Some theory about nothing

Nils Anders Danielsson

Division meeting, Aspenäs, 2019-09-20

- @0 is used to mark arguments and definitions that should be erased at run-time.
- Agda is supposed to make sure that:
 - Things marked as erased are actually erased.
 - There is never any data missing at run-time.
- The typing rules are based on work by McBride and Atkey.
- Andreas is working on the implementation.

- $\mathsf{ok} : \{ @0 \ A : \mathsf{Set} \} \rightarrow A \rightarrow A$ $\mathsf{ok} \ x = x$
- -- not-ok : {@O A : Set} \rightarrow @O A \rightarrow A
- -- not-ok x = x
- -- Not-ok : @O Bool \rightarrow Set
- -- Not-ok true = \top
- -- Not-ok false = \perp

A type-level variant of @0:

record Erased (@0 A : Set a) : Set a where constructor [_] field @0 erased : A

open Erased public

Monad

Erased is a monad:

return : {@0 A : Set a} \rightarrow @0 A \rightarrow Erased A return x = [x]

_≫__:
{@0 A : Set a} {@0 B : Set b} →
Erased A → (A → Erased B) → Erased B
$$x \gg f = [$$
 erased (f (erased x))]

An application

I have tried to define natural numbers that compute (roughly) like unary natural numbers at compile-time, but like binary natural numbers at run-time. Binary natural numbers:

```
Bin' : Set
Bin' = List Bool
```

The representation of a given natural number is not unique. A split surjection:

to- \mathbb{N} : Bin' $\rightarrow \mathbb{N}$

Binary natural numbers representing a given natural number:

abstract

$$\begin{array}{l} \mathsf{Bin-}[_] : @0 \mathbb{N} \to \mathsf{Set} \\ \mathsf{Bin-}[n] = \\ \parallel (\Sigma \mathsf{Bin'} \ \lambda \ b \to \mathsf{Erased} \ (\mathsf{to-}\mathbb{N} \ b \equiv n)) \parallel \end{array}$$

- Abstract so the underlying representation can be changed without breaking client code.
- Truncated so that the representation is unique.

Binary natural numbers:

Bin : Set Bin = Σ (Erased \mathbb{N}) $\lambda \ n \rightarrow$ Bin-[erased n]

Returns the erased index:

$$\bigcirc \ [_] : Bin \rightarrow \mathbb{N}$$

 $[[n], _] = n$

 $\begin{array}{l} \textbf{[]-cong :} \\ \{@0 \ A : \mathsf{Set} \ a\} \ \{@0 \ x \ y : \ A\} \ \rightarrow \\ \mathsf{Erased} \ (x \equiv y) \rightarrow [x] \equiv [y] \end{array}$

$$\begin{array}{l} \textbf{[]-cong :} \\ \{@0 \ A : \mathsf{Set} \ a\} \ \{@0 \ x \ y : \ A\} \ \rightarrow \\ \mathsf{Erased} \ (x \equiv y) \rightarrow [x] \equiv [y] \end{array}$$

With the K rule and propositional equality:

[]-cong [refl] = refl

$$\begin{array}{l} \textbf{[]-cong :} \\ \{@0 \ A : \mathsf{Set} \ a\} \ \{@0 \ x \ y : \ A\} \ \rightarrow \\ \mathsf{Erased} \ (x \equiv y) \rightarrow [x] \equiv [y] \end{array}$$

With the K rule and propositional equality:

[]-cong [refl] = refl

With Cubical Agda and paths:

 $[]\text{-cong} [eq] = \lambda i \rightarrow [eq i]$

$$\begin{array}{l} \textbf{[]-cong :} \\ \{@0 \ A : \mathsf{Set} \ a\} \ \{@0 \ x \ y : \ A\} \ \rightarrow \\ \mathsf{Erased} \ (x \equiv y) \rightarrow [x] \equiv [y] \end{array}$$

With the K rule and propositional equality:

[]-cong [refl] = refl

With Cubical Agda and paths:

 $[]\text{-cong} [eq] = \lambda i \rightarrow [eq i]$

In both cases []-cong is an equivalence that maps [refl x] to refl [x].

Non-indexed binary numbers

Recall:

Bin : Set Bin = Σ (Erased \mathbb{N}) $\lambda \ n \rightarrow$ Bin-[erased n]

 $\begin{array}{c} @0 \ [_] : Bin \rightarrow \mathbb{N} \\ [[n] , _] = n \end{array}$

Equality follows from equality for the erased indices:

$$\mathsf{Erased}\ (\lfloor x \rfloor \equiv \lfloor y \rfloor) \simeq (x \equiv y)$$

abstract plus : $\{@0 \ m \ n : \mathbb{N}\} \rightarrow$ Bin-[m] \rightarrow Bin-[n] \rightarrow Bin-[m + n] plus = ... -- Add with carry.

 $_\bigoplus_{i=1}^{m} : Bin \to Bin \to Bin$ $([m], x) \oplus ([n], y) = [m + n], plus x y$

Conversion to/from unary natural numbers?

Goal:

- Bin $\simeq \mathbb{N}$ (in a non-erased context).
- With the forward direction pointwise equal to
 [_] (in an erased context).

Stability

A type A is *stable* if Erased A implies A:

Stable : Set $a \rightarrow$ Set aStable A = Erased $A \rightarrow A$

A type is *very stable* if [_] is an equivalence:

Very-stable : Set $a \rightarrow \text{Set } a$ Very-stable $A = \text{Is-equivalence} ([] {<math>A = A$ }) Erased A implies $\neg \neg A$. Thus types that are stable for double negation are stable for Erased:

$$\{ @0 \ A : \mathsf{Set} \ a \} \rightarrow (\neg \neg A \rightarrow A) \rightarrow \mathsf{Stable} \ A$$

Types for which it is known whether or not they are inhabited are also stable:

 $\{ @0 \ A : Set \ a \} \rightarrow A \uplus \neg A \rightarrow Stable \ A$

Variants of Stable and Very-stable:

Stable= \equiv : Set $a \rightarrow$ Set aStable= $\equiv A = \{x \ y : A\} \rightarrow$ Stable $(x \equiv y)$

Very-stable= \equiv : Set $a \rightarrow$ Set aVery-stable= $\equiv A = \{x \ y : A\} \rightarrow$ Very-stable $(x \equiv y)$ Stable propositions are very stable:

Stable $A \rightarrow$ Is-proposition $A \rightarrow$ Very-stable A

Thus types for which equality is decidable have very stable equality:

 $((x \ y : A) \rightarrow x \equiv y \uplus \neg x \equiv y) \rightarrow \text{Very-stable-} \equiv A$

However, it is not the case that every very stable type is a proposition:

 \neg ({*A* : Set *a*} \rightarrow Very-stable *A* \rightarrow Is-proposition *A*)

Erased Bool is not a proposition, but it is very stable:

 $\{@0 A : Set a\} \rightarrow Very-stable (Erased A)$

Closure properties for Stable, Very-stable, Stable= \equiv and Very-stable= \equiv .

Back to the application

A lemma:

$$\{ @0 \ y : A \} \rightarrow \\ \mathsf{Very-stable-} \equiv A \rightarrow \\ \mathsf{Is-proposition} \ (\Sigma \ A \ \lambda \ x \rightarrow \mathsf{Erased} \ (x \equiv y)) \\$$

This lemma is used below (where *n* is erased):

$$\begin{array}{ll} \mathsf{Bin-[} n \] &\simeq \\ \parallel (\Sigma \ \mathsf{Bin'} \ \lambda \ b \to \mathsf{Erased} \ (\mathsf{to-} \mathbb{N} \ b \equiv n)) \parallel &\simeq \\ \parallel (\Sigma \ \mathbb{N} \ \lambda \ m \to \mathsf{Erased} \ (m \equiv n)) \parallel &\simeq \\ (\Sigma \ \mathbb{N} \ \lambda \ m \to \mathsf{Erased} \ (m \equiv n)) \parallel &\simeq \end{array}$$

Another equivalence

Finally we can prove that the binary natural numbers are equivalent to the unary ones:

$$\begin{array}{lll} & \boxtimes & & \cong \\ & (\Sigma \ (\text{Erased } \mathbb{N}) \ \lambda \ n \rightarrow \text{Bin-[erased } n \]) & \cong \\ & (\Sigma \ (\text{Erased } \mathbb{N}) \ \lambda \ n \rightarrow \Sigma \ \mathbb{N} \ \lambda \ m \rightarrow \\ & & \text{Erased } (m \equiv \text{erased } n)) & \cong \\ & (\Sigma \ \mathbb{N} \ \lambda \ m \rightarrow \Sigma \ (\text{Erased } \mathbb{N}) \ \lambda \ n \rightarrow \\ & & \text{Erased } (m \equiv \text{erased } n)) & \cong \\ & (\Sigma \ \mathbb{N} \ \lambda \ m \rightarrow \text{Erased } (\Sigma \ \mathbb{N} \ \lambda \ n \rightarrow m \equiv n)) & \cong \\ & & \mathbb{N} \ \times \ \text{Erased } \top & \cong \\ & & \mathbb{N} \end{array}$$

Another equivalence

Finally we can prove that the binary natural numbers are equivalent to the unary ones:

$\mathsf{Bin}\simeq\mathbb{N}$

In an erased context the forward direction is pointwise equal to $\lfloor _ \rfloor$ (i.e. it returns the index).

Discussion

- There is currently no compiler for Cubical Agda, so the run-time performance of the binary numbers has not been tested.
- I have also used the same technique to implement a FIFO queue transformer:
 - The enqueue function computes (roughly) like the corresponding list function, but not dequeue.
 - The dequeue function requires that equality is very stable for the carrier type.

A surprising amount of theory for something as simple as Erased?

Some theory

Easy to prove:

Erased $\perp \simeq \perp$ Erased $\top \simeq \top$ Erased $((x : A) \rightarrow P x) \simeq ((x : A) \rightarrow \text{Erased } (P x))$ Erased $(\Sigma A P) \simeq$ Σ (Erased A) $(\lambda x \rightarrow \text{Erased } (P \text{ (erased x))})$

If equality is extensional and the pattern [sup x f] is OK:

Erased (W A P) \simeq W (Erased A) ($\lambda x \rightarrow$ Erased (P (erased x)))

Some preservation lemmas

For erased A : Set a and B : Set b:

Erased commutes with H-level *n*:

Erased (H-level n A) \Leftrightarrow H-level n (Erased A)

Closure properties

For Stable:

 $\begin{array}{l} \mathsf{Stable} \perp \\ \mathsf{Stable} \top \\ (\forall \ x \rightarrow \mathsf{Stable} \ (P \ x)) \rightarrow \mathsf{Stable} \ ((x : \ A) \rightarrow P \ x) \end{array}$

For Very-stable and Stable:

Very-stable $A \rightarrow (\forall x \rightarrow \text{Stable } (P x)) \rightarrow \text{Stable } (\Sigma A P)$

For Very-stable (in some cases assuming that equality is extensional):

Very-stable \perp Very-stable \top $(\forall x \rightarrow \text{Very-stable } (P x)) \rightarrow$ Very-stable $((x : A) \rightarrow P x)$ Very-stable $A \rightarrow (\forall x \rightarrow \text{Very-stable } (P x)) \rightarrow$ Very-stable $(\Sigma A P)$ Very-stable $A \rightarrow \text{Very-stable } (W A P)$

If A is very stable, then equality is very stable for A: Very-stable $A \rightarrow Very$ -stable= $\equiv A$

For Stable= (in one case assuming that equality is extensional):

Stable- $\equiv A \rightarrow$ Stable- $\equiv B \rightarrow$ Stable- $\equiv (A \uplus B)$ ($\forall x \rightarrow$ Stable- $\equiv (P x)$) \rightarrow Stable- $\equiv ((x : A) \rightarrow P x)$ Stable- $\equiv A \rightarrow$ Stable- $\equiv (List A)$

For Very-stable- \equiv and Stable- \equiv :

 $\begin{array}{l} \mathsf{Very-stable}{=} = \mathsf{A} \to (\forall \ x \to \mathsf{Stable}{=} \equiv (\mathsf{P} \ x)) \to \\ \mathsf{Stable}{=} \equiv (\Sigma \ \mathsf{A} \ \mathsf{P}) \end{array}$

For Very-stable= (in some cases assuming that equality is extensional):

Very-stable- $\equiv A \rightarrow$ Very-stable- $\equiv B \rightarrow$ Very-stable- $\equiv (A \uplus B)$ $(\forall x \rightarrow$ Very-stable- $\equiv (P x)) \rightarrow$ Very-stable- $\equiv ((x : A) \rightarrow P x)$ Very-stable- $\equiv A \rightarrow (\forall x \rightarrow$ Very-stable- $\equiv (P x)) \rightarrow$ Very-stable- $\equiv (\Sigma A P)$ Very-stable- $\equiv A \rightarrow$ Very-stable- $\equiv (W A P)$ Very-stable- $\equiv A \rightarrow$ Very-stable- $\equiv (List A)$