Fast and Loose Reasoning is Morally Correct

Nils Anders Danielsson Jeremy Gibbons John Hughes Patrik Jansson

Chalmers and Oxford

Sloppy proofs

- Many proofs assume language is total.
- No non-termination.
- No bottoms.
- Often also no infinite values.

Sloppy proofs

- Many proofs assume language is total.
- No non-termination.
- No bottoms.
- Often also no infinite values.
- When this is not the case:

Fast and loose reasoning.

Another example

- Program derived from specification using total methods.
- Result transcribed into partial language.

This work

Fast and loose reasoning is morally correct

Example

Total methods sometimes cheaper.

Example

reverse $\circ \operatorname{map}(\lambda x . x-y)$
is the left inverse of
$\operatorname{map}(\lambda x . y+x) \circ$ reverse.

Example, total language

$($ reverse $\circ \operatorname{map}(\lambda x . x-y)) \circ(\operatorname{map}(\lambda x . y+x) \circ$ reverse $)$ $=\{$ map $f \circ$ map $g=\operatorname{map}(f \circ g), \circ$ associative reverse $\circ \operatorname{map}((\lambda x . x-y) \circ(\lambda x . y+x)) \circ$ reverse $=\{(\lambda x . x-y) \circ(\lambda x . y+x)=i d$
reverse \circ map id \circ reverse $=\{$ map $i d=i d, \circ$ associative, $i d \circ f=f$, reverse \circ reverse $=i d$ id

Example, partial language

$($ reverse $\circ \operatorname{map}(\lambda x . x-y)) \circ(\operatorname{map}(\lambda x . y+x) \circ$ reverse $)$ $=\{$ map $f \circ$ map $g=\operatorname{map}(f \circ g), \circ$ associative
reverse $\circ \operatorname{map}((\lambda x \cdot x-y) \circ(\lambda x \cdot y+x)) \circ$ reverse
$=\{(\lambda x \cdot x-y) \circ(\lambda x \cdot y+x)=i d$
reverse \circ map id \circ reverse
$=\{$ map id $=i d, \circ$ associative, $i d \circ f=f$, reverse \circ reverse $=i d$
id

Problem

data Nat $=$ Zero \mid Succ Nat

> infinity

Succ (Succ Zero)

Problem

$$
(y+x)-y=x
$$

$$
\text { - (Succ Zero }+ \text { Succ } \perp) \text { - Succ Zero }
$$

$$
=\perp \neq \operatorname{Succ} \perp
$$

- (infinity + Zero) - infinity

$$
=\perp \neq \text { Zero }
$$

Example, partial language

$($ reverse $\circ \operatorname{map}(\lambda x . x-y)) \circ(\operatorname{map}(\lambda x . y+x) \circ$ reverse $)$

$$
=\{\operatorname{map} f \circ \operatorname{map} g=\operatorname{map}(f \circ g), \circ \text { associative }
$$

reverse $\circ \operatorname{map}((\lambda x . x-y) \circ(\lambda x . y+x)) \circ$ reverse

$$
=\{(\lambda x \cdot x-y) \circ(\lambda x \cdot y+x)=i d
$$

reverse \circ map id \circ reverse

$$
=\left\{\begin{array}{l}
\text { map id }=i d, \circ \text { associative, id } \circ f=f, \\
\text { reverse o reverse }=i d
\end{array}\right.
$$

id

Example, partial language

Assume that $x s::[\mathrm{Nat}]$ and $y::$ Nat are total, finite.
$(($ reverse $\circ \operatorname{map}(\lambda x . x-y)) \circ$
$(\operatorname{map}(\lambda x . y+x) \circ$ reverse $)) x s$
$=\{$ map $f \circ$ map $g=\operatorname{map}(f \circ g)$, definition of \circ
reverse $(\operatorname{map}((\lambda x . x-y) \circ(\lambda x . y+x))($ reverse $x s))$
$=\left\{\begin{array}{l}x, y \text { total } \wedge y \text { finite } \Rightarrow((\lambda x . x-y) \circ(\lambda x \cdot y+x)) x=i d x, \\ x s \text { total, finite } \Rightarrow \text { reverse xs total, finite, } \\ y s \text { total } \wedge \forall \text { total } x . f x=g x \Rightarrow \text { map } f y s=\text { map } g y s\end{array}\right.$
reverse (map id (reverse xs))
$=\left\{\begin{array}{l}\text { map id }=i d, \text { id } y s=y s, \\ x s \text { total, finite } \Rightarrow \text { reverse }(\text { reverse } x s)=x s\end{array}\right.$
xs

- Programs syntactically identical.
- "Total subset" of partial semantics basically the same as total semantics.
- So we could just use the total result extended with some preconditions?

Rest of the talk

- Two languages.
- PER: Moral equality.
- Total equality implies moral equality.
- Translate moral equality.

Two higher-order, typed FPLs

- Same syntax.
- Total, set-theoretic: $\langle t\rangle$.
- Partial, domain-theoretic: $\llbracket t \rrbracket$.
- Pointed CPOs, lifted types, strict and non-strict.
- Recursive types (polynomial).
- Inductive/coinductive types.
- fold/unfold, but not fix.

Moral equality (\sim)

- PER on semantic domains of partial language.
- Defines the total values.
- Functions:

$$
\begin{aligned}
& f \sim_{\sigma \rightarrow \tau} g \Leftrightarrow \\
& f \neq \perp \wedge g \neq \perp \wedge \\
& \forall x, y \in \llbracket \sigma \rrbracket \\
& \quad x \sim_{\sigma} y \Rightarrow f x \sim_{\tau} g y
\end{aligned}
$$

Moral equality (\sim)

- PER on semantic domains of partial language.
- Defines the total values.
- Algebraic data types:
- Defined.
- Same constructor.
- Arguments related.

Moral equality (\sim)

- PER on semantic domains of partial language.
- Defines the total values.
- Lists:

$$
\begin{aligned}
& \rightarrow[] \sim_{[\sigma]}[], \quad[] \not \chi_{[\sigma]}[x], \quad[] \not \nsim_{[\sigma]} \perp \\
& * \\
& *[x] \sim_{[\sigma]}[y] \quad \Leftrightarrow \quad x \sim_{\sigma} y \\
& *\left[x_{1}, x_{2}, \ldots\right] \sim_{[\sigma]}\left[y_{1}, y_{2}, \ldots\right] \Leftrightarrow \\
& \\
& \quad x_{1} \sim_{\sigma} y_{1} \wedge x_{2} \sim_{\sigma} y_{2} \wedge \ldots
\end{aligned}
$$

Total equality implies moral equality

$$
\left.\left\langle t_{1}\right\rangle\right\rangle=\left\langle\left\langle t_{2}\right\rangle \quad \Rightarrow \quad \llbracket t_{1} \rrbracket \sim \llbracket t_{2} \rrbracket\right.
$$

t_{1}, t_{2} Closed terms.
$《 \cdot\rangle$ Total semantics.
$\llbracket \rrbracket$ Partial semantics.

Example revisited

Ihs $=($ reverse $\circ \operatorname{map}(\lambda x . x-1))$
$\circ(\operatorname{map}(\lambda x .1+x) \circ$ reverse $)$

- $\langle\mid l h s\rangle\rangle=\langle i d\rangle$
- $\llbracket l h s \rrbracket \sim \llbracket i d \rrbracket$
- $\forall x s::[N a t]$.

$$
\llbracket x s \rrbracket \sim \llbracket x s \rrbracket \Rightarrow \llbracket \mid h s x s \rrbracket \sim \llbracket x s \rrbracket
$$

- \forall fin, tot $x s::[N a t] . \llbracket / h s x s \rrbracket=\llbracket x s \rrbracket$

Discussion

- Fast and loose proofs OK (in a sense).
- Polymorphism, stronger recursive types, type constructors.
- Equational reasoning.

Discussion

- Sometimes partial reasoning is to be preferred.
- Limited to total subset of the language.
- Inductive and coinductive types separate:
No hylomorphisms (pretty \circ parse).

Discussion

- Combining partial and total methods probably useful, but...
- $\ldots \sim$ is not a congruence,

$$
x \sim y \text { but } f x \nsim f y .
$$

- Can translate, though.

Fast and loose reasoning is morally correct

Bicartesian closed category

... with initial algebras and final coalgebras.

- Objects: Types.
- Morphisms: Equivalence classes of total functions.
- (०): The equivalence class of the underlying (○).

