Subtyping, Declaratively

An Exercise in Mixed Induction and Coinduction

Nils Anders Danielsson Thorsten Altenkirch
(University of Nottingham)

Lac-Beauport, Québec, 2010-06-23

» New way to define subtyping for
recursive types.
» Example of the utility of

mixed induction and coinduction
(vX.uY.FXY).

Induction
in Agda

data N : Set where

zero : N
suc : N—- N
N~ uX.1+ X

Structural recursion:

+ :N- N-=N
zero +n = n
sucm+n = suc (m -+ n)

Inductive types

Representation of (well-scoped) recursive types:

data Ty (n : N) : Set where

il : Ty n

T Ty n

var : Finn - Ty n

— = Iyn — Ty n — Ty n

p_—_: Ty(1+n) - Ty(1+n) - Tyn

or=L | T | X|o—=7]|pXoc—=r1

Representation of (well-scoped) recursive types:

» uX. X — X:
o: Ty0
o = pvarQ—var0

» uX. (X — L) — T:

Ty 0

-
T = p(var0— 1) —» T

Inductive types
Representation of (well-scoped) recursive types:
» Capture-avoiding substitution:
[]:Ty@+n) - Tyn— Tyn

o [7]: Replaces variable 0 in o with 7.

Coinduction
in Agda

Coinductive types

data Tree : Set where

1 - Tree
T . Tree
—> 00 Tree - oo Tree — Tree

» 0o marks coinductive arguments.
» Tree =~ vX. 14+ 1+ X x X.
» Delay and force:

1:A->00A
b :00A - A

Guarded corecursion:

[-] : Ty 0 — Tree

[L] = 1

[T] =T

[var ()]

[o—=7] =tlc]—8[7]
[po—=7] =[(c—=7)[po—=7]]

Guarded corecursion:

[-] : Ty 0 — Tree

[L] = 1

[T1 =T

[var ()]

[o—=7] =8lc]—=t][7]

[po—=1] =tlo[po—-71]]—
tlr{po—=71]]

/N /N
[pvarQ—-var0] = . . .

/\ /\ !\ /\

— - —> —> —> —> —> —>

[[[/A [[[[
[N [N [} [} I\ [N [N [N
[N} [N} [[[[N} [N} [N}

/ N\

[p(var0— 1) -T] = . |
/A
— T

[

[}
[

Subtyping

pvar 0 — var 0 Stype 0 (var0— L) — T
—> —>
e AN e N
—> —> —> T
/N /N < /N
—> —> —> —> X Tree —> |
/A /A /\ /\ /N

—_ > —> —> —> —> —> —> — |

[[[[[[[/A [
I\ [N [N [N [N [N [} I\ [N
L e T e o

e N ~ N
—> —> —> T
/N /N /N
—> —> —> > STree —» |
/\ /A /\ /\ /N
— > —> —> —> —> —> —> — T
I\ [[[[[[[[
AN\ [\ [\ [\ [\ [\ A A [\
L <tree T 0 <Tree |
D71 S<Tree D 01 b 02 <Tree D T2

(coinductive)
01 —> 02 KTree TL —> T2

Indexed coinductive types

Inference system = indexed data type:

data _ <t : Tree — Tree — Set where
1 L STree T
T L0 KTree |
——>_ . (b T1 KTree b Ul) -

0 (b oy <Tree b ™2) —
01 —> 02 STree T1 —> T2

_<type— : Ty 0 = Ty 0 — Set
o <Type7_ = [[0]] <Tree[[7_]]

ex : pvar0—var0 <qpe pt (var0 — L) — T
ex = f(lex—fL)—f§T

—- —>
/ ™~ / A
—> —> > _l_
/N /N /N
—> —> —> > STree —» il
/\ /A /\ /\ /N

»>—>—>>>—>>— =T

/A [[[[[[[[
[} I\ [N [N [N [N [} [} [N
[[[N} [N} [N} [N} [[[N}

_<type— : Ty 0 = Ty 0 — Set
o <Type7_ = [[0]] <Tree[[7_]]

Can we define this relation directly,
without unfolding the types?

Declarative vs. algorithmic

Algorithmic Syntax-directed.

Declarative Explicit rules for high-level concepts:
reflexivity, transitivity. . .

Declarative vs. algorithmic

Algorithmic Syntax-directed.

Declarative Explicit rules for high-level concepts:
reflexivity, transitivity. . .

Algorithmic Less modular.

Declarative Problematic if coinductive.

Coinductive transitivity

Coinductive inference system with transitivity:
trivial.

data _<_: Ty 0 - Ty 0 — Set where

trans 1 0o (1 <) 2 o0(m <) -7 < 73

» Stuck with syntax-directed definition?

» No, can use mixed induction and coinduction.
Transitivity: inductive
Remaining rules: coinductive

Mixed induction and coinduction

data _<_

L
-

—>

unfold :
fold

refl
trans

L
o

. Ty 0 - Ty 0 — Set where

-
T

VANW/N

roo(m < 01) » 00 (02 < ™) =

01—+>02 < 71 —> T

pr—1 < (m—mn)[pgn—-mn]

(n—emn)[pn—en] < pn—mn
T < T
I T1 S T2 > T2 < T3> T1 S T3

Mixed induction and coinduction

data _<_: Ty 0 - Ty 0 — Set where
—:100(n < 01) > 0 (02 < ™) =
01— 02 < T —> T

trans : 1 < Mo < T3—>T1 < T3

<= vC ul.)Xo
(301,00, 71, T0. O=01 >0y X T=T1 — Ty X
C7'10'1>< CO'QTQ)
+3x.loxxIlxT)

Mixed induction and coinduction

data _<_

L
T

—>

unfold :
fold

refl
trans

L
e
00

: Ty 0 - Ty 0 — Set where

T

T

1 < 01) > 00 (02 < W) —
01 —>02 < T4 —> T

TN A

pr =1 < (m—mn)[pn—-mn]

(m—mn)[pn—-mn] < pn—mn
T < T
T S TR > T < T3 —>T1 < T3

Equivalent to _<type_.

Bewarel

Partiality monad

A | Partial computations which may return
something of type A.

data | (A : Set) : Set where
now : A - A
later : c0 (A1) > A

never : A |
never = later (f never)

When are two partial computations equivalent?
Strong bisimilarity (coinductive):

data _~_: A| - A | — Set where
now : now v~ now v
later : 0o (b x ~ by) — later x ~ latery

Equality

When are two partial computations equivalent?
Weak bisimilarity (mixed):

data _~_: A, - A, — Set where

now : now v = now v
later : oo (b x = by) — later x = latery
later’ : X by — x & later y
later’ : bx ~ y - laterx = y

The problem of “weak bisimulation up to”

Weak bisimilarity is transitive. What happens if we
make the definition more declarative?

data ~_ : A, - A | — Set where

now : now v = now v
later : 0o (b x = by) — later x = latery
later’ : X by — X & later y
later' bx ~ y - laterx = y
trans 1 X "Ry -y R zZ->Xx & Z

The problem of “weak bisimulation up to”

Weak bisimilarity is transitive. What happens if we
make the definition more declarative?

trivial : (xy : Al) - x = y
trivial x y =
X ~(later" (refl x))
later (# x) =~(later (4 (trivial x y)))

later (# y) ~(later' (refl y))
y]

The problem of “weak bisimulation up to”

Weak bisimilarity is transitive. What happens if we
make the definition more declarative?

» Inductive case:
Sound to postulate admissible rule.

» Coinductive case:
Not always sound, proof may not be
contractive.

» Known problem: “weak bisimulation up to".

» Subtyping unproblematic:
—<_ equivalent to _<ype_.

Conclusions

» Mixed induction and coinduction is a
useful technique.

» Declarative, mostly coinductive inference
systems possible.

» In particular: subtyping for recursive types.

» But don't rely on intuitions which are only
valid in the inductive case.

