Subtyping, Declaratively

An Exercise in Mixed Induction and Coinduction

Nils Anders Danielsson Thorsten Altenkirch (University of Nottingham)

Lac-Beauport, Québec, 2010-06-23

Introduction

- New way to define subtyping for recursive types.
- Example of the utility of mixed induction and coinduction $(\nu X . \mu Y . F X Y)$.

Induction

in Agda

Inductive types

data \mathbb{N} : Set where
zero : \mathbb{N}
suc : $\mathbb{N} \rightarrow \mathbb{N}$
$\mathbb{N} \approx \mu X \cdot 1+X$
Structural recursion:
${ }_{-+}$_ $: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$
zero $+n=n$
suc $m+n=\operatorname{suc}(m+n)$

Inductive types

Representation of (well-scoped) recursive types:
data $\operatorname{Ty}(n: \mathbb{N}):$ Set where

$$
\begin{array}{llll}
\perp & : \text { Ty } n \\
\top & : \text { Ty } n \\
\text { var } & : \text { Fin } n \rightarrow \text { Ty } n & \\
\rightarrow \rightarrow \text { Ty } n & : \text { Ty } n \rightarrow & \text { Ty } n \\
\mu_{-} \rightarrow- & \text { Ty }(1+n) \rightarrow \text { Ty }(1+n) \rightarrow & \text { Ty } n
\end{array}
$$

$\sigma, \tau::=\perp|\top| X|\sigma \rightarrow \tau| \mu X . \sigma \rightarrow \tau$

Inductive types

Representation of (well-scoped) recursive types:

$$
\text { - } \mu X . X \rightarrow X:
$$

$$
\begin{aligned}
& \sigma: \text { Ty } 0 \\
& \sigma=\mu \operatorname{var} 0 \rightarrow \operatorname{var} 0
\end{aligned}
$$

- $\mu X .(X \rightarrow \perp) \rightarrow T:$

$$
\begin{aligned}
& \tau: \text { Ty } 0 \\
& \tau=\mu(\operatorname{var} 0 \rightarrow \perp) \rightarrow T
\end{aligned}
$$

Inductive types

Representation of (well-scoped) recursive types:

- Capture-avoiding substitution:

$$
-[-]: \operatorname{Ty}(1+n) \rightarrow \text { Ty } n \rightarrow \text { Ty } n
$$

$\sigma[\tau]$: Replaces variable 0 in σ with τ.

Coinduction

in Agda

Coinductive types

data Tree : Set where

$$
\begin{array}{ll}
\perp & : \text { Tree } \\
\top & : \text { Tree } \\
-\rightarrow- & \infty \text { Tree } \rightarrow \infty \text { Tree } \rightarrow \text { Tree }
\end{array}
$$

- ∞ marks coinductive arguments.
- Tree $\approx \nu X .1+1+X \times X$.
- Delay and force:

$$
\begin{aligned}
& \sharp: A \rightarrow \infty A \\
& b: \infty A \rightarrow A
\end{aligned}
$$

Coinductive types

Guarded corecursion：

$$
\begin{aligned}
& \text { 【-】: Ty } 0 \rightarrow \text { Tree } \\
& \begin{array}{ll}
\llbracket \perp \rrbracket & =\perp \\
\llbracket \top \rrbracket & =\top
\end{array} \\
& \text { 【 var () 】 } \\
& \llbracket \quad \sigma \rightarrow \tau \rrbracket=\sharp \llbracket \sigma \rrbracket \rightarrow \sharp \llbracket \tau \rrbracket \\
& \llbracket \mu \sigma \rightarrow \tau \rrbracket=\llbracket(\sigma \rightarrow \tau)[\mu \sigma \rightarrow \tau] \rrbracket
\end{aligned}
$$

Coinductive types

Guarded corecursion：

$$
\begin{aligned}
& \text { 【-】: Ty } 0 \rightarrow \text { Tree } \\
& \begin{array}{ll}
\llbracket \perp \rrbracket & =\perp \\
\llbracket \top \rrbracket & =\top
\end{array} \\
& \text { 【 var () 】 } \\
& \llbracket \quad \sigma \rightarrow \tau \rrbracket=\sharp \llbracket \sigma \rrbracket \rightarrow \sharp \llbracket \tau \rrbracket \\
& \llbracket \mu \sigma \rightarrow \tau \rrbracket=\sharp \llbracket \sigma[\mu \sigma \rightarrow \tau] \rrbracket \rightarrow \\
& \sharp \llbracket \tau[\mu \sigma \rightarrow \tau] \rrbracket
\end{aligned}
$$

Coinductive types

$$
\begin{aligned}
& \llbracket \mu \mathrm{varO} \rightarrow \mathrm{varo} \mathrm{\rrbracket}=\rightarrow \rightarrow \rightarrow \rightarrow{ }_{\rightarrow}^{\prime}
\end{aligned}
$$

Subtyping

Subtyping

μ var $0 \rightarrow$ var $0 \quad \leqslant_{\text {Type }} \mu(\operatorname{var} 0 \rightarrow \perp) \rightarrow T$

Subtyping

$$
\overline{\perp \leqslant_{\text {Tree }} \tau} \quad \overline{\sigma \leqslant_{\text {Tree }} \top}
$$

$$
\frac{b \tau_{1} \leqslant \text { Tree } b \sigma_{1} \quad b \sigma_{2} \leqslant \text { Tree } b \tau_{2}}{\sigma_{1} \rightarrow \sigma_{2} \leqslant \text { Tree } \tau_{1} \rightarrow \tau_{2}} \quad \text { (coinductive) }
$$

Indexed coinductive types

Inference system \approx indexed data type:
data_*Tree- $:$ Tree \rightarrow Tree \rightarrow Set where

$$
\begin{array}{ll}
\perp & : \perp \leqslant \text { Tree } \tau \\
\top & : \sigma \leqslant \text { Tree }^{\top} \top \\
-\rightarrow- & \infty\left(b \tau_{1} \leqslant \text { Tree } b \sigma_{1}\right) \rightarrow \\
& \infty\left(b \sigma_{2} \leqslant \text { Tree } b \tau_{2}\right) \rightarrow \\
& \sigma_{1} \rightarrow \sigma_{2} \leqslant T_{\text {ree }} \tau_{1} \rightarrow \tau_{2}
\end{array}
$$

Subtyping

$__{\text {Type- }}$: Ty $0 \rightarrow$ Ty $0 \rightarrow$ Set
$\sigma \leqslant$ Type $\tau=\llbracket \sigma \rrbracket \leqslant$ Tree $\llbracket \tau \rrbracket$
$e x: \mu \operatorname{var} 0 \rightarrow \operatorname{var} 0 \leqslant$ Type $\mu(\operatorname{var} 0 \rightarrow \perp) \rightarrow T$ $e x=\sharp(\sharp e x \rightarrow \sharp \perp) \rightarrow \sharp T$

Subtyping

$$
\begin{aligned}
& -\leqslant \text { Type- }: \text { Ty } 0 \rightarrow \text { Ty } 0 \rightarrow \text { Set } \\
& \sigma \leqslant \text { Type } \tau=\llbracket \sigma \rrbracket \leqslant \text { Tree } \llbracket \tau \rrbracket
\end{aligned}
$$

Can we define this relation directly, without unfolding the types?

Declarative vs. algorithmic

Algorithmic Syntax-directed.
Declarative Explicit rules for high-level concepts: reflexivity, transitivity...

Declarative vs. algorithmic

Algorithmic Syntax-directed.
Declarative Explicit rules for high-level concepts: reflexivity, transitivity. . .

Algorithmic Less modular.
Declarative Problematic if coinductive.

Coinductive transitivity

Coinductive inference system with transitivity: trivial.
data _s_ : Ty $0 \rightarrow$ Ty $0 \rightarrow$ Set where
trans: $\infty\left(\tau_{1} \leqslant \tau_{2}\right) \rightarrow \infty\left(\tau_{2} \leqslant \tau_{3}\right) \rightarrow \tau_{1} \leqslant \tau_{3}$

$$
\sigma \leqslant \tau
$$

Stuck?

- Stuck with syntax-directed definition?
- No, can use mixed induction and coinduction. Transitivity: inductive Remaining rules: coinductive

Mixed induction and coinduction

data _ $\leqslant_{-}:$Ty $0 \rightarrow$ Ty $0 \rightarrow$ Set where

$$
\begin{array}{ll}
\perp & : \perp \leqslant \tau \\
\top & : \sigma \leqslant \top \\
-\rightarrow- & : \infty\left(\tau_{1} \leqslant \sigma_{1}\right) \rightarrow \infty\left(\sigma_{2} \leqslant \tau_{2}\right) \rightarrow \\
& \sigma_{1} \rightarrow \sigma_{2} \leqslant \tau_{1} \rightarrow \tau_{2}
\end{array}
$$

$$
\text { unfold : } \mu \tau_{1} \rightarrow \tau_{2} \leqslant\left(\tau_{1} \rightarrow \tau_{2}\right)\left[\mu \tau_{1} \rightarrow \tau_{2}\right]
$$

$$
\text { fold } \quad:\left(\tau_{1} \rightarrow \tau_{2}\right)\left[\mu \tau_{1} \rightarrow \tau_{2}\right] \leqslant \mu \tau_{1} \rightarrow \tau_{2}
$$

$$
\text { refl } \quad: \tau \leqslant \tau
$$

$$
\text { trans }: \tau_{1} \leqslant \tau_{2} \rightarrow \tau_{2} \leqslant \tau_{3} \rightarrow \tau_{1} \leqslant \tau_{3}
$$

Mixed induction and coinduction

data _s- : Ty $0 \rightarrow$ Ty $0 \rightarrow$ Set where

$$
\begin{gathered}
-\rightarrow-\infty\left(\tau_{1} \leqslant \sigma_{1}\right) \rightarrow \infty\left(\sigma_{2} \leqslant \tau_{2}\right) \rightarrow \\
\sigma_{1} \rightarrow \sigma_{2} \leqslant \tau_{1} \rightarrow \tau_{2}
\end{gathered}
$$

trans: $\tau_{1} \leqslant \tau_{2} \rightarrow \tau_{2} \leqslant \tau_{3} \rightarrow \tau_{1} \leqslant \tau_{3}$

$$
\begin{aligned}
& -\leqslant-\approx \nu C . \mu I . \lambda \sigma \tau \text {. } \\
& \left(\exists \sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}, \sigma \equiv \sigma_{1} \rightarrow \sigma_{2} \times \tau \equiv \tau_{1} \rightarrow \tau_{2} \times\right. \\
& \text { C } \left.\tau_{1} \sigma_{1} \times C \sigma_{2} \tau_{2}\right) \\
& +(\exists \chi . I \sigma \chi \times I \chi \tau)
\end{aligned}
$$

Mixed induction and coinduction

data _s_ : Ty $0 \rightarrow$ Ty $0 \rightarrow$ Set where

$$
\begin{array}{ll}
\perp & : \perp \leqslant \tau \\
\top & : \sigma \leqslant \top \\
-\rightarrow- & : \infty\left(\tau_{1} \leqslant \sigma_{1}\right) \rightarrow \infty\left(\sigma_{2} \leqslant \tau_{2}\right) \rightarrow \\
& \sigma_{1} \rightarrow \sigma_{2} \leqslant \tau_{1} \rightarrow \tau_{2}
\end{array}
$$

unfold : $\mu \tau_{1} \rightarrow \tau_{2} \leqslant\left(\tau_{1} \rightarrow \tau_{2}\right)\left[\mu \tau_{1} \rightarrow \tau_{2}\right]$ fold $:\left(\tau_{1} \rightarrow \tau_{2}\right)\left[\mu \tau_{1} \rightarrow \tau_{2}\right] \leqslant \mu \tau_{1} \rightarrow \tau_{2}$
refl $: \tau \leqslant \tau$
trans : $\tau_{1} \leqslant \tau_{2} \rightarrow \tau_{2} \leqslant \tau_{3} \rightarrow \tau_{1} \leqslant \tau_{3}$
Equivalent to _Type-.

Partiality monad

A_{\perp} Partial computations which may return something of type A.
data $-\perp(A: S e t):$ Set where

$$
\begin{array}{ll}
\text { now }: A & \rightarrow A_{\perp} \\
\text { later : } \infty\left(A_{\perp}\right) & \rightarrow A_{\perp}
\end{array}
$$

never : A_{\perp}
never $=\operatorname{later}(\sharp$ never $)$

Equality

When are two partial computations equivalent?
Strong bisimilarity (coinductive):
data _~_ : $A_{\perp} \rightarrow A_{\perp} \rightarrow$ Set where now : now $v \sim$ now v later : $\infty(b x \sim b y) \rightarrow$ later $x \sim$ later y

Equality

When are two partial computations equivalent?
Weak bisimilarity (mixed):
data $\approx_{-}: A_{\perp} \rightarrow A_{\perp} \rightarrow$ Set where now : now $v \approx$ now v later $: \infty(b x \approx b y) \rightarrow$ later $x \approx$ later y later ${ }^{\mathrm{r}}: \quad x \approx b y \rightarrow \quad x \approx$ later y
later ${ }^{1}: b x \approx y \rightarrow \operatorname{later} x \approx y$

The problem of "weak bisimulation up to"

Weak bisimilarity is transitive. What happens if we make the definition more declarative?
data $\approx_{-}: A_{\perp} \rightarrow A_{\perp} \rightarrow$ Set where now : now $v \approx$ now v later $: \infty(b x \approx b y) \rightarrow$ later $x \approx$ later y later ${ }^{r}: \quad x \approx b y \rightarrow \quad x \approx$ later y
later ${ }^{1}: b x \approx y \rightarrow \operatorname{later} x \approx y$ trans : $x \approx y \rightarrow y \approx z \rightarrow x \approx z$

The problem of "weak bisimulation up to"

Weak bisimilarity is transitive. What happens if we make the definition more declarative?
trivial : $\left(x y: A_{\perp}\right) \rightarrow x \approx y$
trivial x y $=$
$x \quad \approx\left\langle\right.$ later $^{\mathrm{r}}($ refl $\left.x)\right\rangle$
later $(\sharp x) \approx\langle\operatorname{later}(\sharp($ trivial $x y))\rangle$
later $(\sharp y) \approx\left\langle\operatorname{later}^{1}(\right.$ refl $\left.y)\right\rangle$
y \square

The problem of "weak bisimulation up to"

Weak bisimilarity is transitive. What happens if we make the definition more declarative?

- Inductive case:

Sound to postulate admissible rule.

- Coinductive case:

Not always sound, proof may not be contractive.

- Known problem: "weak bisimulation up to".
- Subtyping unproblematic:
\ldots - equivalent to $\quad \leqslant_{\text {Type- }}$.

Conclusions

- Mixed induction and coinduction is a useful technique.
- Declarative, mostly coinductive inference systems possible.
- In particular: subtyping for recursive types.
- But don't rely on intuitions which are only valid in the inductive case.

