Some theory about nothing

Nils Anders Danielsson

Division meeting, Aspenäs, 2019-09-20

- @0 is used to mark arguments and definitions that should be erased at run-time.
- Agda is supposed to make sure that:
- Things marked as erased are actually erased.
- There is never any data missing at run-time.
- The typing rules are based on work by McBride and Atkey.
- Andreas is working on the implementation.
ok: $\{@ 0 A:$ Set $\} \rightarrow A \rightarrow A$
ok $x=x$
- not-ok : \{@0 A : Set\} \rightarrow @ $\mathrm{A} \rightarrow \mathrm{A}$
-- not-ok x = x
-- Not-ok : @O Bool \rightarrow Set
-- Not-ok true = \top
-- Not-ok false $=\perp$

Erased

A type-level variant of @O:
record Erased (@0 A : Set a) : Set a where constructor [_] field
@0 erased: A
open Erased public

Monad

Erased is a monad:

return : $\{@ 0 A:$ Set $a\} \rightarrow @ 0 A \rightarrow$ Erased A return $x=[x]$

$$
\begin{aligned}
& \gg-A \\
& \{00: \text { Set } a\}\{@ 0 B: \text { Set } b\} \rightarrow \\
& \text { Erased } A \rightarrow(A \rightarrow \text { Erased } B) \rightarrow \text { Erased } B \\
& x \gg f=[\operatorname{erased}(f(\text { erased } x))]
\end{aligned}
$$

An
 application

An application

I have tried to define natural numbers that compute (roughly) like unary natural numbers at compile-time, but like binary natural numbers at run-time.

The underlying representation

Binary natural numbers:

$$
\begin{aligned}
& \text { Bin' }^{\prime} \text { Set } \\
& \text { Bin' }^{\prime} \text { List Bool }
\end{aligned}
$$

The representation of a given natural number is not unique. A split surjection:

$$
\text { to- } \mathbb{N}: \text { Bin' } \rightarrow \mathbb{N}
$$

Indexed binary numbers

Binary natural numbers representing a given natural number:

abstract

$$
\begin{aligned}
& \operatorname{Bin}-[-]: @ 0 \mathbb{N} \rightarrow \text { Set } \\
& \operatorname{Bin}-[n]= \\
& \quad \|\left(\Sigma \operatorname{Bin}^{\prime} \lambda b \rightarrow \text { Erased }(\text { to- } \mathbb{N} b \equiv n)\right) \|
\end{aligned}
$$

- Abstract so the underlying representation can be changed without breaking client code.
- Truncated so that the representation is unique.

Non-indexed binary numbers

Binary natural numbers:

$$
\begin{aligned}
& \operatorname{Bin}: \text { Set } \\
& \operatorname{Bin}=\Sigma(\text { Erased } \mathbb{N}) \lambda n \rightarrow \operatorname{Bin}-[\text { erased } n]
\end{aligned}
$$

Returns the erased index:

$$
\begin{aligned}
& @ 0\left\lfloor _\right\rfloor: \operatorname{Bin} \rightarrow \mathbb{N} \\
& \lfloor[n],-\rfloor=n
\end{aligned}
$$

[]-cong

A key lemma:
[]-cong :
$\{@ 0 A$: Set $a\}\{@ 0 \times y: A\} \rightarrow$
Erased $(x \equiv y) \rightarrow[x] \equiv[y]$

[]-cong

A key lemma:

$$
\begin{aligned}
& \text { []-cong: } \\
& \{@ 0 A: \text { Set } a\}\{@ 0 x y: A\} \rightarrow \\
& \text { Erased }(x \equiv y) \rightarrow[x] \equiv[y]
\end{aligned}
$$

With the K rule and propositional equality:

$$
[]-\text { cong }[\text { refl }]=\text { refl }
$$

[]-cong

A key lemma:

$$
\begin{aligned}
& \text { []-cong : } \\
& \quad\{@ 0 A: \text { Set } a\}\{@ 0 x y: A\} \rightarrow \\
& \text { Erased }(x \equiv y) \rightarrow[x] \equiv[y]
\end{aligned}
$$

With the K rule and propositional equality:

$$
\text { []-cong }[\text { refl }]=\text { refl }
$$

With Cubical Agda and paths:

$$
[]-\operatorname{cong}[e q]=\lambda i \rightarrow[\text { eq } i]
$$

[]-cong

A key lemma:

$$
\begin{aligned}
& \text { []-cong: } \\
& \{@ 0 A: \text { Set } a\}\{@ 0 x y: A\} \rightarrow \\
& \text { Erased }(x \equiv y) \rightarrow[x] \equiv[y]
\end{aligned}
$$

With the K rule and propositional equality:

$$
[]-\text { cong }[\text { refl }]=\text { refl }
$$

With Cubical Agda and paths:

$$
[]-\operatorname{cong}[\text { eq }]=\lambda i \rightarrow[\text { eq } i]
$$

In both cases []-cong is an equivalence that $\operatorname{maps}[\operatorname{refl} x]$ to refl $[x]$.

Non-indexed binary numbers

Recall:

$$
\begin{aligned}
& \text { Bin: Set } \\
& \operatorname{Bin}=\Sigma(\text { Erased } \mathbb{N}) \lambda n \rightarrow \operatorname{Bin}-[\text { erased } n] \\
& \text { @0 } \left.L_{-}\right]: \operatorname{Bin} \rightarrow \mathbb{N} \\
& \lfloor[n],-\rfloor=n
\end{aligned}
$$

Equality follows from equality for the erased indices:
Erased $(\lfloor x\rfloor \equiv\lfloor y\rfloor) \simeq(x \equiv y)$

Addition

abstract

plus: $\{@ 0 m n: \mathbb{N}\} \rightarrow$ $\operatorname{Bin}-[m] \rightarrow \operatorname{Bin}-[n] \rightarrow \operatorname{Bin}-[m+n]$
plus $=\ldots$-- Add with carry.

$$
\begin{aligned}
& \overline{([m], x)}{ }_{(}^{\oplus}: \operatorname{Bin} \rightarrow \operatorname{Bin} \rightarrow \operatorname{Bin} \\
& [n], y)=[m+n], \text { plus } x y
\end{aligned}
$$

Conversion to/from unary natural numbers?

Goal:

- $\operatorname{Bin} \simeq \mathbb{N}($ in a non-erased context $)$.
- With the forward direction pointwise equal to $\left.L_{-}\right\rfloor$(in an erased context).

Stability

Stability

A type A is stable if Erased A implies A :
Stable: Set $a \rightarrow$ Set a
Stable $A=$ Erased $A \rightarrow A$
A type is very stable if [_] is an equivalence:
Very-stable: Set $a \rightarrow$ Set a
Very-stable $A=$ Is-equivalence $\left(\left[_\right]\{A=A\}\right)$

Double negation

Erased A implies $\neg \neg A$. Thus types that are stable for double negation are stable for Erased:
$\{@ 0 A:$ Set $a\} \rightarrow(\neg \neg A \rightarrow A) \rightarrow$ Stable A
Types for which it is known whether or not they are inhabited are also stable:
$\{@ 0 A$: Set $a\} \rightarrow A \uplus \neg A \rightarrow$ Stable A

Stability of equality

Variants of Stable and Very-stable:
Stable- 三: Set $a \rightarrow$ Set a
Stable- $\equiv A=\{x y: A\} \rightarrow$ Stable $(x \equiv y)$
Very-stable- $\equiv:$ Set $a \rightarrow$ Set a
Very-stable- $\equiv A=\{x y: A\} \rightarrow$ Very-stable $(x \equiv y)$

Decidable equality

Stable propositions are very stable:

Stable $A \rightarrow$ Is-proposition $A \rightarrow$ Very-stable A

Thus types for which equality is decidable have very stable equality:

$$
((x y: A) \rightarrow x \equiv y \uplus \neg x \equiv y) \rightarrow \text { Very-stable- } \equiv A
$$

Propositions

However, it is not the case that every very stable type is a proposition:
$\neg(\{A:$ Set $a\} \rightarrow$ Very-stable $A \rightarrow$ Is-proposition $A)$
Erased Bool is not a proposition, but it is very stable:
$\{@ 0 A:$ Set $a\} \rightarrow$ Very-stable $($ Erased $A)$

Closure properties

Closure properties for Stable, Very-stable, Stable- 三 and Very-stable-三.

Back to the

 application
An equivalence

A lemma:

$$
\begin{aligned}
& \{00 y: A\} \rightarrow \\
& \text { Very-stable- } \equiv A \rightarrow \\
& \text { Is-proposition }(\Sigma A \lambda x \rightarrow \text { Erased }(x \equiv y))
\end{aligned}
$$

This lemma is used below (where n is erased):

$$
\begin{array}{ll}
\operatorname{Bin}-[n] & \simeq \\
\|\left(\Sigma \operatorname{Bin}^{\prime} \lambda b \rightarrow \text { Erased }(\text { to- } \mathbb{N} b \equiv n)\right) \| & \simeq \\
\|(\Sigma \mathbb{N} \lambda m \rightarrow \operatorname{Erased}(m \equiv n))\| & \simeq \\
(\Sigma \mathbb{N} \lambda m \rightarrow \operatorname{Erased}(m \equiv n)) &
\end{array}
$$

Another equivalence

Finally we can prove that the binary natural numbers are equivalent to the unary ones:
Bin
\simeq
$(\Sigma($ Erased $\mathbb{N}) \lambda n \rightarrow$ Bin-[erased $n]) \simeq$ $(\Sigma($ Erased $\mathbb{N}) \lambda n \rightarrow \Sigma \mathbb{N} \lambda m \rightarrow$
Erased $(m \equiv$ erased $n)$)
\simeq
$(\Sigma \mathbb{N} \lambda m \rightarrow \Sigma($ Erased $\mathbb{N}) \lambda n \rightarrow$
Erased $(m \equiv$ erased $n)$)
\simeq
$(\Sigma \mathbb{N} \lambda m \rightarrow \operatorname{Erased}(\Sigma \mathbb{N} \lambda n \rightarrow m \equiv n)) \simeq$
$\mathbb{N} \times$ Erased T
$\mathbb{N} \times \top$
\simeq
\mathbb{N}

Another equivalence

Finally we can prove that the binary natural numbers are equivalent to the unary ones:
$\operatorname{Bin} \simeq \mathbb{N}$
In an erased context the forward direction is pointwise equal to $\left.L_{-}\right\rfloor$(i.e. it returns the index).

Discussion

- There is currently no compiler for Cubical Agda, so the run-time performance of the binary numbers has not been tested.
- I have also used the same technique to implement a FIFO queue transformer:
- The enqueue function computes (roughly) like the corresponding list function, but not dequeue.
- The dequeue function requires that equality is very stable for the carrier type.

Discussion

- A surprising amount of theory for something as simple as Erased?

Some theory

Some equivalences

Easy to prove:

> Erased $\perp \simeq \perp$
> Erased $T \simeq \top$
> Erased $((x: A) \rightarrow P x) \simeq((x: A) \rightarrow$ Erased $(P x))$
> Erased $(\Sigma A P) \simeq$ $\quad \Sigma($ Erased $A)(\lambda x \rightarrow$ Erased $(P(\operatorname{erased} x)))$

If equality is extensional and the pattern $[\sup \times f]$ is OK:

Erased $(\mathrm{W} A P) \simeq$
W $($ Erased $A)(\lambda x \rightarrow$ Erased $(P(\operatorname{erased} x)))$

Some preservation lemmas

For erased A : Set a and $B:$ Set b :
@0 $(A \rightarrow B) \rightarrow$ Erased $A \rightarrow$ Erased B
@0 $A \Leftrightarrow B \rightarrow$ Erased $A \Leftrightarrow$ Erased B
@0 $A \rightarrow B \rightarrow$ Erased $A \rightarrow$ Erased B
©0 $A \leftrightarrow B \rightarrow$ Erased $A \leftrightarrow$ Erased B
@0 $A \simeq B \rightarrow$ Erased $A \simeq$ Erased B
©0 $A \succ B \rightarrow$ Erased $A \mapsto$ Erased B
@0 Embedding $A B \rightarrow$
Embedding (Erased A) (Erased B)

H-levels

Erased commutes with H-level n :

Erased $(\mathrm{H}$-level $n A) \Leftrightarrow$ H-level $n(\operatorname{Erased} A)$

Closure properties

Closure properties

For Stable:
Stable \perp
Stable T
$(\forall x \rightarrow$ Stable $(P x)) \rightarrow$ Stable $((x: A) \rightarrow P x)$
For Very-stable and Stable:
Very-stable $A \rightarrow(\forall x \rightarrow$ Stable $(P x)) \rightarrow$ Stable ($\Sigma A P$)

Closure properties

For Very-stable (in some cases assuming that equality is extensional):

Very-stable \perp
Very-stable T
$(\forall x \rightarrow \operatorname{Very}$-stable $(P x)) \rightarrow$
Very-stable $((x: A) \rightarrow P x)$
Very-stable $A \rightarrow(\forall x \rightarrow \operatorname{Very}$-stable $(P x)) \rightarrow$
Very-stable ($\Sigma A P$)
Very-stable $A \rightarrow$ Very-stable (W A P)

Closure properties

If A is very stable, then equality is very stable for A :
Very-stable $A \rightarrow$ Very-stable- $\equiv A$

Closure properties

For Stable- \equiv (in one case assuming that equality is extensional):

Stable- 三 $A \rightarrow$ Stable- $\equiv B \rightarrow$ Stable- $\equiv(A \uplus B)$
$(\forall x \rightarrow$ Stable- $\equiv(P x)) \rightarrow$ Stable- $\equiv((x: A) \rightarrow P x)$
Stable- $\equiv A \rightarrow$ Stable- $\equiv($ List $A)$
For Very-stable- \equiv and Stable- \equiv :

$$
\begin{aligned}
& \text { Very-stable- } \equiv A \rightarrow(\forall x \rightarrow \text { Stable- } \equiv(P x)) \rightarrow \\
& \quad \text { Stable- } \equiv(\Sigma A P)
\end{aligned}
$$

Closure properties

For Very-stable- \equiv (in some cases assuming that equality is extensional):

$$
\begin{aligned}
& \text { Very-stable- } \equiv A \rightarrow \text { Very-stable- } \equiv B \rightarrow \\
& \text { Very-stable- } \equiv(A \uplus B) \\
& (\forall x \rightarrow \text { Very-stable- } \equiv(P x)) \rightarrow \\
& \text { Very-stable- } \equiv((x: A) \rightarrow P x) \\
& \text { Very-stable- } \equiv A \rightarrow(\forall x \rightarrow \text { Very-stable- } \equiv(P x)) \rightarrow \\
& \text { Very-stable- } \equiv(\Sigma A P) \\
& \text { Very-stable- } \equiv A \rightarrow \text { Very-stable- } \equiv(\text { W } A P) \\
& \text { Very-stable- } \equiv A \rightarrow \text { Very-stable- } \equiv(\text { List } A)
\end{aligned}
$$

