Parsing Mixfix Operators

Nils Anders Danielsson (Nottingham) Joint work with Ulf Norell (Chalmers)

IFL 2008, 2008-09-10

Mixfix (distfix) operators

Infix $_\vdash_:_$ Prefixif_then_else_Postfix $_[_]$ Closed $\llbracket_$

- ► Can be abused.
- ► Can enable compact/domain-specific notation.

If used, then ease of parsing for humans is important.

(Agda uses mixfix operators.)

- ► Can be abused.
- ► Can enable compact/domain-specific notation.

If used, then ease of parsing for humans is important.

(Agda uses mixfix operators.)

Goal

Mixfix operators should be easy to parse for humans.

Method

- Precedence graph.
- Simple grammar based on graph.

Goal 2 Easy to implement with sufficient efficiency.

Method

Memoising backtracking parser combinators.

Easy to declare (in Agda):

$$_\vdash_:_ _[_]$$
 if_then_else_ $[_]$

But what does it mean? How should

$$\emptyset$$
 , n : $\mathbb{N} \vdash \llbracket$ n + 11 \rrbracket : \mathbb{N}

be parsed?

Standard solution: Precedence/associativity.

Precedence	Associativity	Result of parsing
	Associativity	x + y * z
+ < *		x + (y * z)
* < +		(x + y) * z
+ = *	Both left	(x + y) * z
+ = *	Both right	x + (y * z)
Otherwise		Parse error

- No. Why should $_+_$ and $_\land_$ be related?
 - ► Not modular.
 - Unnecessary design choices.
 - ► Fewer related operators ⇒ parsing easier for humans?

Partial order?

No.

 $\begin{array}{ccc} -\wedge_{-} &< \ _ \equiv_{-} \\ _ \equiv_{-} &< \ _ +_{-} \end{array} \right\} \ \Rightarrow \ _ \wedge_{-} \ < \ _ +_{-} \end{array}$

- Directed acyclic graphs.
 - Cyclic graphs often lead to ambiguities.
 - And left (right) recursive grammars.
- One or more operators per node.
- Some operators with associated associativity.
- ► Note that total and partial orders are DAGs.

Given a DAG a context-free grammar is constructed.

Nonterminals:

- expr Arbitrary expression.
 - \hat{i} Expression headed by operator from precedence level i.
 - $i\uparrow$ Expression headed by operator which binds tighter than precedence level *i*.

Semantics

Nonterminals:

- expr Arbitrary expression.
 - \hat{i} Expression headed by operator from precedence level i.
 - $i\uparrow$ Expression headed by operator which binds tighter than precedence level *i*.

$$expr ::= \bigvee \left\{ \left. \widehat{i} \right| i \text{ is a graph node} \right\}$$
$$i \uparrow ::= \bigvee \left\{ \left. \widehat{j} \right| i < j \right\}$$

Assume one infix, non-associative, binary operator per node.

$$\widehat{i} ::= i \uparrow op_i^{\operatorname{non}} i \uparrow$$

The internal part of an expression:

$$op_i^{\text{non}}$$
 ::= $op_{i,1}^{\text{non}} expr op_{i,2}^{\text{non}} expr \cdots op_{i,k}^{\text{non}}$

Multiple operators with the same precedence:

$$op_i^{\text{non}} ::= op_{i,1,1}^{\text{non}} expr op_{i,1,2}^{\text{non}} expr \cdots op_{i,1,k_1}^{\text{non}}$$

 \vdots
 $\mid op_{i,i_n,1}^{\text{non}} expr op_{i,i_n,2}^{\text{non}} expr \cdots op_{i,i_n,k_{i_n}}^{\text{non}}$

Postfix

$$\hat{i} ::= i \uparrow op_i^{\text{postfix}_+}$$

Not left recursive, but parse trees need to be post-processed:

$$rest(op \cdots op) \implies (\cdots (rest \ op) \cdots) op$$

Fold left.

Left associative

$$egin{array}{rcl} \widehat{i} & ::= & i \uparrow & op_i^{ ext{postfix+}} \ & & \mid & i \uparrow & (op_i^{ ext{left}} & i \uparrow)^+ \end{array}$$

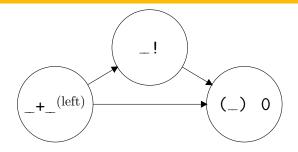
Combined

$\widehat{i} ::= i \uparrow (op_i^{\text{postfix}} \mid op_i^{\text{left}} i \uparrow)^+$

Full grammar

$$expr ::= \bigvee \left\{ \begin{array}{c} \widehat{i} \mid i \text{ is a graph node} \right\} \\ i \uparrow ::= \bigvee \left\{ \begin{array}{c} \widehat{j} \mid i < j \end{array} \right\} \\ \widehat{i} ::= op_i^{closed} \\ \mid i \uparrow op_i^{non} i \uparrow \\ \mid (op_i^{prefix} \mid i \uparrow op_i^{right})^+ i \uparrow \\ \mid i \uparrow (op_i^{postfix} \mid op_i^{left} i \uparrow)^+ \end{array}$$
$$op_i^{fix} ::= \bigvee \left\{ p_1 expr p_2 expr \cdots p_k \mid \dots \right\}$$

Example



expr ::= plus | fac | closed $plus ::= plus^{\uparrow} (+ plus^{\uparrow})^{+}$ $plus^{\uparrow} ::= fac | closed$ $fac ::= closed !^{+}$ closed ::= (expr) | 0

- All name parts unique \Rightarrow unambiguous.
- ► Neither left nor right recursive.
 - Implemented in the total language Agda.

- 1. Parse the program, treating expressions as flat lists of tokens.
- 2. Scope checking, fixity declarations.
- 3. Parse expressions, using the precedence graphs.

Possible performance pitfalls:

- Grammar often far from being left factorised.
- The graph's sharing might be lost.

With *memoising* backtracking parser combinators:

- Simple implementation.
- Sufficient efficiency.

(In prototype.)

- ► Lots of work on parsing mixfix operators.
- ► This particular approach appears new:
 - Directed acyclic graphs.
 - Simple grammar.

Aasa's work is close to ours, but trades simplicity for more precedence correct expressions.

Assume $\neg_{-} < _ \land_$. What about a $\land \neg$ b?

- Our approach: No parse since $_\land_ \not< \neg_$.
- Aasa: a \land (\neg b).

An approach to mixfix operators which is hopefully easy to understand.

- Precedence graph.
- Simple grammar.
- Simple implementation.

Plan to update Agda's support for mixfix operators.

Questions?

Agda implementation

mutual data Expr : Set where $_{\langle _{} \rangle_{-}}$: forall {assoc} -> Expr -> Internal (infx assoc) -> Expr -> Expr $_{\langle _{} \rangle_{-}}$: Expr -> Internal postfx -> Expr $_{\langle _{} \rangle_{-}}$: Internal prefx -> Expr -> Expr $_{\langle _{} \rangle_{-}}$: Internal closed -> Expr

Agda implementation

```
grammar (node (precedence ops is)) =
             <$> [[ closed ]]
<$> ↑ ⊛ [[ infx non ]] ⊛ ↑
   <u>《</u>_》
  | flip (foldr _$_) <$> preRight + ⊛ ↑
  | foldl (flip _$_) <$> ↑ ⊛ postLeft +
  where
  [] = fix \rightarrow internal (ops fix)
  \uparrow = ! nodes is
  preRight = ((_)_ <$> [ prefx ]]
              | \langle \rangle \rangle <  ($) \uparrow \otimes  [infx right ]
  postLeft = flip \langle \_ \rangle
                                       <$> postfx
              | (\op e<sub>2</sub> e<sub>1</sub> -> e<sub>1</sub> \langle op \rangle e<sub>2</sub>) <$> [ infx left ]] () \uparrow
```