
Parsing Mixfix Operators

Nils Anders Danielsson (Nottingham)

Joint work with Ulf Norell (Chalmers)

IFL 2008, 2008-09-10

Mixfix (distfix) operators

Infix ` :
Prefix if then else

Postfix []

Closed J K

Useful?

I Can be abused.

I Can enable compact/domain-specific notation.

If used, then ease of parsing for humans is
important.

(Agda uses mixfix operators.)

Goal

Mixfix operators should be easy to parse for humans.

Method

I Precedence graph.

I Simple grammar based on graph.

Goal 2

Easy to implement with sufficient efficiency.

Method

I Memoising backtracking parser combinators.

Mixfix operators

Easy to declare (in Agda):

` : [] if then else J K
But what does it mean? How should

∅ , n : N ` J n + 11 K : N

be parsed?

Standard solution: Precedence/associativity.

Precedence and associativity

Precedence Associativity
Result of parsing
x + y * z

+ < * x + (y * z)
* < + (x + y) * z

+ = * Both left (x + y) * z

+ = * Both right x + (y * z)
Otherwise Parse error

Total order?

No. Why should + and ∧ be related?

I Not modular.

I Unnecessary design choices.

I Fewer related operators ⇒
parsing easier for humans?

Partial order?

No.

∧ < ≡
≡ < +

}
⇒ ∧ < +

Precedence relations

I Directed acyclic graphs.
I Cyclic graphs often lead to ambiguities.
I And left (right) recursive grammars.

I One or more operators per node.

I Some operators with associated associativity.

I Note that total and partial orders are DAGs.

Semantics

Given a DAG a context-free grammar is constructed.

Nonterminals:

expr Arbitrary expression.

î Expression headed by operator from
precedence level i .

i↑ Expression headed by operator which
binds tighter than precedence level i .

expr ::=
∨{

î
∣∣∣ i is a graph node

}
i↑ ::=

∨{
ĵ
∣∣∣ i < j

}

Semantics

Assume one infix, non-associative, binary operator
per node.

î ::= i↑ opnon
i i↑

Mixfix

The internal part of an expression:

opnon
i ::= opnon

i ,1 expr opnon
i ,2 expr · · · opnon

i ,k

Mixfix

Multiple operators with the same precedence:

opnon
i ::= opnon

i ,1,1 expr opnon
i ,1,2 expr · · · opnon

i ,1,k1

...

| opnon
i ,in,1

expr opnon
i ,in,2

expr · · · opnon
i ,in,kin

Postfix

î ::= i↑ oppostfix
i

+

Not left recursive, but parse trees need to be
post-processed:

rest(op · · · op) ⇒ (· · · (rest op) · · ·)op

Fold left.

Left associative

î ::= i↑ oppostfix
i

+

| i↑ (opleft
i i↑)+

Combined

î ::= i↑ (oppostfix
i | opleft

i i↑)+

Full grammar

expr ::=
∨{

î
∣∣∣ i is a graph node

}
i↑ ::=

∨{
ĵ
∣∣∣ i < j

}
î ::= opclosed

i

| i↑ opnon
i i↑

| (opprefix
i | i↑ opright

i)+ i↑
| i↑ (oppostfix

i | opleft
i i↑)+

opfix
i ::=

∨
{ p1 expr p2 expr · · · pk | . . . }

Example

+ (left)

!

() 0

expr ::= plus | fac | closed

plus ::= plus↑ (+ plus↑)+

plus↑ ::= fac | closed

fac ::= closed !+

closed ::= (expr) | 0

Properties

I All name parts unique ⇒ unambiguous.

I Neither left nor right recursive.
I Implemented in the total language Agda.

Implementation

1. Parse the program, treating expressions as
flat lists of tokens.

2. Scope checking, fixity declarations.

3. Parse expressions, using the precedence graphs.

Efficiency

Possible performance pitfalls:

I Grammar often far from being left factorised.

I The graph’s sharing might be lost.

With memoising backtracking parser combinators:

I Simple implementation.

I Sufficient efficiency.

(In prototype.)

Related work

I Lots of work on parsing mixfix operators.

I This particular approach appears new:
I Directed acyclic graphs.
I Simple grammar.

Related work

Aasa’s work is close to ours, but trades simplicity
for more precedence correct expressions.

Assume ¬ < ∧ . What about a ∧ ¬ b?

I Our approach: No parse since ∧ 6< ¬ .

I Aasa: a ∧ (¬ b).

Summary

An approach to mixfix operators which is
hopefully easy to understand.

I Precedence graph.

I Simple grammar.

I Simple implementation.

Plan to update Agda’s support for mixfix operators.

Questions?

Agda implementation

mutual
data Expr : Set where

〈 〉_ : forall {assoc} ->
Expr -> Internal (infx assoc) -> Expr -> Expr

〈〉〉 : Expr -> Internal postfx -> Expr
〈〈_ 〉_ : Internal prefx -> Expr -> Expr
〈〈_〉〉 : Internal closed -> Expr

data Internal (fix : Fixity) : Set where
• : forall {arity} ->

Operator fix arity -> Vec Expr arity ->
Internal fix

Agda implementation

grammar (node (precedence ops is)) =
〈〈_〉〉 <$> J closed K

| _〈_ 〉_ <$> ↑ ~ J infx non K ~ ↑
| flip (foldr _$_) <$> preRight + ~ ↑
| foldl (flip _$_) <$> ↑ ~ postLeft +
whereJ_K = \fix -> internal (ops fix)

↑ = ! nodes is

preRight = 〈〈_ 〉_ <$> J prefx K
| _〈_ 〉_ <$> ↑ ~ J infx right K

postLeft = flip _〈_〉〉 <$> J postfx K
| (\op e2 e1 -> e1 〈 op 〉 e2) <$> J infx left K ~ ↑

