or may not terminate
later. The computation never represents non-termination:

never : Delay A i

never = later λ { .force � never }

The delay monad is a monad (the definition is omitted).
The monad laws can be proved up to strong bisimilarity
([_]_∼D_), which can be defined analogously to bisimilarity
for conatural numbers.

In many cases strong bisimilarity is too strong, because it
only relates terminating computations if they terminate in
the same number of steps (later constructors). An alternative
is to use weak bisimilarity, which relates any computations
that terminate with the same value, and can be defined in the
following way [Danielsson and Altenkirch 2010; Danielsson
2018]:

data [_]_≈D_ (i : Size) : (x y : Delay A∞) � Set where
now : [i] now x ≈D now x

later : [i] x .force ≈D′ y .force �
[i] later x ≈D later y

later l : [i] x .force ≈D y � [i] later x ≈D y

laterr : [i] x ≈D y .force � [i] x ≈D later y

Note that the definition above uses a mixture of induction
and coinduction: the later constructor is “coinductive”, be-
cause it takes a primed argument, whereas later l and laterr

are “inductive”, because they take unprimed arguments. The
definition should be read as an inductive definition nested
inside a coinductive one.

6 A Simple Lambda Calculus
The language treated in Sections 3–4 was very minimal. Let
us now switch attention to a somewhat more interesting
language, based on the one used in Leroy and Grall’s study
of coinductive big-step semantics [2009]. Danielsson [2012]
later used the same language to study the use of the delay
monad to define total definitional interpreters; he used a well-
scoped representation, and I take the same approach here.
I have replaced the infinite set of uninterpreted constants
used in those previous works with booleans, and added calls
to unary, named definitions.

The syntax is defined in the following way:

data Tm (n : N) : Set where
var : Fin n � Tm n

lam : Tm (suc n) � Tm n

· : Tm n � Tm n � Tm n

call : Name � Tm n � Tm n

con : Bool � Tm n

if : Tm n � Tm n � Tm n � Tm n

A well-scoped representation is used: the term data type
is parametrised by an upper bound on the number of free
variables, and uses de Bruijn indices. The term var x is a
variable; Fin n stands for natural numbers strictly less than
n. The term lam t stands for a lambda abstraction, and t1 · t2
is an application. The term call f t is a call to the named,
unary function f : I assume that a type of names, Name, is
given. Finally we have con b, a literal boolean, and if t1 t2 t3,
which stands for “if t1 then t2 else t3”.

The interpreter uses closures (following Leroy and Grall).
Environments and values are defined in the following way:

5

Nils Anders Danielsson

Env : N � Set
Env n = Vec Value n

data Value : Set where
lam : Tm (suc n) � Env n � Value
con : Bool � Value

A value of type Env n is a list of values of length n. The
value lam t ρ is a closure, a combination of a term with at
most 1 + n free variables, and an environment containing
values for n of those variables. Boolean literals are turned
into values by the constructor con.

I define a total, definitional interpreter for the syntax above
by using the delay monad, following Danielsson [2012] (who
used the term “partiality monad” for what is now commonly
called the delay monad). However, unlike Danielsson I use
sized types, which makes the definition a little easier.
The interpreter can both crash and fail to terminate, so

the delay monad is combined with the maybe monad trans-
former (Maybe A has two constructors, nothing : Maybe A
and just : A � Maybe A):

DelayC : Set � Size � Set
DelayC A i = Delay (Maybe A) i

Here C stands for “crash”. In this section return and do no-
tation refer to this monad. An immediate crash—as opposed
to one that happens later—is defined in the following way
(note that crash is not weakly bisimilar to never):

crash : DelayC A i

crash = now nothing

The interpreter is parametrised by a function mapping
names to terms with at most one free variable, def : Name �
Tm 1. The interpreter is defined in a “big-step” way using
three mutually (co)recursive functions. The first one tries
to apply one value to another. If the first value is a boolean
literal this leads to a crash. In the case of a closure the in-
terpreter proceeds with the evaluation of the body of the
closure in the closure’s environment, extended with the sec-
ond value:

• : Value � Value � DelayC Value i
lam t1 ρ • v2 = later λ { .force � J t1 K (v2 :: ρ) }
con _ • _ = crash

The main function interprets a term in an environment of
matching size:

J_K : Tm n � Env n � DelayC Value i
J var x K ρ = return (index x ρ)

J lam t K ρ = return (lam t ρ)
J t1 · t2 K ρ = do v1 � J t1 K ρ

v2 � J t2 K ρ
v1 • v2

J call f t K ρ = do v � J t K ρ
lam (def f) [] • v

J con b K ρ = return (con b)
J if t1 t2 t3 K ρ = do v1 � J t1 K ρ

Jif K v1 t2 t3 ρ

The value of a variable is the corresponding entry in the en-
vironment, and the value of a lambda abstraction is a closure.
Applications are interpreted by first interpreting the func-
tion, then (if the first computation terminates with a value)
the argument, and finally (if also the second computation
terminates with a value) using _•_ to apply the first value to
the second. Note that this is a call-by-value semantics. Calls
to named functions are evaluated similarly to applications.
Boolean literals are returned directly. Conditionals are inter-
preted by first interpreting the scrutinee, and then letting
the auxiliary function Jif K determine how to proceed:

Jif K : Value � Tm n � Tm n � Env n � DelayC Value i
Jif K (lam _ _) _ _ _ = crash
Jif K (con true) t2 t3 ρ = J t2 K ρ
Jif K (con false) t2 t3 ρ = J t3 K ρ

The definitions above are total. They are defined using an
outer corecursion and an inner recursion on the structure of
terms. A decrease of the size argument is introduced in _•_,
and otherwise the size argument is kept unchanged.

7 A Virtual Machine with Tail Calls
This section presents a virtual machine, or VM, and Section 8
a compiler from the terms of the previous section to this VM.
The virtual machine is defined corecursively in a “small-

step” way, following Leroy and Grall [2009] and Danielsson
[2012]. Danielsson used the monad of the previous section
(defined without sized types) to define the semantics. Later I
want to analyse the stack usage of compiled programs, so I
use a variant of this monad that allows the virtual machine
to return a trace of all states that it encounters.
The type family underlying the monad is defined in the

following way:

data DelayCT (A B : Set) (i : Size) : Set where
now : B � DelayCT A B i

crash : DelayCT A B i

later : A � DelayCT ′ A B i � DelayCT A B i

tell : A � DelayCT A B i � DelayCT A B i

Here T stands for “trace”. The typeDelayCT AB∞ represents
a class of computations that, in addition to perhaps termi-
nating with a value of type B, also produce traces (colists)
containing values of type A:

trace : DelayCT A B i � Colist A i

trace (now x) = []
trace crash = []
trace (later x m) = x :: λ { .force � trace (m .force) }
trace (tell x m) = x :: λ { .force � trace m }

6

Total Definitional Interpreters for Time and Space Complexity

Note that the later constructor takes a first argument of type
A, which is used when constructing colists. There is also a
tell constructor which is an inductive variant of later.
Traces can be removed from computations:

delayC : DelayCT A B i � DelayC B i

The delayC function removes the first argument from later
constructors, and tell constructors are removed entirely.
DelayCT can be turned into a monad, and strong bisimi-

larity can be defined, in much the same way as for the delay
monad. See the accompanying code for details, including
proofs showing that the monad laws hold up to bisimilarity.

The virtual machine uses the following instruction set:

data Instr (n : N) : Set where
var : Fin n � Instr n
clo : Code (suc n) � Instr n
app ret : Instr n
cal tcl : Name � Instr n
con : Bool � Instr n
bra : Code n � Code n � Instr n

Code : N � Set
Code n = List (Instr n)

This definition is based on Leroy and Grall’s, but well-scoped
(following Danielsson): Instr n represents instructions with
at most n free variables, and Code n stands for lists of arbi-
trary length of instructions of type Instr n. There are also
some changes to support booleans and calls to named func-
tions: the con instruction takes a boolean instead of a natural
number, the new instructions cal and tcl are used for regular
calls and tail calls, respectively, and the new instruction bra
is used for branching.

Environments and values are defined as for the interpreter,
but using Code instead of Tm. The interpreter is stack-based,
with two kinds of stack elements, values and return frames:

data Stack-element : Set where
val : VM-Value � Stack-element
ret : Code n � VM-Env n � Stack-element

A Stack is a list of stack elements. The VM’s state consists
of a piece of code, a stack, and an environment:

data State : Set where
⟨_,_,_⟩ : Code n � Stack � VM-Env n � State

As mentioned above the VM’s semantics is given in a
small-step way. The result of running the VM one step is
either a new state, a final value, or an indication that the VM
has crashed:

data Result : Set where
continue : State � Result
done : VM-Value � Result
crash : Result

The VM’s semantics is parametrised by a function map-
ping names to pieces of code, def : Name � Code 1. The step
function given in Figure 1 is similar to the single-step rela-
tion of a typical small-step semantics. Note that execution
of the cal instruction involves pushing a return frame onto
the stack, but that this is not done when the tcl instruction
is executed. The idea is that there should already be a return
frame on the stack that can be reused.

The semantics is defined by iterating step corecursively:

exec+ : State � DelayCT State VM-Value i
exec+ s = later s λ { .force � exec+ ′ (step s) }

exec+ ′ : Result � DelayCT State VM-Value i
exec+ ′ (continue s) = exec+ s
exec+ ′ (done v) = now v
exec+ ′ crash = crash

Note that the resulting trace contains every encountered
state. A semantics without states can also be obtained:

exec : State � DelayC VM-Value i
exec = delayC ◦ exec+

Furthermore it is possible to construct a trace of all the en-
countered stack sizes:

stack-sizes : State � Colist N i

stack-sizes =
map (λ { ⟨ _ , s , _ ⟩ � length s }) ◦ trace ◦ exec+

8 A Correct Compiler
Let us now see how one can construct a provably correct
compiler from the λ-calculus in Section 6 to the language
of the virtual machine in Section 7. The compiler and its
correctness proof are based on the work by Leroy and Grall
[2009] and Danielsson [2012].

Unlike these previous works I provide support for tail calls.
The compiler takes an argument with information about
whether the compiled term should be treated as if it is in a
tail context. I have based the definition of tail contexts on
the one used by Kelsey et al. [1998].

The main compilation function is defined in the following
way (with In-tail-context equal to Bool). Note the use of a
code continuation:

comp : In-tail-context � Tm n � Code n � Code n
comp _ (var x) c = var x :: c
comp _ (lam t) c = clo (comp-body t) :: c
comp _ (t1 · t2) c = comp false t1

(comp false t2 (app :: c))
comp true (call f t) c = comp false t (tcl f :: c)
comp false (call f t) c = comp false t (cal f :: c)
comp _ (con b) c = con b :: c
comp tc (if t1 t2 t3) c =
comp false t1 (bra (comp tc t2 []) (comp tc t3 []) :: c)

7

Nils Anders Danielsson

step : State � Result
step ⟨ var x :: c , s , ρ ⟩ = continue ⟨ c , val (index x ρ) :: s , ρ ⟩

step ⟨ clo c′ :: c , s , ρ ⟩ = continue ⟨ c , val (lam c′ ρ) :: s , ρ ⟩

step ⟨ app :: c , val v :: val (lam c′ ρ ′) :: s , ρ ⟩ = continue ⟨ c′ , ret c ρ :: s , v :: ρ ′ ⟩
step ⟨ ret :: c , val v :: ret c′ ρ ′ :: s , ρ ⟩ = continue ⟨ c′ , val v :: s , ρ ′ ⟩

step ⟨ cal f :: c , val v :: s , ρ ⟩ = continue ⟨ def f , ret c ρ :: s , v :: [] ⟩
step ⟨ tcl f :: c , val v :: s , ρ ⟩ = continue ⟨ def f , s , v :: [] ⟩
step ⟨ con b :: c , s , ρ ⟩ = continue ⟨ c , val (con b) :: s , ρ ⟩

step ⟨ bra c1 c2 :: c , val (con true) :: s , ρ ⟩ = continue ⟨ c1 ++ c , s , ρ ⟩

step ⟨ bra c1 c2 :: c , val (con false) :: s , ρ ⟩ = continue ⟨ c2 ++ c , s , ρ ⟩

step ⟨ [] , val v :: [] , [] ⟩ = done v
step _ = crash

Figure 1. The step function used to define the semantics of the virtual machine.

comp-body : Tm (suc n) � Code (suc n)
comp-body t = comp true t (ret :: [])

The body of an abstraction is compiled in a tail context, but
the two arguments to application, the single argument to
a call, and the scrutinee of an if-then-else expression are
not. The two branches of if-then-else are compiled in a tail
context if the if-then-else expression as a whole is.

Just like the interpreter the compiler is parametrised by a
function mapping names to terms (def : Name � Tm 1). The
following function compiles such definitions:

comp-name : Name � Code 1
comp-name f = comp-body (def f)

All compiler correctness statements below are given in set-
tings in which the interpreter and compiler are instantiated
with the same function def , and the function comp-name
is used to provide an implementation of def for the virtual
machine. For the purpose of stating compiler correctness I
also define functions that compile environments and values
(see the accompanying code for details):

comp-env : Env n � VM-Env n
comp-val : Value � VM-Value

The following function is the top-level entry point to the
compiler:

comp0 : Tm 0 � Code 0
comp0 t = comp false t []

The top-level expression is not compiled in a tail context,
because when the VM starts the stack is empty, so there is
no return frame that can be reused on the stack.

Now compiler correctness can be stated (followingDaniels-
son [2012]):

[∞] exec ⟨ comp0 t , [] , [] ⟩ ≈D
J t K [] >>= λ v � return (comp-val v)

This says that the result of running the virtual machine with
an initial state containing the code obtained by compiling
the program t, an empty stack, and an empty environment,
is weakly bisimilar to the semantics of t according to the
interpreter, provided that if the interpreter produces a value,
then this value is compiled before it is returned. Note that
this correctness statement applies to programs that terminate
with a value, programs that crash, and programs that fail to
terminate.

The correctness proof is rather similar to the one given by
Danielsson; use of sized types makes the proof a little easier.
Here is the type of the key lemma:

Stack-OK i k tc s �
Cont-OK i ⟨ c , s , comp-env ρ ⟩ k �
[i] exec ⟨ comp tc t c , s , comp-env ρ ⟩ ≈D J t K ρ >>= k

Note the two assumptions. The second assumption relates
the code continuation c, the stack s and the environment ρ
to the monadic continuation k:

Cont-OK : Size � State �
(Value � DelayC VM-Value ∞) � Set

Cont-OK i ⟨ c , s , ρ ⟩ k =
∀ v � [i] exec ⟨ c , val (comp-val v) :: s , ρ ⟩ ≈D k v

The first assumption is targeted at tail-calls:

data Stack-OK
(i : Size) (k : Value � DelayC VM-Value ∞) :
In-tail-context � Stack � Set where

unrestricted : Stack-OK i k false s
restricted : Cont-OK i ⟨ c , s , ρ ⟩ k �

Stack-OK i k true (ret c ρ :: s)

For programs compiled in a tail context the stack has to start
with a return frame, and it has to satisfy a certain assumption
that also involves the monadic continuation. The Stack-OK
predicate is perhaps the main addition to Danielsson’s cor-
rectness proof.

8

Total Definitional Interpreters for Time and Space Complexity

9 An Instrumented Interpreter
Let me now show an instrumented interpreter that makes
it possible to reason about a program’s stack usage without
reasoning directly about compiled programs and the virtual
machine. I want to emphasise that it was not immediately
obvious to me how to construct this instrumented semantics,
it was developed together with its correctness proof.

The interpreter produces a trace of size change functions
that is then turned into a trace of sizes. Here is the instru-
mented application function (S stands for space):

[_, _]_•S_ : (N � N) � (N � N) � Value � Value �
DelayCT (N � N) Value i

[f1 , f2] lam t1 ρ •S v2 = later f1 λ { .force � do
v � J t1 KS (v2 :: ρ) true
tell f2 (return v) }

[_ , _] con _ •S _ = crash

The function is used in different ways, so it is parametrised
by two size change functions. One is used before the body
of the closure (if any) is evaluated, and one is used after the
body has been evaluated successfully (if ever).
The main function is defined in the following way. Note

that tail context information is passed around:

J_KS : Tm n � Env n � In-tail-context �
DelayCT (N � N) Value i

J var x KS ρ _ = tell suc (return (index x ρ))

J lam t KS ρ _ = tell suc (return (lam t ρ))
J t1 · t2 KS ρ _ = do v1 � J t1 KS ρ false

v2 � J t2 KS ρ false
[pred , pred] v1 •S v2

J call f t KS ρ tc = do v � J t KS ρ false
[δ tc , δ (not tc)]
lam (def f) [] •S v

J con b KS ρ _ = tell suc (return (con b))
J if t1 t2 t3 KS ρ tc = do v1 � J t1 KS ρ false

Jif KS v1 t2 t3 ρ tc

The stack size is increased for variables, abstractions and
literal booleans (which correspond to pushing something
onto the stack). When an application is evaluated the appli-
cation function is used with pred and pred: the stack size is
reduced by one for the app instruction, and by one for the
ret instruction. If a tail call is evaluated, then the stack size
is decreased before the call is made, and when a non-tail call
is evaluated, then the stack size is decreased after the call
has completed successfully (if ever):

δ : In-tail-context � N � N
δ tc = if tc then pred else id

The stack size is also decreased when the scrutinee of an
if-then-else expression has been evaluated successfully to a
boolean literal:

Jif KS : Value � Tm n � Tm n � Env n �
In-tail-context � DelayCT (N � N) Value i

Jif KS (lam _ _) _ _ _ _ = crash
Jif KS (con true) t2 t3 ρ tc = tell pred (J t2 KS ρ tc)
Jif KS (con false) t2 t3 ρ tc = tell pred (J t3 KS ρ tc)

Given a computation yielding a trace of stack size func-
tions, and an initial stack size, it is easy to construct a trace
of stack sizes by starting with the inital value, and then
applying the functions, one after another. This is captured
by the following application of the standard scanl function
(implemented for colists):

numbers : DelayCT (N � N) A i � N � Colist N i

numbers x n = scanl (λ m f � f m) n (trace x)

The stack sizes encountered when evaluating a (closed) pro-
gram can then be defined in the following way:

stack-sizesS : Tm 0 � Colist N i

stack-sizesS t = numbers (J t KS [] false) 0

Note that false is used as the In-tail-context argument, match-
ing the use of false in comp0.

If the traces are removed, then the instrumented semantics
produces computations that are strongly bisimilar to those
produced by the semantics given in Section 6:

[i] delayC (J t KS ρ tc) ∼D J t K ρ

Perhaps more interestingly, if the trace of stack sizes pro-
duced by the instrumented semantics has the least upper
bound i , and the corresponding trace produced by the vir-
tual machine has the least upper bound v, then i and v are
bisimilar:

LUB (stack-sizesS t) i �
LUB (stack-sizes ⟨ comp0 t , [] , [] ⟩) v � [∞] i ∼N v

However, the traces are not necessarily bisimilar (see the
accompanying code for a counterexample). I had a previous
version of the instrumented interpreter for which the traces
were bisimilar, but I decided to simplify the interpreter a little.
In a more complicated setting it might be useful not to couple
the instrumented semantics too closely to the lower-level
semantics.
Instead of proving that the traces are bisimilar I have

proved the following property:

[∞] stack-sizes ⟨ comp0 t , [] , [] ⟩ ≂ stack-sizesS t

The relation used here states that the two colists are bounded
by each other, and is defined using the “bounded by” relation
from Section 4:

[_]_≂_ : Size � Colist N∞ � Colist N∞ � Set
[i] ms ≂ ns = [i] ms ≲ ns × [i] ns ≲ ms

Colists that are related by this relation have the same least
upper bounds (if any):

[∞] ms ≂ ns � LUB ms n ⇔ LUB ns n
9

Nils Anders Danielsson

One approach to proving that two colists are upper bounds
of each other would be to prove that one is an upper bound
of the other, and vice versa, for instance by using some com-
binators from Section 4. As a possibly more direct alterna-
tive I provide some combinators that work directly with the
“bounded by each other” relation, as well as the following
primed variant:

[_]_≂′_ : Size � Colist N∞ � Colist N∞ � Set
[i] ms ≂′ ns = [i] ms ≲′ ns × [i] ns ≲′ ms

I give the combinators’ types but no names here (the imple-
mentations are straightforward and omitted):

Bounded n ms � [i] ms ≂ ns .force � [i] ms ≂n :: ns
Bounded m ns � [i] ms .force ≂ ns � [i] m :: ms ≂ ns
Bounded m (n :: ns) � Bounded n (m :: ms) �
[i] ms .force ≂′ ns .force � [i] m :: ms ≂n :: ns

[i] ms .force ≂′ ns .force � [i] m :: ms ≂m :: ns

The relation is an equivalence relation. Along with a proof
of transitivity I provide two transitivity-like results that pre-
serve the size of one argument:

[∞] ms ≂ ns � [∞] ns ≂ os � [i] ms ≂ os
[∞] ms ∼L ns � [i] ns ≂ os � [i] ms ≂ os
[i] ms ≂ ns � [∞] ns ∼L os � [i] ms ≂ os

Note that working with [_]_≂′_ directly can be a little
awkward, because (as discussed in Section 2) Agda some-
times requires the force projection to be written explicitly in
the code, and [_]_≂′_ is defined in terms of two types with
force fields. To avoid some plumbing a trick can be used:

record [_]_≂′′_
(i : Size) (ms ns : Colist N∞) : Set where

coinductive
field force : {j : Size< i} � [j] ms ≂ ns

This relation contains just a single force field, and it is a drop-
in replacement for [_]_≂′_, in the sense that the relations are
pointwise logically equivalent (in a size-preserving way).
The correctness proof has a similar structure to the cor-

rectness proof given in Section 8. Here is the type of the key
lemma:

Stack-OK i k tc s �
Cont-OK i ⟨ c , s , comp-env ρ ⟩ k �
[i] stack-sizes ⟨ comp tc t c , s , comp-env ρ ⟩ ≂

numbers (J t KS ρ tc >>= k) (length s)

The Cont-OK and Stack-OK predicates are omitted due to
lack of space. For full details of the correctness proof, see the
accompanying code.
Now let us consider some examples. They are only out-

lined briefly. The first example is a program which in more
usual notation may be written as (λx .x x) (λx .x x). It is
straightforward to show that this program is non-terminating,

and that it requires unbounded stack space. The second exam-
ple is f true, with the definition f x = f true. This program
gets compiled into code using a tail call. It is straightforward
to show that this program is non-terminating, and that it
runs in bounded stack space. Details about these examples
can be found in the accompanying code, but I want to note
that the statements regarding stack usage are proved with-
out reasoning directly about the compiler or virtual machine.
Instead the instrumented semantics is used.

10 Time Complexity
Let us now consider how time complexity can be handled
in this setting. An obvious idea is to use the delay monad
to keep track of the number of steps in an execution, with
one later constructor standing for one step. This does not
work in situations where a later constructor is necessary to
establish that a definition is productive, but a corresponding
time step is not wanted. Here I will focus on situations in
which this is not the case.

The virtual machine in Section 7 produces one later con-
structor for each step of the computation, and the interpreter
in Section 6 produces one later constructor for each appli-
cation of a closure to a value. However, the compiler is not
cost-preserving for these cost measures. Consider programs
of the form con true · (· · · (con true · con true) · · ·), with
1 + n _·_ constructors. The result of applying the interpreter
to one of these programs is an immediate crash, without
any later constructors, whereas the corresponding compiled
program takes 3 + n steps to execute on the virtual machine.

To address this issue I have defined another instrumented
interpreter, which is just the regular interpreter from Sec-
tion 6 with some extra “ticks” inserted into the code:

✓_ : DelayC A i � DelayC A i
✓ x = later λ { .force � x }

A tick is just an application of the later constructor, but I
use a special function to highlight the fact that the ticks
are not needed to establish that the definition is productive.
For the main function ticks have been inserted for variables,
abstractions and literals (T stands for time):

J_KT : Tm n � Env n � DelayC Value i
J var x KT ρ = ✓ return (index x ρ)

J lam t KT ρ = ✓ return (lam t ρ)
J t1 · t2 KT ρ = do v1 � J t1 KT ρ

v2 � J t2 KT ρ

v1 •T v2
J call f t KT ρ = do v � J t KT ρ

lam (def f) [] •T v
J con b KT ρ = ✓ return (con b)
J if t1 t2 t3 KT ρ = do v1 � J t1 KT ρ

Jif KT v1 t2 t3 ρ
10

Total Definitional Interpreters for Time and Space Complexity

The application function is unchanged and ticks have been
inserted for the then and else branches of conditionals (the
code is omitted). Again I want to emphasise that it was not im-
mediately obvious to me how to construct the instrumented
semantics, it was developed together with its correctness
proof.
This instrumented interpreter provides a suitable cost

measure, in the sense that the cost of running a compiled
program on the virtual machine is linear in the cost of run-
ning the corresponding source program on the interpreter
(and vice versa):

[∞] steps (J t KT []) ≤ steps (exec ⟨ comp0 t , [] , [] ⟩) ×
[∞] steps (exec ⟨ comp0 t , [] , [] ⟩) ≤

⌜ 1 ⌝ ⊕ ⌜ 2 ⌝ ⊗ steps (J t KT [])

Here the steps function gives the (conatural) number of later
constructors in a computation, and _⊕_ and _⊗_ are addi-
tion and multiplication, respectively, of conatural numbers.
Note that this statement applies to programs that terminate
successfully, programs that crash, and programs that fail to
terminate.

I have proved the compiler correctness result above by us-
ing a variant of weak bisimilarity that I call quantitative weak
bisimilarity. This relation can be used to quantify the differ-
ence in the number of steps in two computations (compare
to the definition of regular weak bisimilarity in Section 5):

data [_|_|_|_|_]_≈D_ (i : Size) (m l mr : Conat ∞) :
(nl nr : Conat ∞) (x y : Delay A∞) � Set where

now : [i | m l | mr | nl | nr] now x ≈D now x

later : [i | m l | mr | nl ⊕ m l | nr ⊕ mr]

x .force ≈D′ y .force �
[i | m l | mr | nl | nr] later x ≈D later y

later l : [i | m l | mr | nl .force | nr] x .force ≈D y �
[i | m l | mr | suc nl | nr] later x ≈D y

laterr : [i | m l | mr | nl | nr .force] x ≈D y .force �
[i | m l | mr | nl | suc nr] x ≈D later y

Note that, when the later l or laterr constructors are used,
one of the “n” indices is incremented, and that when the later
constructor is used each of the “n” indices is decremented by
the corresponding “m” parameter. The following property
provides a characterisation of the relation (and is used in the
compiler correctness proof):

[∞ | m l | mr | nl | nr] x ≈D y ⇔

[∞] x ≈D y ×

[∞] steps x ≤ nl ⊕ (⌜ 1 ⌝ ⊕ m l) ⊗ steps y ×

[∞] steps y ≤ nr ⊕ (⌜ 1 ⌝ ⊕ mr) ⊗ steps x

The relation holds if and only if the two computations are
weakly bisimilar and each of them is bounded by a linear
function of the other (assuming that m l, mr, nl and nr are
constants). Note that this characterisation is not stated as
a size-preserving function (with an arbitrary size i instead

of ∞). The left-to-right direction of this characterisation
can be made size-preserving, but—assuming that Agda is
free of bugs—the right-to-left direction can be made size-
preserving if and only if the carrier type A is uninhabited
(see the accompanying code for a proof).

A form of weakening can be proved for the relation:

[∞] m l ≤ m l ′ � [∞] mr ≤ mr ′ �
[∞] nl ≤ nl ′ � [∞] nr ≤ nr ′ �
[i | m l | mr | nl | nr] x ≈D y �
[i | m l ′ | mr ′ | nl ′ | nr ′] x ≈D y

It is also possible to prove the following three transitivity-
like results:

[i | m | ⌜ 0 ⌝ | n | ⌜ 0 ⌝] x ≈D y � [i] y ∼D z �
[i | m | ⌜ 0 ⌝ | n | ⌜ 0 ⌝] x ≈D z

[i | m l | mr | nl | nr] x ≈D y � [∞] y ∼D z �
[i | m l | mr | nl | nr] x ≈D z

[∞] x ∼D y � [i | m l | mr | nl | nr] y ≈D z �
[i | m l | mr | nl | nr] x ≈D z

Weakening and the first transitivity-like result are used
in the compiler correctness proof. This proof has a structure
which is similar to those of the proofs in Sections 8 and 9.
The key lemma has the following type:

Stack-OK i k δ tc s �
Cont-OK i ⟨ c , s , comp-env ρ ⟩ k δ �
[i | ⌜ 1 ⌝ | ⌜ 0 ⌝ | max ⌜ 1 ⌝ δ | ⌜ 0 ⌝]
exec ⟨ comp tc t c , s , comp-env ρ ⟩ ≈D J t KT ρ >>= k

Here max is the binary maximum function for conatural
numbers, and the Cont-OK and Stack-OK predicates are
again omitted. Theδ parameter corresponds towhat I thought
was the most difficult part of the correctness proof. Note that
there is only one later constructor in the closure case of
•T. This corresponds to (up to) two steps in the virtual
machine: one for app, cal or tcl, and one for the ret instruc-
tion. However, there can be an arbitrary delay between these
two steps—the intermediate computation can even fail to
terminate. The δ parameter was introduced to address this
delay. It is related to the number of pending ret instructions.

11 Related Work
The work of Young [1989, 1988] is closely related to this
work. As was mentioned in the introduction Young defines
interpreters using the approach with fuel, tracks the space
consumption of compiled programs in a source-level inter-
preter which “crashes” if it runs out of stack space, and proves
compiler correctness for programs that terminate without
running out of stack space. The main methodological differ-
ences between this work and the work of Young are perhaps
the following ones:

• I use the delay monad instead of fuel.
11

Nils Anders Danielsson

• I return a trace of stack sizes, instead of crashing when
stack space runs out.

• I prove compiler correctness for all programs, not only
those that terminate successfully.

• I treat a seemingly useful notion of “time”. Young
writes that his fuel counter “bears a rather complicated
and unintuitive relation to the number of ‘steps’ exe-
cuted” [1989]. His compiler correctness result implies
that, if the source program terminates successfully in n
steps, then the target program terminates successfully
in a number of steps that is a function of n as well as
some other arguments, including the current execution
environment. The code listing for this function spans
more than two pages [Young 1988]. Young defined this
function because the logic he used (the Boyer-Moore
logic) does not support existential quantifiers.

I want to note that Young treats languages that are much
more complicated than the ones treated here.
The CerCo project [Amadio et al. 2014] included the de-

velopment of an optimising compiler from a subset of C to
machine code, that was partly verified (I found a number of
axioms in the source code). I think the project used small-
step definitional interpreters (one or more fuel-based, and
one or more that produce coinductive resumptions) to give
the semantics of languages. It was argued (roughly) that, in
a setting where the aim is to establish upper bounds on (non-
asymptotic) worst-case execution times, uniform cost models
for high-level source code may not be sufficiently precise,
because one piece of source code can have different per-
formance characteristics depending on how it is used. This
project took a different approach: the compiler produced a
source program annotated with cost information (processor
cycles and stack space usage). Note that the instrumented
interpreter given in Section 9 does not provide a cost model
that is uniform in this sense, because the stack space usage
for a call depends on whether or not it is compiled to a tail
call. However, I do not claim that the approach I have taken
scales to precise analysis of optimised machine code. Perhaps
it could be used for reasoning about asymptotic time and/or
space complexity.
I am not aware of any other mechanically checked com-

piler correctness result involving resource guarantees for
languages defined using total definitional interpreters. The
CakeML project (a verified compiler for a subset of Standard
ML) uses definitional interpreters [Owens et al. 2016], but
as far as I know it does not treat time or space complexity.
Owens et al. [2016] model input and output by returning a
trace of input/output actions. This is similar to the use of a
trace of stack sizes in this work. A difference is that Owens
et al. use the approach with fuel, so a single run of their
interpreter can only produce a finite trace. They handle this
by taking the least upper bound of a chain of finite traces (or-
dered by a prefix relation). When the approach described in

this work is used there is no need to use least upper bounds
in this way (as opposed to the way described in Section 3
and later), because potentially infinite traces are produced
directly by the interpreter.

There are mechanically checked compiler correctness re-
sults involving resource guarantees for languages defined
using something other than total definitional interpreters.
Blazy et al. [2014] have extended the C compiler CompCert
[Leroy 2009] with (formally verified) loop bound estimation.
The semantics used are small-step, and the guarantees are
given for terminating programs. Carbonneaux et al. [2014a]
have developed Quantitative CompCert, a variant of Comp-
Cert. Quantitative CompCert gives guarantees about stack
space usage that hold also in the presence of non-termination,
and comes with mechanically checked proofs. The source
and target languages are specified using small-step seman-
tics, and the target language has a finite stack. Carbonneaux
et al. [2014b] also discuss tail calls.
Ancona et al. [2017] expressed some scepticism towards

how well definitional interpreters capture certain properties
of non-terminating programs, and gave a concrete example:
“For instance, if a program consists of an infinite loop that
allocates new heap space at each step without releasing it,
one would like to conclude that it will eventually crash even
though a definitional interpreter returns timeout for all possi-
ble values of the step counter.” The development in Section 3
can be seen as evidence that definitional interpreters (at least
those using the delay monad rather than step counters) can
be used to state and prove this kind of property.

12 Conclusions
I have shown one way in which time and space complex-
ity can be handled when the semantics of a programming
language is defined using a total definitional interpreter im-
plemented using the delay monad. I have also presented
some techniques that can be used to work with the resulting
semantics. I want to emphasise that the presented approach
works for non-terminating programs.

I have only treated toy examples in this text, but I hope
that the text provides guidance to others who want to try
the same approach.

Acknowledgements
I would like to thank Andreas Abel, Robin Adams, Thorsten
Altenkirch, Davide Ancona, Francesco Dagnino, Ulf Norell,
Andrea Vezzosi, Elena Zucca and some anonymous reviewers
for useful feedback. This work has been supported by a grant
from the Swedish Research Council (621-2013-4879).

References
Andreas Abel. 2012. Type-Based Termination, Inflationary Fixed-Points,

and Mixed Inductive-Coinductive Types. In Proceedings 8th Workshop on
Fixed Points in Computer Science. https://doi.org/10.4204/EPTCS.77.1

12

https://doi.org/10.4204/EPTCS.77.1

Total Definitional Interpreters for Time and Space Complexity

Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion with
copatterns and sized types. Journal of Functional Programming (2016).
https://doi.org/10.1017/S0956796816000022

Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.
2013. Copatterns: Programming Infinite Structures by Observations.
In POPL ’13, Proceedings of 40th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. https://doi.org/10.1145/
2429069.2429075

The Agda Team. 2018. The Agda Wiki. Retrieved 2018-07-11 from http:
//wiki.portal.chalmers.se/agda/

Roberto M. Amadio, Nicolas Ayache, Francois Bobot, Jaap P. Boender, Brian
Campbell, Ilias Garnier, Antoine Madet, James McKinna, Dominic P.
Mulligan, Mauro Piccolo, Randy Pollack, Yann Régis-Gianas, and Claudio
Sacerdoti Coen. 2014. Certified Complexity (CerCo). In Foundational
and Practical Aspects of Resource Analysis, Third International Workshop,
FOPARA 2013. https://doi.org/10.1007/978-3-319-12466-7_1

Nada Amin and Tiark Rompf. 2017. Type Soundness Proofs with Def-
initional Interpreters. In POPL’17, Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages. https:
//doi.org/10.1145/3009837.3009866

Davide Ancona, Francesco Dagnino, and Elena Zucca. 2017. Reasoning
on Divergent Computations with Coaxioms. Proceedings of the ACM
on Programming Languages 1, OOPSLA (2017). https://doi.org/10.1145/
3133905

Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Krebbers,
and Eelco Visser. 2018. Intrinsically-Typed Definitional Interpreters
for Imperative Languages. Proceedings of the ACM on Programming
Languages 2, POPL (2018). https://doi.org/10.1145/3158104

Nick Benton, Andrew Kennedy, and Carsten Varming. 2009. Some Domain
Theory and Denotational Semantics in Coq. In Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009. https://doi.
org/10.1007/978-3-642-03359-9_10

Sandrine Blazy, André Maroneze, and David Pichardie. 2014. Formal Verifi-
cation of Loop Bound Estimation forWCETAnalysis. In Verified Software:
Theories, Tools, Experiments, 5th International Conference, VSTTE 2013.
https://doi.org/10.1007/978-3-642-54108-7_15

Robert S. Boyer and J Strother Moore. 1997. Mechanized Formal Reasoning
about Programs and Computing Machines. In Automated Reasoning and
Its Applications, Essays in Honor of Larry Wos. The MIT Press.

Venanzio Capretta. 2005. General Recursion via Coinductive Types. Logical
Methods in Computer Science (2005). https://doi.org/10.2168/LMCS-1(2:
1)2005

Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong
Shao. 2014a. End-to-End Verification of Stack-Space Bounds for C
Programs. In PLDI’14, Proceedings of the 2014 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. https:
//doi.org/10.1145/2594291.2594301

Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong
Shao. 2014b. End-to-End Verification of Stack-Space Bounds for C Programs.
Technical Report YALEU/DCS/TR-1487. Yale University, Department of
Computer Science.

Nils Anders Danielsson. 2012. Operational Semantics Using the Partiality
Monad. In ICFP’12, Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming. https://doi.org/10.1145/2364527.
2364546

Nils Anders Danielsson. 2018. Up-to Techniques using Sized Types. Pro-
ceedings of the ACM on Programming Languages 2, POPL (2018). https:
//doi.org/10.1145/3158131

Nils Anders Danielsson and Thorsten Altenkirch. 2010. Subtyping, Declara-
tively: An Exercise in Mixed Induction and Coinduction. In Mathemat-
ics of Program Construction, 10th International Conference, MPC 2010.
https://doi.org/10.1007/978-3-642-13321-3_8

Richard Kelsey, William Clinger, and Jonathan Rees (Eds.). 1998. Revised5
Report on the Algorithmic Language Scheme. Higher-Order and Symbolic

Computation (1998). https://doi.org/10.1023/A:1010051815785
Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun.

ACM (2009). https://doi.org/10.1145/1538788.1538814
Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational

semantics. Information and Computation (2009). https://doi.org/10.1016/
j.ic.2007.12.004

Keiko Nakata and Tarmo Uustalu. 2009. Trace-Based Coinductive Op-
erational Semantics for While: Big-step and Small-step, Relational
and Functional Styles. In Theorem Proving in Higher Order Logics,
22nd International Conference, TPHOLs 2009. https://doi.org/10.1007/
978-3-642-03359-9_26

Ulf Norell. 2007. Towards a practical programming language based on depen-
dent type theory. Ph.D. Dissertation. Chalmers University of Technology
and Göteborg University.

Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan.
2016. Functional Big-Step Semantics. In Programming Languages and
Systems, 25th European Symposium on Programming, ESOP 2016. https:
//doi.org/10.1007/978-3-662-49498-1_23

Christine Paulin-Mohring. 2009. A constructive denotational semantics for
Kahn networks in Coq. In From Semantics to Computer Science: Essays in
Honour of Gilles Kahn. Cambridge University Press.

Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2015. A
Model of PCF in Guarded Type Theory. In The 31st Conference on
the Mathematical Foundations of Programming Semantics (MFPS XXXI).
https://doi.org/10.1016/j.entcs.2015.12.020

John C. Reynolds. 1972. Definitional interpreters for higher-order program-
ming languages. In ACM ’72, Proceedings of the ACM annual conference.
https://doi.org/10.1145/800194.805852

Jorge Luis Sacchini. 2015. Well-Founded Sized Types in the Calcu-
lus of (Co)Inductive Constructions. Draft. Retrieved 2018-07-11
from http://web.archive.org/web/20160531152811/http://www.qatar.cmu.
edu:80/~sacchini/well-founded/well-founded.pdf

Jeremy Siek. 2013. Type Safety in Three Easy Lemmas. Blog
post. Retrieved 2018-07-11 from http://siek.blogspot.com/2013/05/
type-safety-in-three-easy-lemmas.html

William D. Young. 1988. A Verified Code Generator for a Subset of Gypsy.
Technical Report 33. Computational Logic Inc. Retrieved 2018-10-13
from http://www.computationallogic.com/reports/files/033.ps

William D. Young. 1989. A Mechanically Verified Code Generator. Journal
of Automated Reasoning (1989). https://doi.org/10.1007/BF00243134

13

https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
https://doi.org/10.1007/978-3-319-12466-7_1
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/3133905
https://doi.org/10.1145/3133905
https://doi.org/10.1145/3158104
https://doi.org/10.1007/978-3-642-03359-9_10
https://doi.org/10.1007/978-3-642-03359-9_10
https://doi.org/10.1007/978-3-642-54108-7_15
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1145/2364527.2364546
https://doi.org/10.1145/2364527.2364546
https://doi.org/10.1145/3158131
https://doi.org/10.1145/3158131
https://doi.org/10.1007/978-3-642-13321-3_8
https://doi.org/10.1023/A:1010051815785
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1007/978-3-642-03359-9_26
https://doi.org/10.1007/978-3-642-03359-9_26
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1145/800194.805852
http://web.archive.org/web/20160531152811/http://www.qatar.cmu.edu:80/~sacchini/well-founded/well-founded.pdf
http://web.archive.org/web/20160531152811/http://www.qatar.cmu.edu:80/~sacchini/well-founded/well-founded.pdf
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
http://www.computationallogic.com/reports/files/033.ps
https://doi.org/10.1007/BF00243134

	Abstract
	1 Introduction
	2 Sized Types
	3 A Very Simple Language
	4 An Optimiser
	5 The Delay Monad
	6 A Simple Lambda Calculus
	7 A Virtual Machine with Tail Calls
	8 A Correct Compiler
	9 An Instrumented Interpreter
	10 Time Complexity
	11 Related Work
	12 Conclusions
	Acknowledgements
	References

