Matroids from Modules

Nils Anders Danielsson

nad01@doc.ic.ac.uk

M.B. Smyth

mbs@doc.ic.ac.uk

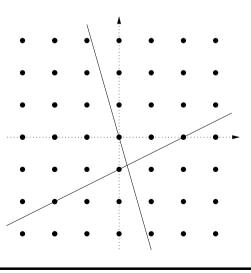
Department of Computing,

Imperial College

July 18, 2002

Motivation

- *Matroids* capture the essence of independence, dimension, etc.
- Standard example: Vector spaces.
- For discrete/digital geometry we do not have a vector space, but often a *module over an integral domain*.
- Standard example: \mathbb{Z} -module over \mathbb{Z}^n . (Compare with images made up of pixels.)



Modules

• Let R be a ring. An R-module is an abelian group M together with a scalar multiplication $R \times M \to M$ satisfying

1.
$$r(m_1 + m_2) = rm_1 + rm_2$$
,

2.
$$(r_1 + r_2)m = r_1m + r_2m$$
,

3.
$$r_1(r_2m) = (r_1r_2)m$$
, and

- 4. 1m = m.
- An *integral domain* is a nontrivial commutative ring with no zero divisors $(xy \neq 0 \text{ for all } x, y \neq 0)$.

Matroids

- Ground set M, possibly infinite.
- Closure operator $cl : \wp(M) \to \wp(M)$:
 - Monotone: $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$.
 - Increasing: $A \subseteq cl(A)$.
 - Idempotent: cl(cl(A)) = cl(A).
- Finitary: $x \in cl(A) \Rightarrow x \in cl(A')$ for some finite $A' \subseteq A$.
- Exchange property: $y \in cl(A \cup x) \setminus cl(A) \Rightarrow x \in cl(A \cup y)$.

Infinite?

- The standard definition of matroids requires a finite ground set.
- Having an infinite set of e.g. points is often natural/useful in geometry.
- Infinite matroids retain some properties of finite matroids, but not all.
- References for infinite matroids:
 - Faure and Frölicher, Modern Projective Geometry, 2000.
 - Coppel, Foundations of Convex Geometry, 1998.

Subspaces

- A closure operator is determined by its closed sets (*subspaces*).
- Vector spaces: You get a matroid from the vector subspaces, and also from the affine subspaces.
- Modules: The submodules do not necessarily yield a matroid.
- Counterexample: The Z-module over Z; the exchange property fails:

$$-2 \in \langle 10, 3 \rangle_{\mathrm{s}} = \mathbb{Z},$$

$$- 2 \notin \langle 10 \rangle_{\rm s} = 10\mathbb{Z},$$

$$- \ 3 \notin \langle 10, 2 \rangle_{\rm s} = 2\mathbb{Z}.$$

D-submodules

- Solution: Emulate the vector subspaces by including existing divisors.
- A *d-submodule* D of the *R*-module M is a submodule which is closed under existing divisors:

$$r \in R \setminus 0, \ m \in M, \ rm \in D \Rightarrow m \in D.$$

• When R is an integral domain this yields a matroid. Closure operator:

$$\left\langle S\right\rangle_{\mathrm{d}} = \left\{ \left. m \in M \right| bm = \sum_{i=1}^{n} a_{i} s_{i}, \ b, a_{i} \in R \setminus 0, \ s_{i} \in S, \ n \in \mathbb{N} \right\} \right\}$$

• From now on: Let all rings be integral domains.

"Affine" Geometry

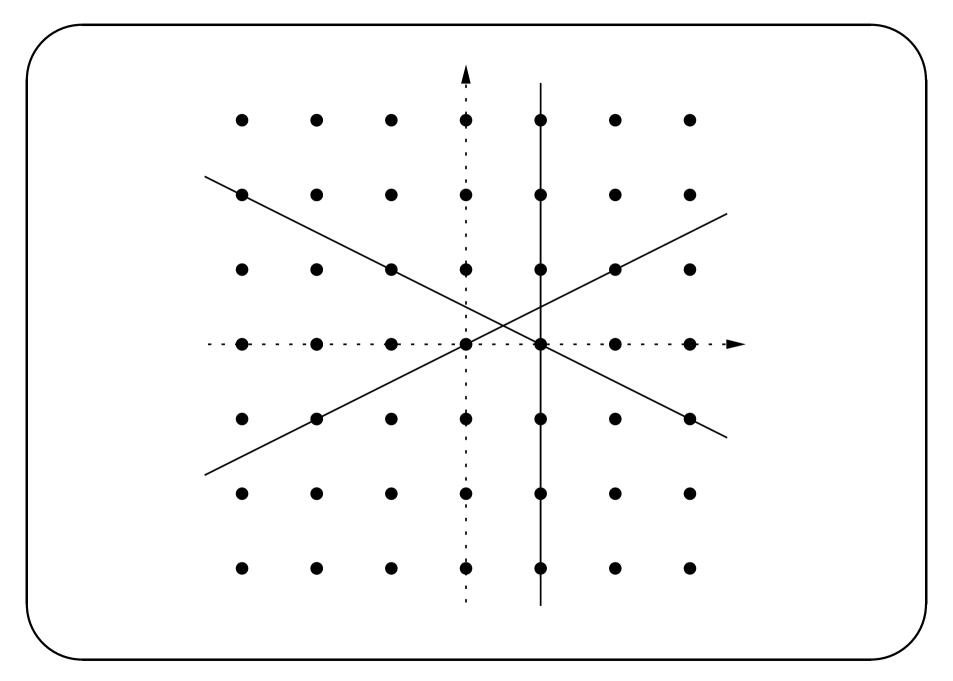
- "Affine" submodules—*a-submodules*—are translated d-submodules.
- The a-submodules plus \emptyset also yield a matroid. Closure operator: $\langle \emptyset \rangle_{\mathbf{a}} = \emptyset, \ \langle S \rangle_{\mathbf{a}} = \langle S - s \rangle_{\mathbf{d}} + s \text{ for any } s \in \langle S \rangle_{\mathbf{a}}.$
- Extra properties: $\langle \emptyset \rangle_{\mathbf{a}} = \emptyset$ (obviously), $\langle \{ p \} \rangle_{\mathbf{a}} = \{ p \}$ (iff $rm \neq 0$ for any $r \in R \setminus 0$ and $m \in M \setminus 0$).
- Thus we get a *geometry* (matroid with the two extra properties).

Bases, Rank

- A subset B is independent if $\forall x \in B \, . \, x \notin \operatorname{cl}(B \setminus x)$.
- If B is independent and cl(B) = A, then B is a *basis* of A.
- Every closed set A has a basis, and all bases of A are equipotent.
- The cardinality of any basis of A is the rank of A.

Lines, Planes, Parallelity

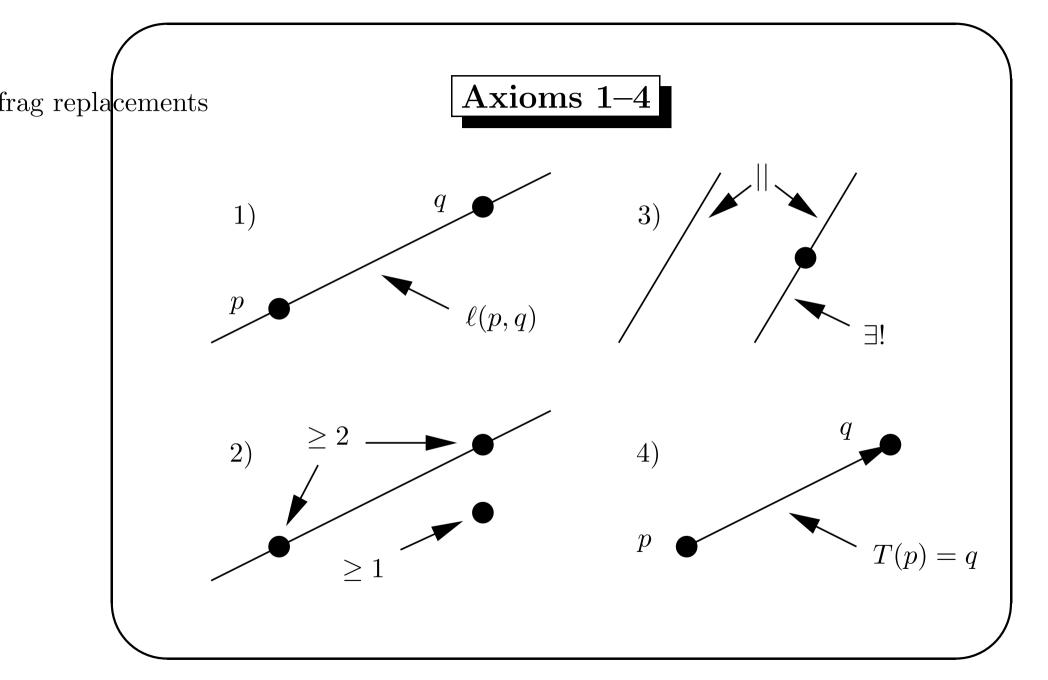
- Lines are subspaces of rank 2, planes subspaces of rank 3.
- An a-submodule geometry is not in general affine since lines in the same plane can cross without intersecting.
- Something reminiscent of affine parallelity can still be defined; two lines ℓ , ℓ' are *pseudo-parallel* ($\ell \mid \mid \ell'$) if there is some $p \in M$ such that $\ell = \ell' + p$.
- For any point $p \in M$ and line $\ell \subseteq M$ there is a unique line ℓ' such that $p \in \ell'$ and $\ell \mid \mid \mid \ell'$.



Degrees and Affine Geometry

- A geometry is of degree n if it satisfies, for any subspaces E, F: If $r(E \wedge F) \ge n$ then $r(E \wedge F) + r(E \vee F) = r(E) + r(F)$.
- $E \wedge F = E \cap F, E \vee F = \operatorname{cl}(E \cup F).$
- A-submodule geometries are of degree 1.
- Two lines are parallel if they are equal, or if they are disjoint and span a plane.
- A geometry of degree 1 is affine if for every line $\ell \subseteq M$ and point $p \in M \setminus \ell$ there is a unique line ℓ' , parallel to ℓ , with $p \in \ell'$.
- The figure on slide 11 shows that some a-submodule geometries are not affine.

Hübler's Axiomatic Discrete Geometry • Hübler has developed an axiom system with the intention to capture the essence of discrete geometry as utilised in image processing and computer graphics. • Albrecht Hübler, Diskrete Geometrie für die Digitale Bildverarbeitung, Habilitationsschrift, Friedrich-Schiller-Universität, Jena, 1989.



Axioms 1–3

The axiom system assumes the existence of a point set \mathcal{P} and a nonempty line set $\mathcal{L} \subseteq \wp(\mathcal{P})$.

- 1. For each pair of distinct points p, q there is a unique line $\ell(p, q)$ including the points.
- 2. For each line there are at least two points included in the line, and at least one point not included in the line.
- 3. There exists an equivalence relation on \mathcal{L} , parallelity (||). For each line and point there is a unique line, including the point, which is parallel to the first line.

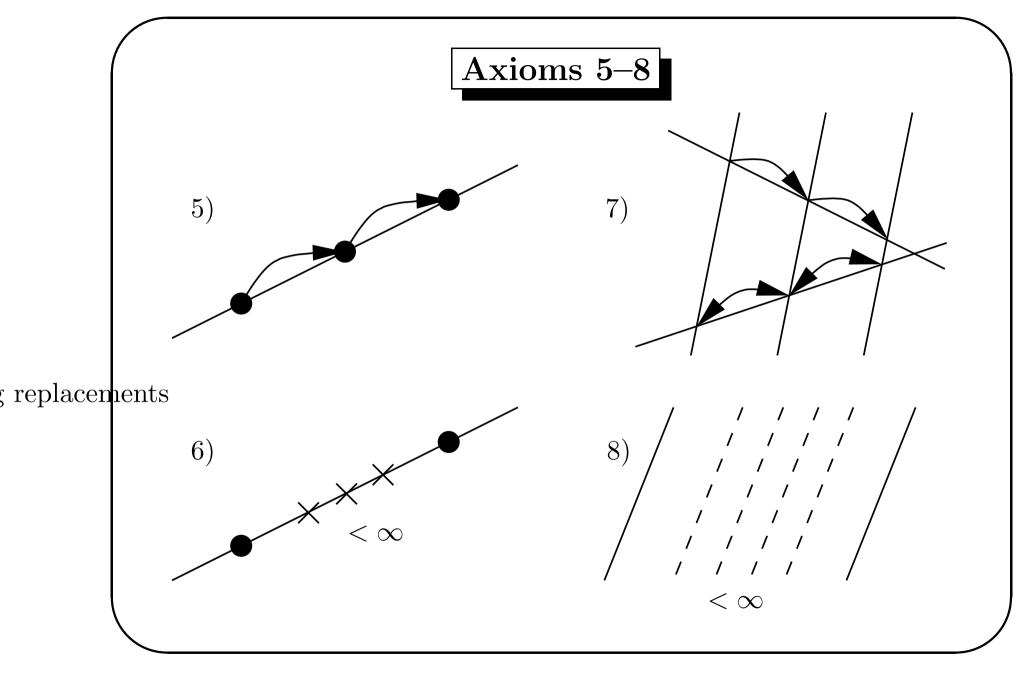
Translations

Translations are bijections T on \mathcal{P} satisfying either $T = \mathsf{id}$ or

- 1. $T(\ell) || \ell$ for all $\ell \in \mathcal{L}$ (lines are mapped bijectively onto parallel lines),
- 2. $T(p) \neq p$ for all $p \in \mathcal{P}$, and
- 3. { $\ell(p, T(p)) | p \in \mathcal{P}$ } is an equivalence class of ||.

Axiom 4

- 4. For each pair of points p, q there is a translation mapping p to q.
 - This translation turns out to be unique. Choose an origin $0 \Rightarrow$ we can identify points and translations.
- The set of all translations (\mathcal{T}) is an abelian group under function composition \Rightarrow we have a \mathbb{Z} -module.
- $\ell \mid \mid \ell' \Leftrightarrow \exists T \in \mathcal{T} \, . \, \ell = T(\ell')$. Compare with $\mid \mid \mid .$



Axioms 5–7

A further assumption is the existence of two opposite total orders \leq , \geq defined on the points of each line.

- 5. For each point p on a line ℓ there are two other, different points $q, r \in \ell$ with q .
- 6. Given two points p, q on a line ℓ , the set of all points $r \in \ell$ satisfying p < r < q is finite.
- 7. Let ℓ_1 , ℓ_2 , and ℓ_3 be different, parallel lines, and ℓ and ℓ' lines that have points p_i and p'_i , respectively, in common with all the lines ℓ_i , $i \in \{1, 2, 3\}$. Then $p_1 < p_2 < p_3$ holds iff $p'_1 < p'_2 < p'_3$ or $p'_1 > p'_2 > p'_3$.

Generators

• All lines ℓ can be written in the form

$$\ell = \{ G^n(p) \, | \, n \in \mathbb{Z} \}$$

for an arbitrary point $p \in \ell$ and a unique (up to inverses) translation (generator) G.

Axiom 8

A line ℓ is between two other parallel, different lines if a fourth line intersects all the other lines and the intersection with ℓ is between the other intersections.

- 8. The set of all lines between two different, parallel lines is finite.
- Axiom 6 is made redundant by Axiom 8.
- These two axioms are included to make the geometry discrete.
- Planes also have generators.

Correspondence

The Hübler geometries are exactly the a-submodule geometries M over \mathbb{Z} -modules with rank ≥ 3 satisfying

1. for every line ℓ ,

$$\ell = \{ p + ng \, | \, n \in \mathbb{Z} \}$$

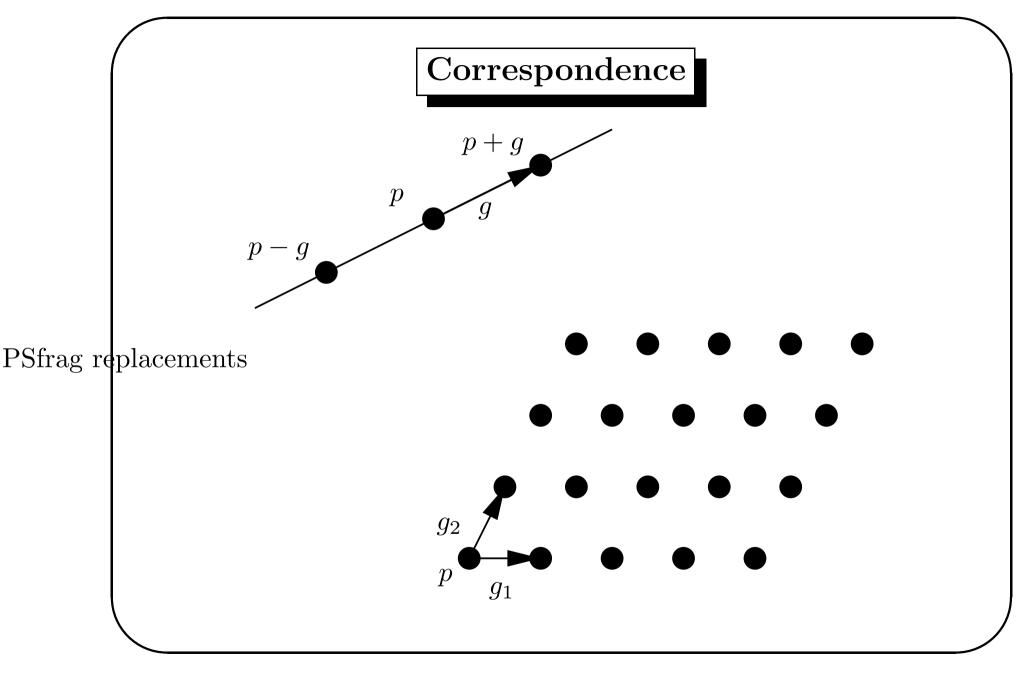
for some $p, g \in M$, and

2. for every plane P,

$$P = \{ p + n_1 g_1 + n_2 g_2 \mid n_1, n_2 \in \mathbb{Z} \}$$

for some $p, g_1, g_2 \in M$.

Here $\mathcal{P} = M$, the lines are the rank 2 subspaces, || = |||, and $p + n_1 g \leq p + n_2 g$ iff $n_1 \leq n_2$.



Conclusion

- Easy to generalise vector space matroids to modules over integral domains.
- The module approach allows discrete structures to be modelled. No need to embed these structures in e.g. Euclidean space.
- We have demonstrated this by giving a characterisation of Hübler's geometries which is arguably easier to understand than the original axioms.

Possible Future Work

- It is easy to define a convex hull operator, analogously to the standard vector space convex hull.
- A natural next step is to connect modules to *oriented* matroids. The theory for infinite oriented matroids does not seem to be well-developed, though.