
Subtyping, Declaratively
An Exercise in Mixed Induction and Coinduction

Nils Anders Danielsson Thorsten Altenkirch
(University of Nottingham)

Lac-Beauport, Québec, 2010-06-23

Introduction

I New way to define subtyping for
recursive types.

I Example of the utility of
mixed induction and coinduction
(νX .µY .F X Y).

Induction
in Agda

Inductive types

data N : Set where
zero : N
suc : N � N

N ≈ µX . 1 + X

Structural recursion:

+ : N � N � N
zero + n = n
suc m + n = suc (m + n)

Inductive types

Representation of (well-scoped) recursive types:

data Ty (n : N) : Set where
⊥ : Ty n
> : Ty n
var : Fin n � Ty n
_ : Ty n � Ty n � Ty n
µ _ : Ty (1 + n) � Ty (1 + n) � Ty n

σ, τ ::= ⊥ | > | X | σ _ τ | µX . σ _ τ

Inductive types

Representation of (well-scoped) recursive types:

I µX . X _ X :

σ : Ty 0
σ = µ var 0 _ var 0

I µX . (X _ ⊥) _ >:

τ : Ty 0
τ = µ (var 0 _ ⊥) _ >

Inductive types

Representation of (well-scoped) recursive types:

I Capture-avoiding substitution:

[] : Ty (1 + n) � Ty n � Ty n

σ [τ]: Replaces variable 0 in σ with τ .

Coinduction
in Agda

Coinductive types

data Tree : Set where
⊥ : Tree
> : Tree
_ : ∞ Tree � ∞ Tree � Tree

I ∞ marks coinductive arguments.

I Tree ≈ νX . 1 + 1 + X × X .

I Delay and force:

] : A � ∞ A
[: ∞ A � A

Coinductive types

Guarded corecursion:

J K : Ty 0 � Tree
J ⊥ K = ⊥
J > K = >
J var () K
J σ _ τ K =] J σ K _] J τ K
J µ σ _ τ K = J (σ _ τ) [µ σ _ τ] K

Coinductive types

Guarded corecursion:

J K : Ty 0 � Tree
J ⊥ K = ⊥
J > K = >
J var () K
J σ _ τ K =] J σ K _] J τ K
J µ σ _ τ K =] J σ [µ σ _ τ] K _

] J τ [µ σ _ τ] K

Coinductive types

J µ var 0 _ var 0 K =

_

_

_

__

_

__

_

_

__

_

__

J µ (var 0 _ ⊥) _ > K =

_

_

_

_ >
⊥

>

Subtyping

Subtyping

µ var 0 _ var 0 6Type µ (var 0 _ ⊥) _ >

_

_

_

__

_

__

_

_

__

_

__

6Tree

_

_

_

_ >
⊥

>

Subtyping

_

_

_

__

_

__

_

_

__

_

__

6Tree

_

_

_

_ >
⊥

>

⊥ 6Tree τ σ 6Tree >

[τ1 6Tree [σ1 [σ2 6Tree [τ2

σ1 _ σ2 6Tree τ1 _ τ2
(coinductive)

Indexed coinductive types

Inference system ≈ indexed data type:

data 6Tree : Tree � Tree � Set where
⊥ : ⊥ 6Tree τ
> : σ 6Tree >
_ : ∞ ([τ1 6Tree [σ1) �

∞ ([σ2 6Tree [τ2) �
σ1 _ σ2 6Tree τ1 _ τ2

Subtyping

6Type : Ty 0 � Ty 0 � Set
σ 6Type τ = J σ K 6Tree J τ K

ex : µ var 0 _ var 0 6Type µ (var 0 _ ⊥) _ >
ex =] (] ex _] ⊥) _] >

_

_

_

__

_

__

_

_

__

_

__

6Tree

_

_

_

_ >
⊥

>

Subtyping

6Type : Ty 0 � Ty 0 � Set
σ 6Type τ = J σ K 6Tree J τ K

Can we define this relation directly,
without unfolding the types?

Declarative vs. algorithmic

Algorithmic Syntax-directed.

Declarative Explicit rules for high-level concepts:
reflexivity, transitivity. . .

Algorithmic Less modular.

Declarative Problematic if coinductive.

Declarative vs. algorithmic

Algorithmic Syntax-directed.

Declarative Explicit rules for high-level concepts:
reflexivity, transitivity. . .

Algorithmic Less modular.

Declarative Problematic if coinductive.

Coinductive transitivity

Coinductive inference system with transitivity:
trivial.

data 6 : Ty 0 � Ty 0 � Set where
. . .
trans : ∞ (τ1 6 τ2) � ∞ (τ2 6 τ3) � τ1 6 τ3

...

σ 6 τ

...

τ 6 τ

σ 6 τ

...

τ 6 τ

...

τ 6 τ

τ 6 τ

σ 6 τ

Stuck?

I Stuck with syntax-directed definition?

I No, can use mixed induction and coinduction.

Transitivity: inductive
Remaining rules: coinductive

Mixed induction and coinduction

data 6 : Ty 0 � Ty 0 � Set where
⊥ : ⊥ 6 τ
> : σ 6 >
_ : ∞ (τ1 6 σ1) � ∞ (σ2 6 τ2) �

σ1 _ σ2 6 τ1 _ τ2

unfold : µ τ1 _ τ2 6 (τ1 _ τ2) [µ τ1 _ τ2]
fold : (τ1 _ τ2) [µ τ1 _ τ2] 6 µ τ1 _ τ2

refl : τ 6 τ
trans : τ1 6 τ2 � τ2 6 τ3 � τ1 6 τ3

Mixed induction and coinduction

data 6 : Ty 0 � Ty 0 � Set where
_ : ∞ (τ1 6 σ1) � ∞ (σ2 6 τ2) �

σ1 _ σ2 6 τ1 _ τ2

trans : τ1 6 τ2 � τ2 6 τ3 � τ1 6 τ3

6 ≈ νC . µI . λ σ τ.
(∃ σ1, σ2, τ1, τ2. σ ≡ σ1 _ σ2 × τ ≡ τ1 _ τ2 ×

C τ1 σ1 × C σ2 τ2)
+ (∃ χ. I σ χ × I χ τ)

Mixed induction and coinduction

data 6 : Ty 0 � Ty 0 � Set where
⊥ : ⊥ 6 τ
> : σ 6 >
_ : ∞ (τ1 6 σ1) � ∞ (σ2 6 τ2) �

σ1 _ σ2 6 τ1 _ τ2

unfold : µ τ1 _ τ2 6 (τ1 _ τ2) [µ τ1 _ τ2]
fold : (τ1 _ τ2) [µ τ1 _ τ2] 6 µ τ1 _ τ2

refl : τ 6 τ
trans : τ1 6 τ2 � τ2 6 τ3 � τ1 6 τ3

Equivalent to 6Type .

Beware!

Partiality monad

A ⊥ Partial computations which may return
something of type A.

data ⊥ (A : Set) : Set where
now : A � A ⊥
later : ∞ (A ⊥) � A ⊥

never : A ⊥
never = later (] never)

Equality

When are two partial computations equivalent?

Strong bisimilarity (coinductive):

data ∼ : A ⊥ � A ⊥ � Set where
now : now v ∼ now v
later : ∞ ([x ∼ [y) � later x ∼ later y

Equality

When are two partial computations equivalent?

Weak bisimilarity (mixed):

data ≈ : A ⊥ � A ⊥ � Set where
now : now v ≈ now v
later : ∞ ([x ≈ [y) � later x ≈ later y
laterr : x ≈ [y � x ≈ later y

laterl : [x ≈ y � later x ≈ y

The problem of “weak bisimulation up to”

Weak bisimilarity is transitive. What happens if we
make the definition more declarative?

data ≈ : A ⊥ � A ⊥ � Set where
now : now v ≈ now v
later : ∞ ([x ≈ [y) � later x ≈ later y
laterr : x ≈ [y � x ≈ later y

laterl : [x ≈ y � later x ≈ y
trans : x ≈ y � y ≈ z � x ≈ z

The problem of “weak bisimulation up to”

Weak bisimilarity is transitive. What happens if we
make the definition more declarative?

trivial : (x y : A ⊥) � x ≈ y
trivial x y =

x ≈〈 laterr (refl x) 〉
later (] x) ≈〈 later (] (trivial x y)) 〉
later (] y) ≈〈 laterl (refl y) 〉
y �

The problem of “weak bisimulation up to”

Weak bisimilarity is transitive. What happens if we
make the definition more declarative?

I Inductive case:
Sound to postulate admissible rule.

I Coinductive case:
Not always sound, proof may not be
contractive.

I Known problem: “weak bisimulation up to”.

I Subtyping unproblematic:
6 equivalent to 6Type .

Conclusions

I Mixed induction and coinduction is a
useful technique.

I Declarative, mostly coinductive inference
systems possible.

I In particular: subtyping for recursive types.

I But don’t rely on intuitions which are only
valid in the inductive case.

?

