Subtyping, Declaratively An Exercise in Mixed Induction and Coinduction

Nils Anders Danielsson Thorsten Altenkirch (University of Nottingham)

Lac-Beauport, Québec, 2010-06-23

- New way to define subtyping for recursive types.
- Example of the utility of mixed induction and coinduction (vX.µY.F X Y).

Induction in Agda

Inductive types

data \mathbb{N} : Set where zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$ $\mathbb{N} \approx \mu X. 1 + X$

Structural recursion:

+ :
$$\mathbb{N} \to \mathbb{N} \to \mathbb{N}$$

zero + n = n
suc m + n = suc (m + n)

Representation of (well-scoped) recursive types:

data
$$Ty (n : \mathbb{N})$$
 : Set where
 \perp : Ty n
 \top : Ty n
var : Fin $n \rightarrow Ty$ n
 $_ \neg \triangleright_{_}$: Ty n $\rightarrow Ty$ n $\rightarrow Ty$ n
 $\mu_{_} \neg \triangleright_{_}$: Ty $(1 + n) \rightarrow Ty$ $(1 + n) \rightarrow Ty$ n

 $\sigma, \tau ::= \bot \ | \ \top \ | \ X \ | \ \sigma \ \twoheadrightarrow \ \tau \ | \ \mu X. \ \sigma \ \twoheadrightarrow \ \tau$

Inductive types

Representation of (well-scoped) recursive types:

$$\sigma : Ty 0$$

$$\sigma = \mu \text{ var } 0 \rightarrow \text{ var } 0$$

•
$$\mu X. (X \rightarrow \bot) \rightarrow \top:$$

$$\begin{array}{ll} \tau & : & \textit{Ty 0} \\ \tau & = & \mu \ (\text{var 0} \twoheadrightarrow \bot) \twoheadrightarrow \top \end{array}$$

Representation of (well-scoped) recursive types:

Capture-avoiding substitution:

$$-[-]$$
 : Ty $(1 + n) \rightarrow$ Ty $n \rightarrow$ Ty n

 σ [τ]: Replaces variable 0 in σ with $\tau.$

Coinduction in Agda

data Tree : Set where \perp : Tree \top : Tree $_\rightarrow_$: ∞ Tree $\rightarrow \infty$ Tree \rightarrow Tree

- ∞ marks coinductive arguments.
- Tree $\approx \nu X. 1 + 1 + X \times X.$
- Delay and force:

$$\ddagger : A \to \infty A \flat : \infty A \to A$$

Guarded corecursion:

Guarded corecursion:

Inference system \approx indexed data type:

data
$$_\leqslant_{\mathsf{Tree}-}$$
 : *Tree* \rightarrow *Tree* \rightarrow *Set* where
 \bot : $\bot \leqslant_{\mathsf{Tree}} \tau$
 \top : $\sigma \leqslant_{\mathsf{Tree}} \top$
 $_\rightarrow_$: $\infty (\flat \tau_1 \leqslant_{\mathsf{Tree}} \flat \sigma_1) \rightarrow$
 $\infty (\flat \sigma_2 \leqslant_{\mathsf{Tree}} \flat \tau_2) \rightarrow$
 $\sigma_1 \rightarrow \sigma_2 \leqslant_{\mathsf{Tree}} \tau_1 \rightarrow \tau_2$

 $ex : \mu \text{ var } 0 \rightarrow \text{ var } 0 \leqslant_{\text{Type}} \mu (\text{var } 0 \rightarrow \bot) \rightarrow \top$ $ex = \# (\# ex \rightarrow \# \bot) \rightarrow \# \top$

Can we define this relation directly, without unfolding the types?

Algorithmic Syntax-directed. Declarative Explicit rules for high-level concepts: reflexivity, transitivity...

Algorithmic Syntax-directed. Declarative Explicit rules for high-level concepts: reflexivity, transitivity...

Algorithmic Less modular. Declarative Problematic if coinductive.

Coinductive transitivity

Coinductive inference system with transitivity: trivial.

data $_ \leqslant _$: Ty $0 \rightarrow$ Ty $0 \rightarrow$ Set where trans : ∞ ($\tau_1 \leqslant \tau_2$) $\rightarrow \infty$ ($\tau_2 \leqslant \tau_3$) $\rightarrow \tau_1 \leqslant \tau_3$ $\frac{\vdots}{\sigma \leqslant \tau} \quad \frac{\vdots}{\tau \leqslant \tau} \qquad \frac{\vdots}{\tau \leqslant \tau} \quad \frac{\vdots}{\tau \leqslant \tau} \quad \frac{\vdots}{\tau \leqslant \tau}$ $\sigma \leq \tau$

Stuck?

- Stuck with syntax-directed definition?
- No, can use mixed induction and coinduction.
 Transitivity: inductive
 Remaining rules: coinductive

Mixed induction and coinduction

data
$$_\leqslant_$$
: $Ty \ 0 \rightarrow Ty \ 0 \rightarrow Set$ where
 \bot : $\bot \leqslant \tau$
 \top : $\sigma \leqslant \top$
 $_\rightarrow_$: $\infty \ (\tau_1 \leqslant \sigma_1) \rightarrow \infty \ (\sigma_2 \leqslant \tau_2) \rightarrow$
 $\sigma_1 \rightarrow \sigma_2 \leqslant \tau_1 \rightarrow \tau_2$
unfold : $\mu \ \tau_1 \rightarrow \tau_2 \leqslant (\tau_1 \rightarrow \tau_2) \ [\mu \ \tau_1 \rightarrow \tau_2]$
fold : $(\tau_1 \rightarrow \tau_2) \ [\mu \ \tau_1 \rightarrow \tau_2] \leqslant \mu \ \tau_1 \rightarrow \tau_2$
refl : $\tau \leqslant \tau$
trans : $\tau_1 \leqslant \tau_2 \rightarrow \tau_2 \leqslant \tau_3 \rightarrow \tau_1 \leqslant \tau_3$

Mixed induction and coinduction

data
$$_\leqslant_$$
: Ty $0 \rightarrow$ Ty $0 \rightarrow$ Set where
 $_\Rightarrow_$: ∞ ($\tau_1 \leqslant \sigma_1$) $\rightarrow \infty$ ($\sigma_2 \leqslant \tau_2$) \rightarrow
 $\sigma_1 \Rightarrow \sigma_2 \leqslant \tau_1 \Rightarrow \tau_2$
trans : $\tau_1 \leqslant \tau_2 \rightarrow \tau_2 \leqslant \tau_3 \rightarrow \tau_1 \leqslant \tau_3$

$$\begin{array}{l} _ \leqslant_ \approx \nu \mathcal{C} . \ \mu I . \ \lambda \ \sigma \ \tau . \\ (\exists \ \sigma_1, \sigma_2, \tau_1, \tau_2. \ \sigma \equiv \sigma_1 \twoheadrightarrow \sigma_2 \times \tau \equiv \tau_1 \twoheadrightarrow \tau_2 \times \\ \mathcal{C} \ \tau_1 \ \sigma_1 \times \mathcal{C} \ \sigma_2 \ \tau_2) \\ + (\exists \ \chi . \ I \ \sigma \ \chi \times I \ \chi \ \tau) \end{array}$$

Mixed induction and coinduction

data
$$_\leqslant_$$
: $Ty \ 0 \rightarrow Ty \ 0 \rightarrow Set$ where
 \bot : $\bot \leqslant \tau$
 \top : $\sigma \leqslant \top$
 $_\rightarrow_$: $\infty \ (\tau_1 \leqslant \sigma_1) \rightarrow \infty \ (\sigma_2 \leqslant \tau_2) \rightarrow$
 $\sigma_1 \rightarrow \sigma_2 \leqslant \tau_1 \rightarrow \tau_2$
unfold : $\mu \ \tau_1 \rightarrow \tau_2 \leqslant (\tau_1 \rightarrow \tau_2) \ [\mu \ \tau_1 \rightarrow \tau_2]$
fold : $(\tau_1 \rightarrow \tau_2) \ [\mu \ \tau_1 \rightarrow \tau_2] \leqslant \mu \ \tau_1 \rightarrow \tau_2$
refl : $\tau \leqslant \tau$
trans : $\tau_1 \leqslant \tau_2 \rightarrow \tau_2 \leqslant \tau_3 \rightarrow \tau_1 \leqslant \tau_3$

Equivalent to $_\leqslant_{Type_}$.

Partiality monad

 A_{\perp} Partial computations which may return something of type A.

data
$$_{-\perp}$$
 (A : Set) : Set where
now : $A \rightarrow A_{\perp}$
later : ∞ (A_{\perp}) $\rightarrow A_{\perp}$

$$never : A_{\perp}$$

$$never = later (\# never)$$

When are two partial computations equivalent?

Strong bisimilarity (coinductive):

data
$$_\sim_$$
 : $A_{\perp} \rightarrow A_{\perp} \rightarrow Set$ where
now : now $v \sim now v$
later : $\infty (\flat x \sim \flat y) \rightarrow later x \sim later y$

When are two partial computations equivalent?

Weak bisimilarity (mixed):

data $_\approx_: A_{\perp} \rightarrow A_{\perp} \rightarrow Set$ where now : now $v \approx now v$ later : $\infty (\flat x \approx \flat y) \rightarrow later x \approx later y$ later^r : $x \approx \flat y \rightarrow x \approx later y$ later^l : $\flat x \approx y \rightarrow later x \approx y$

The problem of "weak bisimulation up to"

Weak bisimilarity is transitive. What happens if we make the definition more declarative?

data
$$_\approx_: A_{\perp} \rightarrow A_{\perp} \rightarrow Set$$
 where
now : now $v \approx now v$
later : $\infty (\flat x \approx \flat y) \rightarrow later x \approx later y$
later^r : $x \approx \flat y \rightarrow x \approx later y$
later^l : $\flat x \approx y \rightarrow later x \approx y$
trans : $x \approx y \rightarrow y \approx z \rightarrow x \approx z$

The problem of "weak bisimulation up to"

Weak bisimilarity is transitive. What happens if we make the definition more declarative?

$$\begin{array}{ll} trivial : (x \ y \ : \ A_{\perp}) \rightarrow x \ \approx \ y \\ trivial \ x \ y \ = \\ x & \approx \langle \ \mathsf{later}^r \ (refl \ x) \ \rangle \\ \mathsf{later} \ (\sharp \ x) \ \approx \langle \ \mathsf{later}^r \ (\sharp \ (trivial \ x \ y)) \ \rangle \\ \mathsf{later} \ (\sharp \ y) \ \approx \langle \ \mathsf{later}^1 \ (refl \ y) \ \rangle \\ y & \Box \end{array}$$

The problem of "weak bisimulation up to"

Weak bisimilarity is transitive. What happens if we make the definition more declarative?

- Inductive case: Sound to postulate admissible rule.
- Coinductive case: Not always sound, proof may not be contractive.
- ► Known problem: "weak bisimulation up to".
- Subtyping unproblematic:

 $_{\leq}$ equivalent to $_{\leq}$

- Mixed induction and coinduction is a useful technique.
- Declarative, mostly coinductive inference systems possible.
- ► In particular: subtyping for recursive types.
- But don't rely on intuitions which are only valid in the inductive case.

