Fast and Loose Reasoning is Morally Correct

Nils Anders Danielsson Jeremy Gibbons John Hughes Patrik Jansson

Chalmers and Oxford

▲□▶▲□▶▲□▶ 三回 のQ@

Sloppy proofs

- Many proofs assume language is total.
 - No non-termination.
 - No bottoms.
 - Often also no infinite values.

▲□▶▲□▶▲□▶ 三回 のQ@

Sloppy proofs

Many proofs assume language is total.

- No non-termination.
- No bottoms.
- Often also no infinite values.

 When this is not the case: Fast and loose reasoning.

Another example

- Program derived from specification using total methods.
- Result transcribed into partial language.

Fast and loose reasoning is morally correct

Total methods sometimes cheaper.

reverse
$$\circ$$
 map $(\lambda x.x - y)$

is the left inverse of

map
$$(\lambda x.y + x) \circ$$
 reverse.

(日)

Example, total language

 $(reverse \circ map (\lambda x.x - y)) \circ (map (\lambda x.y + x) \circ reverse)$ $= \{map f \circ map g = map (f \circ g), \circ \text{associative}$ $reverse \circ map ((\lambda x.x - y) \circ (\lambda x.y + x)) \circ reverse$ $= \{(\lambda x.x - y) \circ (\lambda x.y + x) = id$ $reverse \circ map id \circ reverse$

 $= \{ map \ id = id, \circ associative, \ id \circ f = f, \ reverse \circ reverse = id \\ id \}$

Example, partial language

 $(reverse \circ map (\lambda x.x - y)) \circ (map (\lambda x.y + x) \circ reverse)$

 $= \{ map \ f \circ map \ g = map \ (f \circ g), \circ \text{ associative} \}$

 $reverse \circ map ((\lambda x.x - y) \circ (\lambda x.y + x)) \circ reverse$

$$= \left\{ \left[(\lambda x.x - y) \circ (\lambda x.y + x) = id \right] \right\}$$

reverse \circ *map id* \circ *reverse*

 $= \{ map \ id = id, \circ \text{ associative, } id \circ f = f, \ reverse \circ reverse = id \\ id \}$

◆□▶▲□▶▲□▶▲□■ ろん⊙

Problem

▲□▶▲@▶▲吾▶ 悪言 のへで

Problem

$$(y+x)-y=x$$

• (Succ Zero + Succ
$$\perp$$
) - Succ Zero
= $\perp \neq$ Succ \perp

▲□▶▲圖▶▲≣▶ ≣目= の�?

Example, partial language

 $(reverse \circ map (\lambda x.x - y)) \circ (map (\lambda x.y + x) \circ reverse)$

◆□▶◆母▶▲ヨ▶ ヨヨ のQ@

 $= \{ map \ f \circ map \ g = map \ (f \circ g), \circ \text{ associative} \}$

 $reverse \circ map ((\lambda x.x - y) \circ (\lambda x.y + x)) \circ reverse$

$$= \left\{ \left[(\lambda x.x - y) \circ (\lambda x.y + x) = id \right] \right\}$$

reverse \circ map id \circ reverse

$$= \begin{cases} map \ id = id, \circ \text{ associative, } \boxed{id \circ f = f} \\ \hline reverse \circ reverse = id \end{cases}$$

id

Example, partial language

Assume that xs :: [Nat] and y :: Nat are total, finite.

$$\begin{array}{l} \left(\left(reverse \circ map \left(\lambda x.x - y \right) \right) \circ \\ \left(map \left(\lambda x.y + x \right) \circ reverse \right) \right) xs \end{array} \\ = \left\{ map \ f \circ map \ g = map \ (f \circ g), \ definition \ of \circ \\ reverse \ \left(map \ \left(\left(\lambda x.x - y \right) \circ \left(\lambda x.y + x \right) \right) \left(reverse \ xs \right) \right) \\ = \left\{ \begin{array}{l} x, y \ total \ \land \ y \ finite \ \Rightarrow \ ((\lambda x.x - y) \circ (\lambda x.y + x)) \ x = id \ x, \\ xs \ total, \ finite \ \Rightarrow \ reverse \ xs \ total, \ finite, \\ ys \ total \ \land \ \forall \ total \ x. \ f \ x = g \ x \ \Rightarrow \ map \ f \ ys = map \ g \ ys \end{array} \right. \\ reverse \ \left(map \ id = id, \ id \ ys = ys, \\ xs \ total, \ finite \ \Rightarrow \ reverse \ (reverse \ xs) = xs \end{array} \right)$$

But...

- Programs syntactically identical.
- "Total subset" of partial semantics basically the same as total semantics.
- So we could just use the total result extended with some preconditions?

Rest of the talk

- Two languages.
- PER: Moral equality.
- Total equality implies moral equality.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Translate moral equality.

Two higher-order, typed FPLs

- Same syntax.
- Total, set-theoretic: $\langle \! \langle t \rangle \! \rangle$.
- Partial, domain-theoretic: [t].
 - Pointed CPOs, lifted types, strict and non-strict.
- Recursive types (polynomial).
 - Inductive/coinductive types.
 - fold/unfold, but not fix.

Moral equality (\sim)

- PER on semantic domains of partial language.
- Defines the total values.
- Functions:

$$\begin{array}{ccc} f \sim_{\sigma \to \tau} g \Leftrightarrow \\ f \neq \bot \land g \neq \bot \land \\ \forall x, y \in \llbracket \sigma \rrbracket . \\ x \sim_{\sigma} y \Rightarrow f x \sim_{\tau} g y \end{array}$$

Moral equality (\sim)

- PER on semantic domains of partial language.
- Defines the total values.
- Algebraic data types:
 - Defined.
 - Same constructor.
 - Arguments related.

◆□▶◆母▶▲ヨ▶ ヨヨ のQ@

Moral equality (\sim)

- PER on semantic domains of partial language.
- Defines the total values.
- Lists:
 - [] $\sim_{[\sigma]}$ [], [] $\not\sim_{[\sigma]}$ [x], [] $\not\sim_{[\sigma]} \bot$ • [x] $\sim_{[\sigma]}$ [y] \Leftrightarrow x \sim_{σ} y • [x₁, x₂, ...] $\sim_{[\sigma]}$ [y₁, y₂, ...] \Leftrightarrow x₁ \sim_{σ} y₁ \land x₂ \sim_{σ} y₂ \land ...

Total equality implies moral equality

$$\langle\!\langle t_1
angle = \langle\!\langle t_2
angle \quad \Rightarrow \quad \llbracket t_1
bracket \sim \llbracket t_2
bracket$$

◆□▶ ◆□▶ ◆ □ ▶ 三 □ ◆ ○ ○

 t_1, t_2 Closed terms. $\langle\!\langle \cdot \rangle\!\rangle$ Total semantics. $\left\|\cdot\right\|$ Partial semantics. Example revisited

$$lhs = (reverse \circ map (\lambda x.x - 1)) \circ (map (\lambda x.1 + x) \circ reverse)$$

•
$$\langle\!\!\langle \textit{lhs} \rangle\!\!\rangle = \langle\!\!\langle \textit{id} \rangle\!\!\rangle$$

- $\llbracket \textit{lhs} \rrbracket \sim \llbracket \textit{id} \rrbracket$
- ► $\forall xs :: [Nat].$ $[[xs]] \sim [[xs]] \Rightarrow [[Ihs xs]] \sim [[xs]]$

• ... • \forall fin, tot xs :: [Nat]. [[Ihs xs]] = [[xs]]

Discussion

- Fast and loose proofs OK (in a sense).
 - Polymorphism, stronger recursive types, type constructors.

• Equational reasoning.

Discussion

- Sometimes partial reasoning is to be preferred.
 - Limited to total subset of the language.
 - Inductive and coinductive types separate: No hylomorphisms (*pretty* o *parse*).

Discussion

- Combining partial and total methods probably useful, but...
- \blacktriangleright . . . \sim is not a congruence,

$$x \sim y$$
 but $f x \not\sim f y$.

▲□▶▲□▶▲□▶ 三回 のQ@

• Can translate, though.

Fast and loose reasoning is morally correct

▲□▶▲□▶▲□▶ 三回 のQ@

Bicartesian closed category

... with initial algebras and final coalgebras.

- Objects: Types.
- Morphisms: Equivalence classes of total functions.

◆□▶◆母▶▲ヨ▶ ヨヨ のぬる

(○): The equivalence class of the underlying (○).