
Draft

Dependent lenses

Nils Anders Danielsson
University of Gothenburg

nad@cse.gu.se

Abstract
Very well-behaved lenses provide a convenient mechanism
for defining setters and getters for nested records (among
other things). However, they do not work very well for de-
pendent records, in which one field’s type can depend on the
value of a previous field.

This paper discusses dependent lenses, a generalisation
of ordinary lenses with better support for dependent records.
It is shown that a certain notion of composition cannot be
defined for such lenses (under certain assumptions), but that
another, different notion of composition can be defined.

Keywords Lenses, Dependent types, Agda

1. Introduction
Very well-behaved lenses (Foster et al. 2005)—in this paper
I only consider the total variant—are used to make programs
that work with nested record structures more elegant. Con-
sider a record type R1 containing a field f1 ∶ R2, where the
record type R2 contains a field f2 ∶ R3, and the record type
R3 contains a boolean field f3:

record R1 ∶ Set where
field f1 ∶ R2

record R2 ∶ Set where
field f2 ∶ R3

record R3 ∶ Set where
field f3 ∶ Bool

(Here Set is a type of small types.) Given a value x ∶ R1, how
do you invert the boolean value contained within it? Manual
code can easily become somewhat awkward:

[Copyright notice will appear here once ’preprint’ option is removed.]

record x { f1 = record (R1.f1 x) { f2 =
record (R2.f2 (R1.f1 x))

{ f3 = not (R3.f3 (R2.f2 (R1.f1 x))) } } }

(The notation R1.f1 x stands for the projection of the field
R1.f1 from the record value x.) Consider also the additional
complication if the field f3 is a finite map from strings to
Bool, and you want to update the boolean that the string
”foo” maps to (if any).

With lenses these updates are easy. Assume that three
lenses are given, r1 corresponding to f1, r2 corresponding to
f2, and r3 corresponding to f3:

r1 ∶ Lens R1 R2
r2 ∶ Lens R2 R3
r3 ∶ Lens R3 Bool

Then one can perform the inversion of the boolean value
contained in x by composing the three lenses:

modify (r3 ∘ r2 ∘ r1) not x

The question addressed in this paper is whether very well-
behaved lenses work equally well for dependent records,
where the types of later fields can depend on the values of
previous fields, like the following type:

record ℚ ∶ Set where
field

dividend ∶ ℤ
divisor ∶ ℕ
non‐zero ∶ ¬ divisor ≡ 0

The answer, in short:
• No matter how the type family of very well-behaved de-
pendent lenses is defined, if it satisfies a certain, natural
property, then it is impossible to define a general compo-
sition operator for these lenses (see Section 5).

• However, one can define a family of types DLens S V of
dependent lenses, where V depends on S, in such a way
that getters and setters, and functions like modify, can be
defined (Section 6).

• Furthermore it is possible to define a notion of composi-
tion that seems to work well in practice (Section 6.4).

1 2016/10/13



These results have been formalised using Agda. This doc-
ument is a literate Agda file, every piece of code—except
for inline code in text paragraphs—has been type-checked.
(I have hidden some pieces of code, and changed the order in
which the code is displayed.) There is also other, supporting
formalisation for several statements mentioned in the text.

The formalisation has been developed with the K rule
turned off. Equality of functions is assumed to be exten-
sional, and I assume that a propositional truncation opera-
tor (The Univalent Foundations Program 2013) is available.
Some statements have been proved under the assumption of
univalence (The Univalent Foundations Program 2013), and
other statements under the assumption of uniqueness of iden-
tity proofs for Set. These two principles are not consistent
with each other, so in the text I point out when I make use of
them. In the formalisation I track their use using types.

2. Non-dependent lenses
Very well-behaved non-dependent lenses from a source type
S to a view type V are often specified to consist of two
functions, a getter and a setter, satisfying three laws. In Agda
we can phrase this as a dependent record:

record Lens (S V ∶ Set) ∶ Set where
field

get ∶ S → V
set ∶ S → V → S
get‐set ∶ ∀ s v → get (set s v) ≡ v
set‐get ∶ ∀ s → set s (get s) ≡ s
set‐set ∶ ∀ s v1 v2 → set (set s v1) v2 ≡ set s v2

The getter provides a view of the source value, and the setter
modifies a source value with a possibly different view. The
get‐set law states that set really updates the view, the set‐get
law states that if you update the view with the original view,
then nothing happens, and the set‐set law states that if you
update the view twice (without intervening changes), then
the first update is ignored.

Lenses defined in this way form a monoid. Defining an
identity lens is easy (the proofs are omitted):

id ∶ {S ∶ Set} → Lens S S
id = record

{ get = λ x → x
; set = λ _ s → s
}

(The notation {S ∶ Set} → … means that S is an implicit
argument, that does not need to be given explicitly if Agda
can infer it.) We can also define composition of lenses:

_∘_ ∶ {S V1 V2 ∶ Set} →
Lens V1 V2 → Lens S V1 → Lens S V2

l1 ∘ l2 = record
{ get = λ s → get l1 (get l2 s)

; set = λ s v2 →
let v1 = set l1 (get l2 s) v2 in
set l2 s v1

}

(Here I write get l1 s rather than Lens.get l1 s. Further down
I also write get s, omitting the lens argument.) One can also
prove that composition is associative and that id is a left and
right unit for composition (even in the absence of the K rule),
but the proofs are omitted here.

3. No first projection lens
Let us now consider whether there can be a non-dependent
lens corresponding to the first projection from a Σ-type (a
pair type where the type of the second component can depend
on the value of the first component).

It is not so hard to see that this is impossible. Consider
the following Σ-type, consisting of a boolean and a proof
requiring this boolean to be true:

Unit ∶ Set
Unit = Σ b ∶ Bool · b ≡ true

There is exactly one value in this type (people familiar with
homotopy type theory may recognise it as a singleton type):

unit ∶ Unit
unit = (true , refl)

all‐values‐equal ∶ (u1 u2 ∶ Unit) → u1 ≡ u2
all‐values‐equal (true , refl) (true , refl) = refl

(Here refl is the equality type’s constructor.)
Assume for a contradiction that a first projection lens

exists for the Unit type:

first ∶ Lens Unit Bool

By using the get‐set law twice and all‐values‐equal once we
get a contradiction:1

true ≡⟨ by (get‐set first) ⟩
get first (set first unit true) ≡⟨ by all‐values‐equal ⟩
get first (set first unit false) ≡⟨ by (get‐set first) ⟩
false ∎

Note that this contradiction could be proved without assum-
ing that get first p is the first projection of the pair p. Further-
more the proof used only one of the lens laws, get‐set.

4. Alternative definitions
Before moving on to dependent lenses, let us consider some
alternative definitions of very well-behaved non-dependent
lenses.
1Here by is a tactic that, given a lemma, tries to prove an equality.

2 2016/10/13



Pierce and Schmitt (2003) note that for very well-behaved
lenses as defined above (but in set theory), satisfying the extra
assumption that the range of the set function is the entire
source set, the source set is in bijective correspondence with
the cartesian product of the view set and some other set. It
has been suggested2 that one can define the type of very well-
behaved lenses as a dependent pair (Σ-type) consisting of a
type and a bijection (denoted with a double arrow below):

Bijection‐lens ∶ Set → Set → Set1
Bijection‐lens S V = Σ R ∶ Set · S ↔ R × V

However, this type is not in general isomorphic to the one de-
fined above: Lens ⊥ ⊥ (where ⊥ is the empty type) is isomor-
phic to the unit type, but Bijection‐lens ⊥ ⊥ is isomorphic to
Set.

Capriotti (2014) has introduced higher lenses (if you do
not understand this definition, do not worry about it, it is not
essential to understand the rest of the text):

Higher‐lens ∶ Set → Set → Set1
Higher‐lens S V =

Σ get ∶ (S → V) ·
Σ P ∶ (∥ V ∥ → Set) ·

(λ v → Σ s · get s ≡ v) ≡ (λ v → P ∣ v ∣)

Here ∥ V ∥ stands for the propositional truncation of V. This
type is isomorphic to the set3 quotient of V with the trivial
relation; the constructor ∣_∣  ∶  V → ∥ V ∥ shows that ∥ V ∥
is inhabited if V is. When the source type is a set the type
of higher lenses is isomorphic to the type of non-dependent
lenses given in Section 2, assuming univalence. (Capriotti
(2014) did not present a complete proof. For a formal proof
developed by Capriotti, Andrea Vezzosi and myself, see this
paper’s accompanying code.)

In the presence of univalence these higher lenses are iso-
morphic to the following definition of “equivalence-lenses”
(found by Andrea Vezzosi and myself), which are similar to
the bijection-lenses mentioned above:

ELens ∶ Set → Set → Set1
ELens S V = Σ R ∶ Set · (S ≃ (R × V)) × (R → ∥ V ∥)

Here A ≃ B is the type of equivalences between the types
A and B. When A and B are sets this concept from homo-
topy type theory is in bijective correspondence with the type
of bijections between A and B. The extra component requir-
ing the view type to be (“merely”) inhabited whenever the
remainder type R is inhabited ensures that, in the presence
of univalence, ELens ⊥ ⊥ is isomorphic to the unit type,
so this type can be seen as a more well-behaved variant of
Bijection‐lens. More generally, still in the presence of uni-
valence, ELens S V is isomorphic to Higher‐lens S V, and, if
2 I do not know who first suggested this.
3A concept from homotopy type theory. A type is a set if and only if it
satisfies the principle of uniqueness of identity proofs, see Section 6.3.

S is a set, to Lens S V. The definition of dependent lenses in
Section 6 will be based on this type.

Finally I present an isomorphic variant ofEquivalence‐lens,
that may provide a somewhat different perspective on the
definition:

Equivalence‐lens′ ∶ Set → Set → Set1
Equivalence‐lens′ S V =

Σ get ∶ (S → V) ·
Σ R ∶ Set ·
Σ remainder ∶ (S → R) ·

Is‐equivalence (λ s → remainder s , get s) ×
Surjective remainder

Here Is‐equivalence f means that f is an equivalence; this
holds if and only if f has a left and right inverse. The type
states that a lens is a getter function, a remainder type, and
a surjective function from the source type to the remainder
type, satisfying the property that the given combination of
the remainder function and the getter is an equivalence.

5. Composition is impossible
Let us now consider dependent lenses. In this section I will
show that, given certain assumptions, it is impossible to de-
fine composition for such lenses.

I assume that the type of dependent lenses has the follow-
ing type signature:

DLens ∶ (S ∶ Set) (V ∶ S → Set) → Set

Note that the view type has been replaced by a family of view
types, dependent on the source type. I also assume that there
is a (dependently typed) getter function:

dget ∶ ∀ {S V} → DLens S V → (s ∶ S) → V s

Finally I assume that non-dependent dependent lenses are not
very different from regular non-dependent lenses, by requir-
ing that there is a retraction (split surjection) from the former
to the latter, relating dget and get in the following way:

to ∶ ∀ {S V} → DLens S (λ _ → V) → Lens S V
from ∶ ∀ {S V} → Lens S V → DLens S (λ _ → V)
to‐from ∶ ∀ {S V} (l ∶ Lens S V) → to (from l) ≡ l
get‐to ∶ ∀ {S V} (l ∶ DLens S (λ _ → V)) (s ∶ S) →

get (to l) s ≡ dget l s

Here is the partial specification of composition that I am
using, parametrised by some source and view types:

record Specification‐of‐composition
(S ∶ Set) (V1 ∶ S → Set)
(V2 ∶ (s ∶ S) → V1 s → Set) ∶ Set where

field
dcomp ∶ (l1 ∶ DLens S V1)

(l2 ∶ ∀ s → DLens (V1 s) (V2 s)) →

3 2016/10/13



DLens S (λ s → V2 s (dget l1 s))
dget‐dcomp ∶ ∀ l1 l2 s → dget (dcomp l1 l2) s ≡

dget (l2 s) (dget l1 s)

The composition operator takes a lens and a family of lenses
to a lens, and the getter for the resulting lens must be express-
ible in terms of the getters for the argument lenses.

I will prove that Specification‐of‐composition is uninhab-
ited when all the type parameters are instantiated with (con-
stant functions returning) Bool:

no‐composition‐operator ∶
¬ Specification‐of‐composition Bool (λ _ → Bool)

(λ _ _ → Bool)

Assume for a contradiction that this instance of the speci-
fication is inhabited, giving us access to the dcomp func-
tion and the dget‐dcomp law. The existence of the retraction
mentioned above ensures that we can define a corresponding
composition operator for non-dependent lenses:

comp ∶ Lens Bool Bool → (Bool → Lens Bool Bool) →
Lens Bool Bool

comp l1 l2 = to (dcomp (from l1) (λ b → from (l2 b)))

A calculation shows that this operator satisfies a law corre-
sponding to dget‐dcomp, see Figure 1.

The comp function will be used together with the follow-
ing family of lenses, that is the identity for true and swap for
false:

id‐or‐swap ∶ Bool → Lens Bool Bool
id‐or‐swap true = id
id‐or‐swap false = swap

Here swap is defined in the following way (proofs omitted):

swap ∶ Lens Bool Bool
swap = record

{ get = not
; set = λ _ v → not v
}

A simple case analysis shows that id‐or‐swap satisfies the
following property:

get‐id‐or‐swap ∶ ∀ b → get (id‐or‐swap b) b ≡ true
get‐id‐or‐swap true = refl
get‐id‐or‐swap false = refl

Now we can use composition to construct the following
strange lens:

strange ∶ Lens Bool Bool
strange = comp id id‐or‐swap

This lens is strange because its getter is constant:

get‐strange ∶ ∀ b → get strange b ≡ true
get‐strange b =

get strange b ≡⟨⟩
get (comp id id‐or‐swap) b ≡⟨ by get‐comp ⟩
get (id‐or‐swap b)

(get id b) ≡⟨⟩
get (id‐or‐swap b) b ≡⟨ by (get‐id‐or‐swap b) ⟩
true ∎

In combination with the get‐set law this leads to a contradic-
tion:

true ≡⟨ by get‐strange ⟩
get strange

(set strange true false) ≡⟨ by (get‐set strange) ⟩
false ∎

Note that the proof above only uses one lens law, get‐set
(just like the proof in Section 3). Dropping the set‐get or
set‐set laws from the definition of non-dependent lenses
would not help.

One can perhaps object that the specification of compo-
sition is too strong: why should the family of lenses l2 be
allowed to inspect its argument? In Section 6.4 a variant of
composition is defined. This notion restricts the family of
lenses by not giving it access to values from the source type,
but only from the remainder type.

6. Dependent lenses
Notwithstanding the negative result in the previous section,
this section contains a definition of dependent lenses. The
definition is based on the equivalence-lenses from Section 4.
These equivalence-lenses contain an equivalence between
the source type S and the cartesian product R × V of the
remainder type R and the view type V, indicating that V is
somehow a part of S.

For dependent lenses the view type is replaced by a family
of types, so one tentative idea may be to replace the cartesian
product with a Σ-type Σ r ∶ R · V r. This does not work, be-
cause V does not depend on R, but on S. However, if V is seen
as a part of S, then it might seem reasonable that it should not
in general depend on “all” of S, but only on the remainder
type, R. The following definition therefore introduces an al-
ternative view family V′ that depends on R, and is restricted
to be a variant of V:

record DLens (S ∶ Set) (V ∶ S → Set) ∶ Set1 where
field

R ∶ Set
V′ ∶ R → Set
equiv ∶ S ≃ (Σ r ∶ R · V′ r)
inhabited ∶ ∀ r → ∥ V′ r ∥

remainder ∶ S → R
remainder s = fst (to equiv s)

4 2016/10/13



get‐comp ∶ ∀ l1 l2 b → get (comp l1 l2) b ≡ get (l2 b) (get l1 b)
get‐comp l1 l2 b =

get (comp l1 l2) b ≡⟨⟩
get (to (dcomp (from l1) (λ b → from (l2 b)))) b ≡⟨ by get‐to ⟩
dget (dcomp (from l1) (λ b → from (l2 b))) b ≡⟨ by dget‐dcomp ⟩
dget (from (l2 b)) (dget (from l1) b) ≡⟨ by get‐to ⟩
get (to (from (l2 b))) (dget (from l1) b) ≡⟨ by get‐to ⟩
get (to (from (l2 b))) (get (to (from l1)) b) ≡⟨ by to‐from ⟩
get (l2 b) (get l1 b) ∎

Figure 1. The get‐comp law. Note that if the explanation has been omitted in an equational reasoning step, as in … ≡⟨⟩ …,
then the two sides are equal by definition.

field
variant ∶ ∀ {s} → V′ (remainder s) ≡ V s

Here to equiv is the forward component of the equivalence.
For every source value s we can compute a remainder value
remainder s, and the last field requires V′ (remainder s) to be
equal to V s.

6.1 Getters and setters
Given a dependent lens we can define a getter and a setter:

get′ ∶ (s ∶ S) → V′ (remainder s)
get′ s = snd (to equiv s)

get ∶ (s ∶ S) → V s
get s = cast variant (get′ s)

set′ ∶ (s ∶ S) → V′ (remainder s) → S
set′ s v′ = from equiv (remainder s , v′)

set ∶ (s ∶ S) → V s → S
set s v = set′ s (cast (sym variant) v)

These definitionsmake use of the cast function to “transport”
a value from one type to another via an equality. The cast
function is in turn defined using subst:

subst ∶ ∀ {a p} {A ∶ Set a} (P ∶ A → Set p) →
∀ {x y ∶ A} → x ≡ y → P x → P y

subst _ refl p = p

cast ∶ {A B ∶ Set} → A ≡ B → A → B
cast = subst id

The last definition also uses symmetry:

sym ∶ ∀ {a} {A ∶ Set a} {x y ∶ A} → x ≡ y → y ≡ x
sym refl = refl

(Some functions above have been given universe-polymorphic
types, because they are used with “large” arguments.)

We can also define a function corresponding to themodify
function used in the introduction:

modify ∶ (s ∶ S) → (V s → V s) → S
modify s f = set s (f (get s))

6.2 Lens laws
It is possible to prove variants of the usual lens laws. The
set‐get law can be established using simple equational rea-
soning, see Figure 2. This proof uses a lemma, cast‐sym‐cast,
which states that if you cast in one direction, and then in the
opposite direction, then you get back what you started with:

cast‐sym‐cast ∶ {A B ∶ Set} (eq ∶ A ≡ B) {x ∶ A} →
cast (sym eq) (cast eq x) ≡ x

cast‐sym‐cast refl = refl

The following variant of cast‐sym‐cast will be used below:

cast‐cast‐sym ∶ {A B ∶ Set} (eq ∶ A ≡ B) {x ∶ B} →
cast eq (cast (sym eq) x) ≡ x

cast‐cast‐sym refl = refl

The other two non-dependent lens laws are not well-
typed in this setting. For instance, get′ (set′ s v′) has type
V′ (remainder (set′ s v′)), not V′ (remainder s). However,
we can get around this problem by observing that set and
set′ do not change the remainder:

remainder‐set′ ∶ ∀ s v′ →
remainder (set′ s v′) ≡ remainder s

remainder‐set′ s v′ =
remainder (set′ s v′) ≡⟨⟩
fst (to equiv (from equiv s′)) ≡⟨ cong fst (to‐from equiv _) ⟩
fst s′ ≡⟨⟩
remainder s ∎
where

5 2016/10/13



set′‐get′ ∶ ∀ s → set′ s (get′ s) ≡ s
set′‐get′ s =

set′ s (get′ s) ≡⟨⟩
from equiv (remainder s , snd (to equiv s)) ≡⟨⟩
from equiv (fst (to equiv s) , snd (to equiv s)) ≡⟨⟩
from equiv (to equiv s) ≡⟨ by (from‐to equiv) ⟩
s ∎

set‐get ∶ ∀ s → set s (get s) ≡ s
set‐get s =

set s (get s) ≡⟨⟩
set′ s (cast (sym variant) (cast variant (get′ s))) ≡⟨ by (cast‐sym‐cast variant) ⟩
set′ s (get′ s) ≡⟨ by set′‐get′ ⟩
s ∎

Figure 2. The set′‐get′ and set‐get laws.

s′ = (remainder s , v′)

remainder‐set ∶ ∀ s v → remainder (set s v) ≡ remainder s
remainder‐set s v =

remainder (set s v) ≡⟨⟩
remainder

(set′ s (cast (sym variant) v)) ≡⟨ remainder‐set′ _ _ ⟩
remainder s ∎

These proofs are not proved using the by tactic, because later
results depend on the structure of the proofs. Instead I have
used the cong lemma, which expresses the fact that every
non-dependent function respects equality:

cong ∶ ∀ {a b} {A ∶ Set a} {B ∶ Set b} →
(f ∶ A → B) {x y ∶ A} → x ≡ y → f x ≡ f y

cong _ refl = refl

The get′‐set′ law can now be stated by using the subst
function to transport from one type to another:

get′‐set′ ∶
∀ s v′ →
subst V′ (remainder‐set′ s v′) (get′ (set′ s v′)) ≡ v′

This statement of the get′‐set′ law can be proved by using
equational reasoning, see Figure 3. The proof makes use of
two general lemmas. The first one relates subst and cong:

subst‐∘ ∶
∀ {a b p} {A ∶ Set a} {B ∶ Set b} {x y ∶ A}

{P ∶ B → Set p} {f ∶ A → B} {p ∶ P (f x)}
(eq ∶ x ≡ y) →
subst (P ∘ f) eq p ≡ subst P (cong f eq) p

subst‐∘ refl = refl

The second one makes it possible to remove an instance of
subst (the name of this lemma is taken from The Univalent
Foundations Program (2013)):

apd ∶ {A ∶ Set} {B ∶ A → Set} {x y ∶ A}
(f ∶ (x ∶ A) → B x) (eq ∶ x ≡ y) →
subst B eq (f x) ≡ f y

apd _ refl = refl

The V‐set lemma states that the view type stays un-
changed when the source parameter is changed using set:

V‐set ∶ ∀ s v → V (set s v) ≡ V s
V‐set s v =

V (set s v) ≡⟨ sym variant ⟩
V′ (remainder (set s v)) ≡⟨ cong V′ (remainder‐set s v) ⟩
V′ (remainder s) ≡⟨ variant ⟩
V s ∎

This lemma can be used to state the get‐set law, see Figure 4.
Here I have relegated some steps of equational reasoning to
an omitted lemma.

The set′‐set′ law can be stated by using remainder‐set′ to
“correct” the type of the second view argument, see Figure 5.
The law is proved by using Σ‐≡, which gives a general way
to prove that two values from a Σ-type are equal:

Σ‐≡ ∶
{A ∶ Set} {B ∶ A → Set} {x y ∶ Σ x ∶ A · B x} →
(eq ∶ fst x ≡ fst y) →
subst B eq (snd x) ≡ snd y →
x ≡ y

Σ‐≡ refl refl = refl

Finally we can state and prove the set‐set law, see Figure 6.
Here I have again relegated some steps of equational reason-
ing to an omitted lemma.

6 2016/10/13



get′‐set′ s v′ =
subst V′ (remainder‐set′ s v′) (get′ (set′ s v′)) ≡⟨⟩
subst V′ (cong fst eq) (get′ (set′ s v′)) ≡⟨ by (subst‐∘ eq) ⟩
subst (V′ ∘ fst) eq (get′ (set′ s v′)) ≡⟨⟩
subst (V′ ∘ fst) eq (snd (to equiv (from equiv s′))) ≡⟨ by (apd snd eq) ⟩
snd s′ ≡⟨⟩
v′ ∎
where
s′ = (remainder s , v′)
eq = to‐from equiv s′

Figure 3. The get′‐set′ law.

get‐set ∶ ∀ s v → cast (V‐set s v) (get (set s v)) ≡ v
get‐set s v =

cast (V‐set s v) (get (set s v)) ≡⟨⟩
cast (V‐set s v) (cast variant (get′ (set s v))) ≡⟨ by lemma ⟩
cast variant (cast (cong V′ (remainder‐set s v)) (get′ (set s v))) ≡⟨ by (subst‐∘ (remainder‐set s v)) ⟩
cast variant (subst V′ (remainder‐set s v) (get′ (set s v))) ≡⟨⟩
cast variant (subst V′ (remainder‐set s v) (get′ (set′ s (cast (sym variant) v)))) ≡⟨ by get′‐set′ ⟩
cast variant (cast (sym variant) v) ≡⟨ by (cast‐cast‐sym variant) ⟩
v ∎

Figure 4. The get‐set law.

set′‐set′ ∶ ∀ s v1′ v2′ → set′ (set′ s v1′) v2′ ≡ set′ s (subst V′ (remainder‐set′ s v1′) v2′)
set′‐set′ s v1′ v2′ =

set′ (set′ s v1′) v2′ ≡⟨⟩
from equiv (remainder (set′ s v1′) , v2′) ≡⟨ by (Σ‐≡ (remainder‐set′ s v1′) refl) ⟩
from equiv (remainder s , subst V′ (remainder‐set′ s v1′) v2′) ≡⟨⟩
set′ s (subst V′ (remainder‐set′ s v1′) v2′) ∎

Figure 5. The set′‐set′ law.

6.3 Relation to non-dependent lenses
The principle of uniqueness of identity proofs (UIP) for a
given type A states that, for any two values of type A, all
equality proofs between those two values are equal:

Uniqueness‐of‐identity‐proofs ∶
∀ {a} → Set a → Set a

Uniqueness‐of‐identity‐proofs A =
{x y ∶ A} → (p q ∶ x ≡ y) → p ≡ q

If we assume that this property holds for Set, the type of small
types, then non-dependent dependent lenses are isomorphic
to equivalence-lenses:

Uniqueness‐of‐identity‐proofs Set →
{S V ∶ Set} →
Σ eq ∶ DLens S (λ _ → V) ≃ ELens S V ·

∀ l s → get l s ≡ eget (to eq l) s

(Here eget is the get function for equivalence-lenses.) Note
that the assumption that Set satisfies UIP is not compatible
with univalence (but it holds in Agda if the K rule is turned
on). I have not managed to determine if non-dependent de-
pendent lenses are isomorphic to equivalence-lenses in the
presence of univalence.

The argument in Section 5 showing that composition is
impossible for dependent lenseswas carried out using regular
lenses, Lens. It was also restricted to dependent lenses living

7 2016/10/13



set‐set ∶ ∀ s v1 v2 → set (set s v1) v2 ≡ set s (cast (V‐set s v1) v2)
set‐set s v1 v2 =

set (set s v1) v2 ≡⟨⟩
set′ (set′ s (cast (sym variant) v1)) (cast (sym variant) v2) ≡⟨ by set′‐set′ ⟩
set′ s (subst V′ (remainder‐set′ s (cast (sym variant) v1))

(cast (sym variant) v2)) ≡⟨⟩
set′ s (subst V′ (remainder‐set s v1) (cast (sym variant) v2)) ≡⟨ by (subst‐∘ (remainder‐set s v1)) ⟩
set′ s (cast (cong V′ (remainder‐set s v1)) (cast (sym variant) v2)) ≡⟨ lemma ⟩
set′ s (cast (sym variant) (cast (V‐set s v1) v2)) ≡⟨⟩
set s (cast (V‐set s v1) v2) ∎

Figure 6. The set‐set law.

in Set, but the dependent lenses defined in this section live
in Set1. However, the argument works also for equivalence-
lenses and larger dependent lenses, even in the absence of
univalence. Thus, in the presence of UIP for Set, the strong
form of composition discussed in Section 5 cannot be defined
for DLens.

It is also possible to show that, in the presence of UIP for
set, the first projection lens cannot always be defined. Let us
assume that UIP holds:

uip ∶ Uniqueness‐of‐identity‐proofs Set
In this case casts between a type and itself can be removed:

drop‐cast ∶ {A ∶ Set} (eq ∶ A ≡ A) (x ∶ A) →
cast eq x ≡ x

drop‐cast eq x =
cast eq x ≡⟨ by uip ⟩
cast refl x ≡⟨⟩
x ∎

Let us now, as in Section 3, assume that there is a first pro-
jection lens for the Unit type:

first ∶ DLens Unit (λ _ → Bool)
We again get a contradiction, see Figure 7. I do not know
if a corresponding result can be proved in the presence of
univalence.

6.4 Composition
If composition cannot be defined, what is the point of de-
pendent lenses? Fortunately it is possible to define a weaker
variant of composition. As mentioned in Section 5 the no-
tion of composition defined here does not allow the family
of lenses to inspect values from the source type, but only
from the remainder type. Composition is defined in Figure 8.
The remainder type combines the two remainder types, and
the variant of the view type family is defined in terms of the
lens family’s variant type families. The equivalence is de-
fined using the argument equivalences, using the following
associativity-like property for Σ-types:

Σ‐assoc ∶
{A ∶ Set} {B ∶ A → Set}
{C ∶ Σ x ∶ A · B x → Set} →
(Σ x ∶ A · Σ y ∶ B x · C (x , y)) ≃
(Σ p ∶ (Σ x ∶ A · B x) · C p)

Finally the inhabitance and variant proofs are defined using
the lens family’s inhabitance and variant proofs.

The following minor variant, in which the lens family
takes an implicit argument instead of an explicit one, will
be used in the examples below:

_⨾_ ∶
{S ∶ Set} {V1 V2 ∶ S → Set} →
(l1 ∶ DLens S V1) →
(∀ {r} →

DLens (V′ l1 r)
(λ v′ → V2 (from (equiv l1) (r , v′)))) →

DLens S V2
l1 ⨾ l2 = dcomp l1 (λ _ → l2)

6.5 Constructing lenses
When constructing a lens one can often avoid having to con-
struct all the fields above, in many cases it suffices to give an
equivalence:

equivalence‐to‐lens ∶
{S R ∶ Set} {V ∶ R → Set}
(eq ∶ S ≃ (Σ r ∶ R · V r)) →
DLens S (λ s → V (fst (to eq s)))

equivalence‐to‐lens {S} {R} {V} eq = record
{ R = Σ r ∶ R · ∥ V r ∥
; V′ = λ r → V (fst r)
; equiv =

S ≃⟨ eq ⟩
(Σ r ∶ R · V r) ≃⟨ Σ‐cong ≃×∥∥ ⟩
(Σ r ∶ R · ∥ V r ∥ × V r) ≃⟨ Σ‐assoc ⟩
(Σ p ∶ (Σ r ∶ R · ∥ V r ∥) · V (fst p)) □

8 2016/10/13



true ≡⟨ by (get‐set first) ⟩
cast (V‐set first unit true) (get first (set first unit true)) ≡⟨ by (drop‐cast (V‐set first unit true)) ⟩
get first (set first unit true) ≡⟨ by all‐values‐equal ⟩
get first (set first unit false) ≡⟨ by (drop‐cast (V‐set first unit false)) ⟩
cast (V‐set first unit false) (get first (set first unit false)) ≡⟨ by (get‐set first) ⟩
false ∎

Figure 7. A contradiction.

dcomp ∶ {S ∶ Set} {V1 V2 ∶ S → Set} →
(l1 ∶ DLens S V1) →
(∀ r → DLens (V′ l1 r) (λ v′ → V2 (from (equiv l1) (r , v′)))) →
DLens S V2

dcomp {S} {V1} {V2} l1 l2 = record
{ R = Σ r1 ∶ R l1 · R (l2 r1)
; V′ = λ p → V′ (l2 (fst p)) (snd p)
; equiv = S ≃⟨ equiv l1 ⟩

(Σ r1 ∶ R l1 · V′ l1 r1) ≃⟨ Σ‐cong (equiv (l2 _)) ⟩
(Σ r1 ∶ R l1 · Σ r2 ∶ R (l2 r1) · V′ (l2 r1) r2) ≃⟨ Σ‐assoc ⟩
(Σ p ∶ (Σ r1 ∶ R l1 · R (l2 r1)) · V′ (l2 (fst p)) (snd p)) □

; inhabited = λ p → inhabited (l2 (fst p)) (snd p)
; variant = λ {s} →

let r1 = fst (to (equiv l1) s) in
V′ (l2 r1) (remainder (l2 r1) (snd (to (equiv l1) s))) ≡⟨ variant (l2 r1) ⟩
V2 (from (equiv l1) (to (equiv l1) s)) ≡⟨ by (from‐to (equiv l1)) ⟩
V2 s ∎

}

Figure 8. Composition for dependent lenses.

; inhabited = snd
; variant = refl
}

The remainder type R and the variant of the view family
V′ are chosen in such a way that it is easy to construct the
inhabited and variant proofs. The equivalence equiv is con-
structed using “equivalence-reasoning”. The first step uses
the supplied equivalence, and the last step uses Σ‐assoc. The
second step uses the fact that Σ-types preserve equivalences
in their second argument (Σ‐cong) and the fact that any type
is equivalent to the cartesian product of its propositional trun-
cation and itself:

≃×∥∥ ∶ {A ∶ Set} → A ≃ (∥ A ∥ × A)

Using equivalence‐to‐lens it is easy to construct an iden-
tity lens:

id ∶ {S ∶ Set} → DLens S (λ _ → S)
id {S} = equivalence‐to‐lens (

S ≃⟨ ⊤‐× ⟩
⊤ × S □)

The proof makes use of the fact that the unit type is a left
identity for the cartesian product (⊤‐×).

6.6 Examples
Consider the following record types (where Fin n is a type
containing n values):

record R1 (n ∶ ℕ) ∶ Set where
field

f ∶ Fin n → Fin n
x ∶ Fin n
lemma ∶ ∀ y → f y ≡ y

record R2 ∶ Set where
field

n ∶ ℕ
r1 ∶ R1 n

9 2016/10/13



We can easily define lenses for the x, and lemma fields (im-
plementation omitted):

x ∶ {n ∶ ℕ} → DLens (R1 n) (λ _ → Fin n)
lemma ∶ {n ∶ ℕ} →

DLens (R1 n) (λ r → ∀ y → R1.f r y ≡ y)

I do not see much point in trying to define a lens for the f
field in isolation: if the function is changed, then the lemma
may have to be modified. However, we can construct a lens
that provides a view of both the function and the lemma:

f ∶ {n ∶ ℕ} →
DLens (R1 n)

(λ _ → Σ f ∶ (Fin n → Fin n) · ∀ y → f y ≡ y)

It is also possible to define a lens for the r1 field of R2:

r1 ∶ DLens R2 (λ r → R1 (R2.n r))

Finally we can compose lenses.

n2 ∶ DLens R2 (λ r → Fin (R2.n r))
n2 = r1 ⨾ x

f2 ∶ DLens R2 (λ r → Σ f ∶ (Fin (R2.n r) → Fin (R2.n r)) ·
∀ y → f y ≡ y)

f2 = r1 ⨾ f

lemma2 ∶ DLens R2 (λ r → ∀ y → R1.f (R2.r1 r) y ≡ y)
lemma2 = r1 ⨾ lemma

Note that, despite the somewhat complicated type of the
composition operator, the composed lenses have reasonable
types.

6.7 Lenses from containers
This section contains a (perhaps not very useful) observation
about the relationship between unary containers and depen-
dent lenses.

A unary container (Abbott et al. 2005) consists of a type
of shapes S and for each shape s a type of positions P s:

record Container ∶ Set1 where
constructor _▹_
field

Shape ∶ Set
Position ∶ Shape → Set

Given such a container one can construct a type constructor:

⟦_⟧ ∶ Container → Set → Set
⟦ C ⟧ A = Σ s ∶ Shape C · (Position C s → A)

The type ⟦ C ⟧ A consists of pairs of a shape and an indexing
function mapping this shape’s positions to values of type A.
Let us name the projections:

shape ∶ {C ∶ Container} {A ∶ Set} →
⟦ C ⟧ A → Shape C

shape = fst

index ∶ {C ∶ Container} {A ∶ Set}
(x ∶ ⟦ C ⟧ A) → Position C (shape x) → A

index = snd

A standard example of a unary container is the list type
family, which can be represented as a lens in the following
way:

List ∶ Container
List = ℕ ▹ Fin

The shape of a list is its length, and a list of length n has
n positions. The following container instead gives rise to
streams:

Stream ∶ Container
Stream = ⊤ ▹ λ _ → ℕ

There is only one shape, and the type of positions for this
shape is the natural numbers. More generally, in a certain
extensional type theory unary containers can represent every
strictly positive simple type in one variable (Abbott et al.
2005).

It may be interesting to note that a unary container imme-
diately gives rise to a dependent lens:

container‐to‐lens ∶
(C ∶ Container) {A ∶ Set} →
DLens (⟦ C ⟧ A) (λ xs → Position C (shape xs) → A)

container‐to‐lens C {A} = equivalence‐to‐lens (
⟦ C ⟧ A ≃⟨⟩
(Σ s ∶ Shape C · (Position C s → A)) □)

The source type is the container type, and the view family
consists of functions from positions to values. The getter
function takes a container object and a matching position,
and returns the value at that position:

container‐get ∶
(C ∶ Container) {A ∶ Set} (xs ∶ ⟦ C ⟧ A) →
Position C (shape xs) → A

container‐get C = get (container‐to‐lens C)

The setter function does not update the value at a given
position, it updates the entire position-to-value function:

container‐set ∶
(C ∶ Container) {A ∶ Set} (xs ∶ ⟦ C ⟧ A) →
(Position C (shape xs) → A) → ⟦ C ⟧ A

container‐set C = set (container‐to‐lens C)

10 2016/10/13



7. Related work
I am not aware of any prior work on lenses with the kind
of dependency described above. Ahman and Uustalu (2014)
describe dependently typed update lenses. Such a lens is de-
fined for a given directed container, consisting of a set 𝑆,
an 𝑆-indexed family of sets 𝑃 , and three operations satis-
fying certain laws, and consists of a set 𝑋 of sources and
a function act ∶ 𝑋 → Σ𝑠 ∶ 𝑆.𝑃 𝑠 → 𝑋 satisfying some
laws. The act function can be decomposed into two func-
tions, 𝑔 ∶ 𝑋 → 𝑆, and 𝑠 ∶ (𝑥 ∶ 𝑋) → 𝑃  (𝑔 𝑥) → 𝑋. This
can be compared to a dependent lens DLens X S, for which
the get function has type (x ∶ X) → S x, and the set function
has type (x ∶ X) → S x → X. Perhaps it would be interesting
to combine dependent lenses and dependently typed update
lenses.

Hofmann et al. (2012) describe symmetric edit lenses, and
discuss a lifting that takes a lens between two “modules”
𝑋 and 𝑌 to a lens between 𝑇 (𝑋) and 𝑇 (𝑌 ), where 𝑇 is
constructed from an arbitrary container of a certain kind.

8. Discussion
I have presented a notion of (very well-behaved) dependent
lenses, proved that a certain form of composition cannot
be defined for such lenses, and provided another form of
composition which does work.

Several questions remain unanswered. In Section 6.3 I
noticed that, in the presence of UIP for the type of small
types, non-dependent lenses are isomorphic to dependent
lenses, and the first projection lens cannot be defined for
all Σ-types. I do not know whether these properties hold in
a setting where UIP is replaced by univalence. Perhaps the
given construction does not work very well in this setting.

Acknowledgements
I would like to thank Paolo Capriotti and Andrea Vezzosi
(who are also mentioned in the text above).

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement n° 247219. It has also received funding
from the Swedish Research Council (621-2013-4879).

References
Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers:

Constructing strictly positive types. Theoretical Computer Sci-
ence, 342:3–27, 2005. doi:10.1016/j.tcs.2005.06.002.

Danel Ahman and Tarmo Uustalu. Coalgebraic update lenses. In
Proceedings of the 30th Conference on the Mathematical Foun-
dations of Programming Semantics (MFPS XXX), volume 308 of
Electronic Notes in Theoretical Computer Science, pages 25–48,
2014. doi:10.1016/j.entcs.2014.10.003.

Paolo Capriotti. Higher lenses. Homotopy Type The-
ory blog post, at the time of writing available at

https://homotopytypetheory.org/2014/04/
29/higher-lenses/, 2014.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bi-
directional tree transformations: A linguistic approach to the
view update problem. In POPL® 2005: The 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages®, pages 233–246, 2005. doi:10.1145/1040305.
1040325.

Martin Hofmann, Benjamin Pierce, andDanielWagner. Edit lenses.
In POPL’12, Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pages 495–508, 2012. doi:10.1145/2103656.2103715.

Benjamin C. Pierce and Alan Schmitt. Lenses and view update
translation. Unpublished, 2003.

The Univalent Foundations Program. Homotopy Type Theory: Uni-
valent Foundations of Mathematics. First edition, 2013.

11 2016/10/13

http://dx.doi.org/10.1016/j.tcs.2005.06.002
http://dx.doi.org/10.1016/j.entcs.2014.10.003
https://homotopytypetheory.org/2014/04/29/higher-lenses/
https://homotopytypetheory.org/2014/04/29/higher-lenses/
http://dx.doi.org/10.1145/1040305.1040325
http://dx.doi.org/10.1145/1040305.1040325
http://dx.doi.org/10.1145/2103656.2103715

	Introduction
	Non-dependent lenses
	No first projection lens
	Alternative definitions
	Composition is impossible
	Dependent lenses
	Getters and setters
	Lens laws
	Relation to non-dependent lenses
	Composition
	Constructing lenses
	Examples
	Lenses from containers

	Related work
	Discussion

