Total Parser Combinators

Nils Anders Danielsson (Nottingham)

ICFP, Baltimore, 2010-09-29

Total Parser Combinators Using
 Mixed Induction and Coinduction

Nils Anders Danielsson (Nottingham)

ICFP, Baltimore, 2010-09-29

Introduction

expr $=$ number
| $\#$ expr tok '+'
$\gg \lambda n_{1} \rightarrow$
number
$\gg \lambda_{-} \rightarrow$
$\gg \lambda n_{2} \rightarrow$ return $\left(n_{1}+n_{2}\right)$

Introduction

$$
\begin{aligned}
\text { expr }= & \sharp \text { expr } \cdot \text { tok '+' } \cdot \text { number } \\
& \mid \text { number }
\end{aligned}
$$

Introduction

$$
\begin{aligned}
\text { expr }= & \sharp \text { expr } \cdot \text { tok '+' } \cdot \text { number } \\
& \mid \text { number }
\end{aligned}
$$

Introduction

$\begin{aligned} \text { expr } & =\sharp \text { expr } \cdot \text { tok }^{\prime}+\text { ' } \cdot \text { number } \\ & \mid \text { number }\end{aligned}$

- Left recursive.

Introduction

$$
\begin{aligned}
\text { expr } & =\sharp \text { expr } \cdot \text { tok '+' } \cdot \text { number } \\
& \mid \text { number }
\end{aligned}
$$

- Left recursive.
- Parsing is guaranteed to terminate (for finite input strings).

Introduction

$$
\begin{aligned}
\text { expr } & =\sharp \text { expr } \cdot \text { tok '+' } \cdot \text { number } \\
& \mid \text { number }
\end{aligned}
$$

Key idea

Control the shape of parsers using a careful combination of induction and coinduction.

Introduction

$$
\begin{aligned}
\text { expr }= & \sharp\left(\sharp \text { expr } \cdot \sharp\left(\text { tok }{ }^{\prime}+'\right)\right) \cdot \sharp \text { number } \\
& \text { number }
\end{aligned}
$$

Key idea

Control the shape of parsers using a careful combination of induction and coinduction.

Interface (roughly)

P : Set
empty : P
tok : Token $\rightarrow P$
$\left.{ }_{-}\right|_{-}: P \rightarrow P \rightarrow P$
$__{-} \quad: P \rightarrow P \rightarrow P$

Cyclic definitions

Want to allow cyclic definitions:

$$
\begin{aligned}
\text { zeros }= & \text { tok '0' } \cdot \text { zeros } \\
& \mid \text { empty }
\end{aligned}
$$

But not all of them:

$$
\text { bad }=\text { bad } \mid \text { bad }
$$

Solution: Make parsers partly inductive, partly coinductive.

Mixed induction
 and coinduction

Inductive types

data List (A : Set) : Set where

$$
\begin{aligned}
& {[] \quad: \operatorname{List} A} \\
& -::-A \rightarrow \text { List } A \rightarrow \operatorname{List} A
\end{aligned}
$$

Structural recursion:
length : List $A \rightarrow \mathbb{N}$
length [] $\quad=$ zero
length $(x:: x s)=\operatorname{suc}($ length $x s)$

Coinductive types

data $\operatorname{Stream}(A: \operatorname{Set})$: Set where

$$
\because:]_{-}: A \rightarrow \infty(\text { Stream } A) \rightarrow \text { Stream } A
$$

- ∞ marks coinductive arguments.
- Can be seen as a suspension.
- Delay and force:

$$
\begin{array}{lrr}
\sharp: & A \rightarrow \infty \\
\# & \rightarrow \infty & A \\
b: \infty & A
\end{array}
$$

Coinductive types

data $\operatorname{Stream}(A: \operatorname{Set})$: Set where

$$
\because:: A \rightarrow \infty(\text { Stream } A) \rightarrow \text { Stream } A
$$

Guarded corecursion:
infinite : Stream \mathbb{N}
infinite $=$ zero $:: \sharp$ infinite

Mixed induction and coinduction

$S P A B$ represents functions of type Stream $A \rightarrow$ Stream B :
data $S P(A B: S e t):$ Set where

$$
\begin{array}{ll}
\text { get }:(A \rightarrow S P A B) & \rightarrow S P A B \\
\text { put }: B \rightarrow \infty(S P A B) & \rightarrow S P A B
\end{array}
$$

$S P A B \approx \nu C \cdot \mu I \cdot((A \rightarrow I)+B \times C)$

Mixed induction and coinduction

Not OK:
sink : $S P A B$
sink $=\operatorname{get}\left(\lambda_{-} \rightarrow \operatorname{sink}\right)$
OK:
copy : SP A A
copy $=\operatorname{get}(\lambda x \rightarrow \operatorname{put} x(\sharp$ copy $))$

Mixed induction and coinduction

Lexicographic guarded corecursion and higher-order structural recursion:

$$
\begin{aligned}
& \llbracket-\llbracket: S P A B \rightarrow \text { Stream } A \rightarrow \text { Stream } B \\
& \llbracket \text { get } f \rrbracket(a:: a s)=\llbracket f a \rrbracket(b a s) \\
& \llbracket \text { put } b s p \rrbracket a s \quad=b:: \sharp(\llbracket b s p \rrbracket a s)
\end{aligned}
$$

Mixed induction and coinduction

Lexicographic guarded corecursion and higher-order structural recursion:

$$
\begin{aligned}
& \llbracket-\llbracket: S P A B \rightarrow \text { Stream } A \rightarrow \text { Stream } B \\
& \llbracket \text { get } f \rrbracket(a:: a s)=\llbracket f a \rrbracket(b a s) \\
& \llbracket \text { put } b s p \rrbracket a s \quad=b:: \sharp(\llbracket b s p \rrbracket a s)
\end{aligned}
$$

Assume that get were coinductive:

- sink would be accepted.
- 【-】 would not be productive.

Back to the

parser
combinators

Choice

Hard to decide infinite choice:

$$
\text { bad }=\text { bad } \mid \text { bad }
$$

The arguments of $\left.\right|_{-}$will be inductive.

Sequencing

Problematic if p^{\prime} is nullable, otherwise OK:

$$
p=p \cdot p^{\prime} \quad \frac{s_{1} \in p \quad t:: s_{2} \in p^{\prime}}{s_{1}+t:: s_{2} \in p}
$$

Allow the first argument to be coinductive if the second does not accept the empty string, and vice versa.

Sequencing

Problematic if p^{\prime} is nullable, otherwise OK:

$$
p=p \cdot p^{\prime} \quad \frac{s_{1} \in p \quad t:: s_{2} \in p^{\prime}}{s_{1}+t:: s_{2} \in p}
$$

Allow the first argument to be coinductive if the second does not accept the empty string, and vice versa.

Sequencing

Problematic if p^{\prime} is nullable, otherwise OK:

$$
p=p \cdot p^{\prime} \quad \frac{s_{1} \in p \quad t:: s_{2} \in p^{\prime}}{s_{1}+t:: s_{2} \in p}
$$

Allow the first argument to be coinductive if the second does not accept the empty string, and vice versa.

Sequencing

Problematic if p^{\prime} is nullable, otherwise OK:

$$
p=p \cdot p^{\prime} \quad \frac{s_{1} \in p \quad t:: s_{2} \in p^{\prime}}{s_{1}+t:: s_{2} \in p}
$$

Allow the first argument to be coinductive if the second does not accept the empty string, and vice versa.

Nullability index

Let us index parsers by their nullability:

- P : Bool \rightarrow Set.
- p : P true if p accepts the empty string.
- $p: P$ false otherwise.

Interface

mutual

data P : Sol \rightarrow Set where
empty : P true
to : Token $\rightarrow P$ false
$-\left.\right|_{-} \quad: P n_{1} \rightarrow P n_{2} \rightarrow P\left(n_{1} \vee n_{2}\right)$
-- $: \infty\left\langle n_{2}\right\rangle P n_{1} \rightarrow \infty\left\langle n_{1}\right\rangle P n_{2} \rightarrow$
$P\left(n_{1} \wedge n_{2}\right)$
$\infty\langle-\rangle P:$ Sol \rightarrow Sol \rightarrow Set
$\infty\langle$ false $\rangle P n=\infty(P n)$
$\infty\langle$ true $\rangle P n=P n$

Examples

OK:
zeros $=$ tok ' ${ }^{\prime}$ ' $\cdot \sharp$ zeros
empty
Not OK:
bad $=$ bad \mid bad $\quad--$ Not guarded.
void $=$ empty \cdot void -- Not guarded.

Examples

OK:
zeros $=\sharp$ zeros \cdot tok ' 0 ' empty

Not OK:
bad $=$ bad \mid bad $\quad--$ Not guarded.
void $=$ empty \cdot void -- Not guarded.

Examples

OK:
zeros $=\sharp$ zeros \cdot tok ' 0 ' empty

Not OK:
bad $=$ bad \mid bad $\quad--$ Not guarded.
void $=$ empty $\cdot \sharp$ void -- Not type correct.

Example

Kleene star:

mutual

$$
\begin{aligned}
& -\star: P \text { false } \rightarrow P \text { true } \\
& p \star=\text { empty } \mid p+ \\
& -+: P \text { false } \rightarrow P \text { false } \\
& p+=p \cdot \sharp(p \star)
\end{aligned}
$$

The argument must not accept the empty string: the infinitely ambiguous parser empty \star is not accepted.

See the paper/code. . .

How is parsing implemented?

- Breadth-first algorithm: Treat one token at a time, compute residual recogniser using Brzozowski derivatives.
- Combination of corecursion and recursion.
- Inefficient. Can we do better?

See the paper/code. . .

What about expressiveness?

- The parsers are as expressive as possible.
- This talk:

Every decidable language over a finite alphabet can be recognised.

- Full parser combinators:

Every finitely ambiguous decidable language can be parsed.

See the paper/code. . .

Formal semantics, algebraic laws, mechanised correctness proofs.

Conclusions

- Mixed induction/coinduction: Precise control of size of data.
- I encourage you to add this technique to your toolbox.

Conclusions

- Mixed induction/coinduction: Precise control of size of data.
- I encourage you to add this technique to your toolbox.

Bonus
 sildes

Infinite ambiguity

Parser combinators:
return x The empty string. Result: x.
$p \gg f$ First p, then f applied to result of p.
fail Always fails.

- (return unit) $\star \mapsto$ [], [unit], [unit, unit], ...
- (return unit) $\star \gg \lambda x s \rightarrow$ if f xs then return unit else fail \mapsto ?

Semantics

data \in_{-}: List Token $\rightarrow P n \rightarrow$ Set where
Empty : [] \in empty
Tor : $[t] \in$ to t
Alt $: s \in p_{1} \rightarrow s \in p_{1} \mid p_{2}$
Alt $: s \in p_{2} \rightarrow s \in p_{1} \mid p_{2}$
SEQ $\quad: s_{1} \in b ? p_{1} \rightarrow s_{2} \in b ? p_{2} \rightarrow$
$s_{1}+s_{2} \in p_{1} \cdot p_{2}$

Backend

$$
{ }_{-} \in ?_{-}:(s: \text { List Token })(p: P n) \rightarrow \operatorname{Dec}(s \in p)
$$

- Breadth-first algorithm: Treat one token at a time, compute residual recogniser.
- $D:(t:$ Token $)(p: P n) \rightarrow P(D$-null? $t p)$.
- $t:: s \in p \Leftrightarrow s \in D t p$.
- A variant of Brzozowski's regular expression derivatives.

Backend

$$
t:: s \in p \Leftrightarrow s \in D t p:
$$

Backend

$$
t:: s \in p \Leftrightarrow s \in D t p
$$

Can be very inefficient. Open question:
Can an efficient backend be implemented?

Expressive strength

For finite alphabets the combinators are as expressive as possible:
$f:$ List Bool \rightarrow Bool

f [true, true] f [false, true] f [true, false] f [false, false]
\qquad
\qquad
i

Expressive strength

fail : P false
fail $=\sharp$ fail $\cdot \sharp$ fail
accept-if-true : $(b: B o o l) \rightarrow P b$
accept-if-true true $=$ empty
accept-if-true false $=$ fail
\sharp ?: $P n \rightarrow \infty\langle b\rangle P n$
$\sharp \sharp ?\{b=$ false $\} x=\sharp x$
\sharp ? $\{b=\operatorname{true}\} x=x$

Expressive strength

$p:(f:$ List Sol \rightarrow Sol $) \rightarrow P(f[])$
$p f=$ $\sharp(p(\lambda x s \rightarrow f(x s+[$ true $]))) \cdot \sharp ?$? (to true $)$
$\sharp(p(\lambda x s \rightarrow f(x s+[$ false $]))) \cdot \sharp ?$? (to false)
accept-if-true ($f[]$)
$s \in p f \Leftrightarrow f s \equiv$ true

Laws

- The combinators form a Kleene algebra.
- Need to generalise the Kleene star:
$\star: P n \rightarrow P$ true
$p \star=($ nonempty $p) \star$
- The nonempty combinator can be defined by structural recursion:

$$
\text { nonempty : } P n \rightarrow P \text { false }
$$

