CHALMERS GÖTEBORG UNIVERSITY

Technical Report No. 07-15

Proofs Accompanying
 "Fast and Loose Reasoning is Morally Correct"

NILS ANDERS DANIELSSON

Abstract
This rough and unpolished document contains detailed proofs supporting the theoretical development in "Fast and Loose Reasoning is Morally Correct".

Contents

1 Introduction 4
2 definitions:
Definitions
6
3 functor-properties:
Some functor properties 11
4 in-out-proofs:
Proofs for in and out 14
5 per-and-in-out:
Proofs relating in, out and the PER 16
6 per-per:
The PER is a PER 19
7 troublesome-types:
Some types are troublesome 25
8 fix-not-in-per:
The function fix is not in the PER 28
9 fundamental-theorem:
The fundamental theorem 29
$\begin{array}{ll}10 \text { per-monotone: } & 39 \\ \text { The PER is monotone }\end{array}$
11 size:
Sizes can be assigned to some values 44
12 approx:
The approximation lemma
13 explicit-characterisations:
Explicit characterisations of recursive type formers 48
14 per-without-functions:
A characterisation of the PER, valid for function-free types 57
15 biccc:
The PER gives rise to a distributive bicartesian closed category 59
16 per-empty:A characterisation of emptiness of domains of the PER69
17 partial-surjective-homomorphism:
The partial surjective homomorphism 74
18 properties-of-j:
Some properties satisfied by the partial surjective homomor- phism 89
19 main-result:
The main result 95
20 strict-language:
Strict language 105

1 Introduction

These notes describe the proofs underlying the theory in "Fast and Loose Reasoning is Morally Correct" (Danielsson et al. 2006, hence-forth referred to as "the paper") in detail.

Note that there are some differences between this text and the paper. In particular, these notes sometimes use different definitions or notation, and the notation is sometimes more sloppy. Furthermore the text is quite rough, with lots of details but little more. There is little point in reading these notes without first consulting the paper.

Note also that the proofs in this text may be overly complicated. In fact, I fully expect that it is possible to simplify (parts of) the development. The aim of this text is not to be beautiful, but to back up the results of the paper.

This document has been compiled by simply including the text from some text files. These files sometimes refer to each other by mentioning a file name ("see definitions"). In order to make this somewhat comprehensible I have listed the names of the files (like definitions) in the table of contents.

The rest of the document is structured as follows:
Section 2 Definitions and proof principles used in the rest of the document.
Section 3 Some properties of functors.
Section 4 Proofs showing that in does not need to be defined as a primitive for coinductive types, and similarly that out is not needed for inductive types.

Section 5 Proofs relating in, out and \sim.
Section 6 Proof showing that \sim is a PER.
Section 7 It is shown that \perp is not in the domain of the PER (for most types), and also that most types have a non-empty set-theoretic semantic domain.

Section 8 It is shown that fix is not in the domain of the PER.
Section 9 The fundamental theorem.
Section 10 The PER is shown to be monotone.
Section 11 It is shown how sizes can be assigned to some values.
Section 12 The approximation lemma is discussed.
Section 13 Explicit characterisations of recursive type formers (μ and ν).
Section 14 It is shown that, when function spaces are not used, two values are related iff they are equal and total. (Recall that, by definition, x is total iff $x \in \operatorname{dom}(\sim)$.)

Section 15 Proof that the PER model gives rise to a bicartesian closed category.

Section 16 It is shown that the domain of the PER is empty iff the corresponding set-theoretic semantic domain is empty.

Section 17 The partial surjective homomorphism is defined and shown to be well-defined.

Section 18 Various useful properties that the partial surjective homomorphism satisfies.

Section 19 Proof of the main result.
Section 20 Extension of the main result to a strict language.

2 Definitions

Syntax:
L_{1} :
$\mathrm{t}::=\mathrm{x}\left|\mathrm{t}_{1} \mathrm{t}_{2}\right| \lambda \mathrm{x} . \mathrm{t}$
\mid seq
| *
| (,) | fst | snd
| inl | inr | case
| in | out | fold | unfold
$\sigma::=\sigma_{1} \rightarrow \sigma_{2}\left|\sigma_{1} \times \sigma_{2}\right| \sigma_{1}+\sigma_{2}|1| \mu \mathrm{F} \mid \nu \mathrm{F}$
$\mathrm{F}::=\mathrm{Id}\left|\mathrm{K}_{-} \sigma\right| \mathrm{F}_{1} \times \mathrm{F}_{2} \mid \mathrm{F}_{1}+\mathrm{F}_{2}$
Syntactic sugar for terms:

```
○ }\mapsto\lambdaf gx.f (g x
Id}\mapsto\lambdaf x. f x
K_\sigma \mapsto \f x. x
F + G\mapsto |f x. case x (inl ○ F f) (inr ○ G f)
F 人 G\mapsto |f x. seq x (F f (fst x), G f (snd x))
```

Syntactic sugar for types:

$$
\begin{array}{ll}
\text { Id } \sigma & \mapsto \sigma \\
K_{-} \tau \sigma & \mapsto \tau \\
(F+G) & \sigma \mapsto F \sigma+G \sigma \\
(F \times G) & \sigma \mapsto F \sigma \times G \sigma
\end{array}
$$

L_{2} :

$$
\mathrm{t}::=\ldots \text { fix }
$$

Typing rules:
The obvious ones (see the paper). Note that we allow in to be used both for μ-types and ν-types, and similarly for out. However, as noted in in-out-proofs we can implement in for ν-types using unfold and out, so we do not need to treat that case when doing proofs over the syntax of terms. Similar considerations apply to out for μ-types.

Semantics:

$\llbracket 1 \rrbracket$	$=1-\perp$	$\langle\langle 1\rangle\rangle$
$\llbracket 1 \rrbracket$	$=1$	
$\llbracket \sigma \rightarrow \tau \rrbracket=\langle\llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket\rangle-\perp$	$\langle\langle\sigma \rightarrow \tau\rangle$	$=\langle\langle\sigma\rangle \rightarrow\langle\langle\tau\rangle\rangle$
$\llbracket \sigma \times \tau \rrbracket=(\llbracket \sigma \rrbracket \times \llbracket \tau \rrbracket) _\perp$	$\langle\langle\sigma \times \tau\rangle\rangle$	$=\langle\langle\sigma\rangle \times\langle\langle\tau\rangle$

```
\llbracket\sigma+\tau\rrbracket=(\llbracket\sigma\rrbracket+\llbracket\tau\rrbracket)_\perp \langle|\sigma + \tau\rangle\rangle=\langle\langle\sigma\rangle\rangle+\langle\langle\tau\rangle\rangle
\llbracket F\rrbracket = The codomain of the initial object in L(F)-Alg(CPO_\perp).
\langle/\muF\rangle\rangle= The codomain of the initial object in F-Alg(SET).
|F\rrbracket = The domain of the final object in L(F)-Coalg(CPO).
\langle|vF\rangle\rangle= The domain of the final object in F-Coalg(SET).
    Here \langle\cdot -> • \rangle is the continuous function space, and 1 = {\star .
    in : F ( }\mu/\nu\textrm{F})->\mu/\nu\textrm{F}\mathrm{ and out : }\mu/\nu\textrm{F}->\textrm{F}(\mu/\nu\textrm{F})\mathrm{ are defined in
    CPO, CPO_\perp and SET, and they are each others inverses. (For CPO
    and CPO_\perp, replace F by L(F).)
    L(F) is inductively defined as follows:
    L(Id) = Id
    L}(\mp@subsup{K}{-}{\prime}\tau)=\mp@subsup{K}{-}{}
    L}(F\timesG)=(L(F)\timesL(G))_
    L(F +G) = (L(F) + L(G))_\perp
    Note that L(F) has the same action on morphisms as \llbracketF\rrbracket, where F is
    the syntactic sugar for terms defined above (see
    functor-properties).
```

«x】 Γ	$=\Gamma(\mathrm{x})$
＜$\langle\mathrm{x}\rangle\rangle \Gamma$	$=\Gamma(\mathrm{x})$
【t $\mathrm{t}_{1} \mathrm{t}_{2} \rrbracket \Gamma$	$=\llbracket \mathrm{t}_{1} \rrbracket \Gamma\left(\llbracket \mathrm{t}_{2} \rrbracket \Gamma\right)$
$\left\langle\left\langle\mathrm{t}_{1} \mathrm{t}_{2}\right\rangle\right\rangle \Gamma$	$=\left\langle\left\langle\mathrm{t}_{1}\right\rangle\right\rangle \Gamma\left(\left\langle\left\langle\mathrm{t}_{2}\right\rangle\right\rangle \Gamma\right)$
【 $\lambda \mathrm{x} . \mathrm{t} \rrbracket \Gamma$	$=\lambda \mathrm{v} . \llbracket \mathrm{t} \rrbracket \Gamma[\mathrm{x} \mapsto \mathrm{v}]$
$\langle\langle\lambda \mathrm{x} . \mathrm{t}\rangle\rangle \Gamma$	$=\lambda \mathrm{v} .\langle\langle\mathrm{t}\rangle\rangle \Gamma[\mathrm{x} \mapsto \mathrm{v}]$
【seq】	$\begin{aligned} =\lambda \mathrm{v}_{1} & \mathrm{v}_{2} . \end{aligned} \begin{aligned} & \left\{\perp, \quad \mathrm{v}_{1}=\perp\right. \\ & \\ & \left\{\mathrm{v}_{2},\right. \text { otherwise } \end{aligned}$
＜／seq ${ }^{\text {¢ }}$ 〉	$=\lambda \mathrm{v}_{1} \mathrm{v}_{2} \cdot \mathrm{v}_{2}$
【fix】	$=\lambda f . \bigsqcup_{-}(n \in \omega) f^{n} \perp$
《 fix $\left.^{\text {l }}\right\rangle$	is not defined
【＊】	＝
$\langle\langle\lambda\rangle\rangle$	$=\star$
【（，）】	$=\lambda \mathrm{v}_{1} \mathrm{v}_{2} .\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$
$\langle\langle()\rangle$,	$=\lambda \mathrm{v}_{1} \mathrm{v}_{2} .\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$
【fst】	$\begin{aligned} =\lambda \mathrm{v} . & \{\perp, \quad \mathrm{v}=\perp \\ & \left\{\mathrm{v}_{1}, \mathrm{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right. \end{aligned}$
	$=\lambda\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \cdot \mathrm{v}_{1}$
【snd】	$\begin{aligned} =\lambda \mathrm{v} . & \left\{\begin{array}{l} \perp, \\ \\ \left\{\mathrm{v}_{2},\right. \\ \mathrm{v} \end{array}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right. \end{aligned}$
＜／snd ${ }^{\text {d }}$ 〉	$=\lambda\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) . \mathrm{v}_{2}$
【inl】	$=\lambda \mathrm{v} . \operatorname{inl}(\mathrm{v})$
《＜inl》〉	$=\lambda \mathrm{v} . \operatorname{inl}(\mathrm{v})$
【inr】	$=\lambda \mathrm{v} . \operatorname{inr}(\mathrm{v})$
＜＜inr ${ }^{\text {l }}$ 〉	$=\lambda \mathrm{v} . \operatorname{inr}(\mathrm{v})$


```
    { fiv v2, v = inr(vi)
|<case\rangle\rangle}=\lambdav\mp@subsup{\textrm{f}}{1}{}\mp@subsup{\textrm{f}}{2}{}.{\mp@subsup{\textrm{f}}{1}{}\mp@subsup{\textrm{v}}{1}{},\textrm{v}=\operatorname{inl}(\mp@subsup{\textrm{v}}{1}{}
```



```
\llbracketin\rrbracket = \lambdav.in(v)
<<in\rangle\rangle = \lambdav.in(v)
\llbracketout\rrbracket = \lambdav. out(v)
|<out\rangle\rangle = \lambdav. out(v)
\llbracketfold_F\rrbracket = \lambdaf. fix (\lambdag. f o L(F) g o out)
\langle{fold_F\rangle\ranglef = the unique morphism in F-Alg(SET) from in to f,
    viewed as a morphism in SET
\llbracketunfold_F\rrbracket = \lambdaf. fix ( }\lambda\textrm{g}.\textrm{in}\circ\textrm{L}(\textrm{F})\textrm{g}\circ\textrm{f}
《unfold_F\rangle\f = the unique morphism in F-Coalg(SET) from f to
                        out, viewed as a morphism in SET
```



```
Note that out ：\(\mu \mathrm{F} \rightarrow \mathrm{F} \mu \mathrm{F}=\) fold＿F（L（F）in），and in ： \(\mathrm{F} \nu \mathrm{F} \rightarrow \nu \mathrm{F}=\) unfold＿F（L（F）out）．（For proofs see in－out－proofs．）
Also note that 【fold】，【unfold】，〈〈fold》 and 《unfold》 all satisfy universal properties（see Program Calculation Properties of Continuous Algebras，Fokkinga and Meijer，1991）：
```

```
strict h and f.
```

strict h and f.
h = \llbracketfold\rrbracketf f h o in = f 人 L(F) h
h = \llbracketfold\rrbracketf f h o in = f 人 L(F) h
h, f.
h, f.
h = \llbracketunfold\rrbracketf}\Leftrightarrow\mathrm{ out ○ h = L(F) h Of
h = \llbracketunfold\rrbracketf}\Leftrightarrow\mathrm{ out ○ h = L(F) h Of
h, f.
h, f.
h = \langle\langlefold\rangle\f \& h o in = f ○ F h
h = \langle\langlefold\rangle\f \& h o in = f ○ F h
h, f.
h, f.
h = \langle\langleunfold\rangle\ranglef }\Leftrightarrow\mathrm{ out ○ h = F h ○ f

```
        h = \langle\langleunfold\rangle\ranglef }\Leftrightarrow\mathrm{ out ○ h = F h ○ f
```

PER：
We enforce by definition that \perp is not in \sim for function spaces
（since $\perp: \mu \mathrm{Id} \rightarrow \mu \mathrm{Id}$ would be in the domain otherwise）．

```
f ~_(\sigma->\tau) g & f f & & f g ^ \forall x, y \in\llbracket\sigma\rrbracket. x ~_\sigma y f f x ~_\tau g y
x ~_(\sigma\times\tau) y }\Leftrightarrow\exists\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{y}}{1}{}\in\llbracket\sigma\rrbracket,\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{y}}{2}{}\in\llbracket\tau\rrbracket
            x = (x
            x
```



```
            (\exists x', y' }\in\llbracket\llbracket\rrbracket. x = inr(x') ^ y = inr(y') ^ x' ~_\tau y'),
x ~1 y }\quad\Leftrightarrow\quad\textrm{x}=\textrm{y}=
x ~_\muF y }\quad\Leftrightarrow(\textrm{x},\textrm{y})\in\mu0(F
x ~_\nuF y }\quad\Leftrightarrow(\textrm{x},\textrm{y})\in\nu0(F
O is defined as follows:
O(F): 
O(F)(X) = { (in(a), in(b)) | (a, b) \in O'_F(F)(X) }
O'_F(G): \llbracket \mu/\nu F \rrbracket \
O,_F(Id)(X) = X
O'_F(K_\sigma)(_) = { (x, y) | x, y \in dom(~_\sigma), x ~ y }
O}\mp@subsup{}{\prime}{\prime}F(\mp@subsup{F}{1}{}\times\mp@subsup{F}{2}{\prime})(X)={((\mp@subsup{a}{1}{},\mp@subsup{b}{1}{\prime}),(\mp@subsup{a}{2}{},\mp@subsup{b}{2}{\prime}))|(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})\in\mp@subsup{O}{}{\prime}_F(\mp@subsup{F}{1}{})(X)
                                    ( (b
O'_F(F F + F F ) (X) = { (inl(x'), inl(y')) | (x', y') \in O'_F(F ( 
                        {(inr(x'), inr(y')) | (x', y') \in O'_F(F F ) (X)}
This definition leads to a PER, see per-per.
Note that \(O(F)\) is a monotone operator on a complete lattice. We get the following proof principles:
```

```
Induction: }0(F)(X)\subseteqX=>\muO(F)\subseteq
```

Induction: }0(F)(X)\subseteqX=>\muO(F)\subseteq
Coinduction: X \subseteqO(F)(X) = X \subseteq \nuO(F)
Coinduction: X \subseteqO(F)(X) = X \subseteq \nuO(F)
How can we use the first principle? Let X be the characteristic set of some property on $\wp\left(\llbracket \mu \mathrm{F} \rrbracket^{2}\right)$. If we can show that $O(F)(X)$
$\subseteq X$, then we know that the property holds for $\mu 0(F)$.
How can we prove that something _is in_ $\mu 0(F)$, then? Since $\mu 0(F)$ is the least prefix point, we would have to prove that it is in all prefix points:

```
```

 (}\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{})\in\mu0(\textrm{F}
    ```
    ( }\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{})\in\mu0(\textrm{F}
\Leftrightarrow
\Leftrightarrow
    \forallX\in\wp(\llbracket\muF\mp@subsup{\rrbracket}{}{2}).O(F)(X)\subseteqX = ( 
    \forallX\in\wp(\llbracket\muF\mp@subsup{\rrbracket}{}{2}).O(F)(X)\subseteqX = ( 
Note that we can use the knowledge that }\mu0(F)\subseteqX\mathrm{ when proving
this:
```

```
\Leftrightarrow
```

\Leftrightarrow
\forallX\in\wp(\llbracket\muF\mp@subsup{\rrbracket}{}{2}).O(F)(X)\subseteqX\wedge\mu0(F)\subseteqX }=>\mathrm{ (

```
    \forallX\in\wp(\llbracket\muF\mp@subsup{\rrbracket}{}{2}).O(F)(X)\subseteqX\wedge\mu0(F)\subseteqX }=>\mathrm{ ( 
```

For convenience:

```
    Define [f] [x] = [f x] (well-defined).
    Using this definition we have extensionality:
        f = g & \forallx \in[~_\sigma]. f x = g x
    for arbitrary f, g \in [~_(\sigma->\tau)].
```

Further definitions:

More definitions can be found in other files. See e.g. biccc, partial-surjective-homomorphism and size.

3 Some functor properties

The functors satisfy the following properties:
In CPO and $\mathrm{CPO} _\perp: \mathrm{L}(\mathrm{F})=\llbracket \mathrm{F} \rrbracket . \mathrm{L}(\mathrm{F}) \llbracket \sigma \rrbracket=\llbracket \mathrm{F} \sigma \rrbracket$.
In SET: $\mathrm{F}=\langle\langle\mathrm{F}\rangle\rangle . \mathrm{F}\langle\langle\sigma\rangle\rangle=\langle\langle\mathrm{F} \sigma\rangle$.
In PER: $F=[\llbracket F \rrbracket]$.
(PER is defined in biccc.)
The proofs for SET are simpler variants of the proofs for CPO and CPO_म.

- $L(F)=\llbracket F \rrbracket$ (when $L(F)$ is acting on morphisms):
$L(I d) f=\operatorname{Id} f=f=\lambda x . f x=\llbracket I d \rrbracket f$
$L\left(K_{-} \sigma\right) f=K_{-} \sigma f=\lambda x . x=\llbracket K_{-} \sigma \rrbracket f$ $L\left(G_{1} \times G_{2}\right) f$
$=$
$\left(L\left(G_{1}\right) \times L\left(G_{2}\right)\right) _\perp f$
$=$

$=$ \{ Inductive hypothesis. \}
$\{\perp, \mathrm{v}=\perp$
$\lambda \mathrm{v}$.
$\left\{\left(\llbracket G_{1} \rrbracket f x, \llbracket G_{2} \rrbracket f y\right), v=(x, y)\right.$
=
$\llbracket G_{1} \times G_{2} \rrbracket f$
$L\left(G_{1}+G_{2}\right) f$
=
$\left(L\left(G_{1}\right)+L\left(G_{2}\right)\right) _\perp f$
$=$
$\{\perp, \mathrm{v}=\perp$
$\lambda \mathrm{v} . \operatorname{inl}\left(\mathrm{L}\left(\mathrm{G}_{1}\right) \mathrm{f} x\right), \mathrm{v}=\operatorname{inl}(\mathrm{x})$
$\left\{\operatorname{inr}\left(L\left(G_{2}\right) f y\right), v=\operatorname{inr}(y)\right.$
$=$ \{ Inductive hypothesis. \}
$\{\perp, \mathrm{v}=\perp$
$\lambda v . \operatorname{inl}\left(\llbracket G_{1} \rrbracket f x\right), v=\operatorname{inl}(x)$
$\left\{\operatorname{inr}\left(\llbracket G_{2} \rrbracket f y\right), v=\operatorname{inr}(y)\right.$
$=$
$\llbracket \mathrm{G}_{1}+\mathrm{G}_{2} \rrbracket \mathrm{f}$
－$L(F) \llbracket \sigma \rrbracket=\llbracket F \quad \sigma \rrbracket:$
$\mathrm{L}(\mathrm{Id}) \llbracket \sigma \rrbracket$
$=\mathrm{Id} \llbracket \sigma \rrbracket$
$=\llbracket \sigma \rrbracket$
$=\llbracket I d \sigma \rrbracket$
$\mathrm{L}\left(\mathrm{K}_{-} \tau\right) \llbracket \sigma \rrbracket$
＝ $K_{-} \tau \llbracket \sigma \rrbracket$
$=$
【 $\tau \rrbracket$
$=$
$\llbracket K_{-} \tau \quad \sigma \rrbracket$
$\mathrm{L}\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right) \llbracket \sigma \rrbracket$
$=\left(\mathrm{L}\left(\mathrm{G}_{1}\right) \times \mathrm{L}\left(\mathrm{G}_{2}\right)\right) \perp \llbracket \sigma \rrbracket$
$=\left(\left(L\left(G_{1}\right) \times L\left(G_{2}\right)\right) \llbracket \sigma \rrbracket\right) _\perp$
$\left(\mathrm{L}\left(\mathrm{G}_{1}\right) \llbracket \sigma \rrbracket \times \mathrm{L}\left(\mathrm{G}_{2}\right) \llbracket \sigma \rrbracket\right) _\perp$
$=$ \｛ Inductive hypothesis．\}
$\left(\llbracket G_{1} \sigma \rrbracket \times \llbracket G_{2} \sigma \rrbracket\right) _\perp$
$=$
$\llbracket G_{1} \sigma \times G_{2} \sigma \rrbracket$
And analogously for + ．
－$F=[\llbracket F \rrbracket]$（when F is acting on morphisms）：
［【Id】］［f］
［ $\lambda \mathrm{f} x . \mathrm{f} \mathrm{x}$ ］［f］
$=$
［ $\lambda \mathrm{x} . \mathrm{f} \mathrm{x}]$
$=$
［f］
$=$
Id［f］
$\left[\llbracket K_{-} \sigma \rrbracket\right]$［f］
$=$
［ $\lambda \mathrm{f}$ x．x］［f］
$=$
［id］
$=$

```
    K_\sigma [f]
    [\llbracketG1 }\times\mp@subsup{G}{2}{}\rrbracket] [f
=
    [\lambdaf x. \llbracketseq\rrbracketx (\llbracketGG\rrbracketf (\llbracketfst\rrbracketx), \llbracketG \ f (\llbracketsnd\rrbracketx))] [f]
=
    [\lambdax. \llbracketseq\rrbracketx (\llbracketG⿴\rrbracketf (\llbracketfst\rrbracketx), \llbracketG |f (\llbracketsnd\rrbracketx))]
= { ~-equality. }
    [\lambdav.((\llbracketG|\rrbracketf o \llbracketfst\rrbracket) v, (\llbracketG2\rrbracketf o \llbracketsnd\rrbracket) v)]
= { See biccc for definitions. }
    [\llbracketG1\rrbracketf ○ \llbracketfst\rrbracket] \Delta [\llbracketG | \f o \llbracketsnd\rrbracket]
= { See biccc for definitions. }
    ([\llbracketGG1]] [f] ○ fst) \Delta ([\llbracketGG\] [f] ○ snd)
= { Inductive hypothesis. }
    (G1 [f] ○ fst) \Delta (G}\mp@subsup{G}{2}{[f] ○ snd)
=
    G
=
    (G1}\times\mp@subsup{G}{2}{}) [f
    [\llbracketGG1 + G | \] [f]
=
    [\lambdaf x. \llbracketcase\rrbracketx (\llbracketinl\rrbracketo \llbracketG1\rrbracketf)(\llbracketinr\rrbracket○ \llbracketG2\rrbracketf)] [f]
=
    [\lambdax. \llbracketcase\rrbracketx (\llbracketinl\rrbracket\circ \llbracketG1\rrbracketf)(\llbracketinr\rrbracket\circ \llbracketG | f)]
= { See biccc for definitions. }
    〔\llbracketinl\rrbracket\circ \llbracketG1\rrbracketf] \nabla [\llbracketinr\rrbracket ○ \llbracketG (G\f]
= { See biccc for definitions. }
    (inl ○ [\llbracketG1\rrbracket] [f]) \nabla (inr ○ [\llbracketGG \rrbracket] [f])
= { Inductive hypothesis. }
    (inl ○ G [f]) \nabla (inr ○ G [fl])
=
    G1 [f] + G [f]
=
    (G1+G
```


4 Proofs for in and out

```
out : }\mu\textrm{F}->\textrm{F}\mu\textrm{F}=\mathrm{ fold_F (F in)
    out = fold_F (F in)
\Leftrightarrow { Universality property. }
    out o in = F in o F out
\Leftrightarrow
    out o in = F (in O out)
\Leftrightarrow
    id = F id
\Leftrightarrow
    \top
in : F \nuF }->\nu\textrm{F}=\mathrm{ unfold_F (F out)
    in = unfold_F (F out)
\Leftrightarrow { Universality property. }
    out o in = F in o F out
\Leftrightarrow{ As above. }
    T
```

The category-theoretic proofs above imply the set-theoretic results
out : $\mu \mathrm{F} \rightarrow \mathrm{F} \mu \mathrm{F}=\langle\langle$ fold_F (F in) $\rangle\rangle$
and
in : F $\nu \mathrm{F} \rightarrow \nu \mathrm{F}=\left\langle\left\langle u n f o l d _F\right.\right.$ (F out) $\left.\rangle\right\rangle$,
since $F=\langle\langle\mathrm{F}\rangle\rangle$ (see functor-properties), fold $=\langle\langle$ fold $\rangle\rangle$ etc.
Proofs of the same structure can also be used to prove the
domain-theoretic results
out : $\mu \mathrm{F} \rightarrow \mathrm{F} \mu \mathrm{F}=\llbracket$ fold_F (F in) \rrbracket
and
in : F $\nu \mathrm{F} \rightarrow \nu \mathrm{F}=$ 【unfold_F (F out) 】,
since $L(F)=\llbracket F \rrbracket$ (see functor-properties), etc., and the functions out
and $L(F)$ in are both strict.
For verbosity we also include explicit proofs for the domain-theoretic
case:
out : $\mu \mathrm{F} \rightarrow \mathrm{F} \mu \mathrm{F}=$ fold_F (L(F) in)

```
    fold_F(L(F) in)
fix ( }\lambda\textrm{g}.\textrm{L}(\textrm{F})\mathrm{ in ○ L(F) g o out)
=
    fix (\lambdag. L(F) (in ○ g) o out)
```

Section 4: Proofs for in and out

```
out is a solution to L(F) (in ○ g) o out = g. Is it the least
solution? We need to prove that L(F) (in \circ g) o out = g = out \sqsubseteqg.
out\sqsubseteqgg id\sqsubseteqin \circg, and in ○g = in ○ L(F) (in O g) o out
id = fix (\lambdag. in ○ L(F) g o out), so id \sqsubseteqf for all f satisfying
f = in ○ L(F) f ○ out. Done!
in : F \nuF }->\nu\textrm{F}=\mp@code{unfold_F (L(F) out)
```

 unfold_F (L (F) out)
 $=$
fix ($\lambda \mathrm{g}$. in $\circ \mathrm{L}(\mathrm{F}) \mathrm{g} \circ \mathrm{L}(\mathrm{F})$ out)
=
fix ($\lambda \mathrm{g}$. in $\circ \mathrm{L}(\mathrm{F})(\mathrm{g} \circ$ out))
in is a solution to in $\circ \mathrm{L}(\mathrm{F})(\mathrm{g} \circ$ out) $=\mathrm{g}$. Is it the least
solution? We need to prove that in $\circ \mathrm{L}(\mathrm{F})$ ($\mathrm{g} \circ$ out) $=\mathrm{g} \Rightarrow \mathrm{in} \sqsubseteq \mathrm{g}$.
in $\sqsubseteq \mathrm{g} \Leftrightarrow \mathrm{id} \sqsubseteq \mathrm{g} \circ$ out, and $\mathrm{g} \circ$ out $=$ in $\circ \mathrm{L}(\mathrm{F})(\mathrm{g} \circ$ out) \circ out
Done as above!

5 Proofs relating in, out and the PER

```
in x ~__\muF in y }\Leftrightarrow\quad\textrm{x}\mp@subsup{~}{_}{\prime}(\textrm{F}\mu\textrm{F})\textrm{y
    x ~_\nuF y }\Leftrightarrow\mathrm{ out x _ _ (F vF) out y
```

The symmetric variants also hold, since in and out are isomorphisms.

Note first that, by induction over G, if all pairs in X are related, then all pairs in O^{\prime} _F(G) (X) are also related.

- $\mu \mathrm{F}, \Rightarrow$:

```
    in x ~ in y : \muF
    \Leftrightarrow{ Def ~, \muF fixpoint. }
        (in x, in y) }\in\mu(F)=O(F)(\muO(F)
    \Leftrightarrow{ Def O(F). }
        (x, y) \in O'_F(F)(\mu0(F))
    => { Initial statement above. }
        x ~ y : F \muF
```

- $\mu \mathrm{F}, \Leftarrow:$
$\forall \mathrm{x}, \mathrm{y} \in \llbracket \mathrm{F} \mu \mathrm{F} \rrbracket . \mathrm{x} \sim \mathrm{y} \Rightarrow$ in $\mathrm{x} \sim$ in y
\Leftrightarrow
$\forall x, y \in \llbracket F \mu F \rrbracket . x \sim y \Rightarrow($ in x, in $y) \in \mu O(F)$
$\Leftrightarrow\{$ See discussion in definitions. \}
$\forall x, y \in \llbracket F \mu F \rrbracket . x \sim y \Rightarrow$
$\forall X \subseteq \llbracket \mu F \rrbracket^{2} \cdot \mu 0(F) \subseteq X \wedge O(F)(X) \subseteq X \Rightarrow$ (in x, in $\left.y\right) \in X$
$\Leftarrow\{$ Transitivity. \}
$\forall \mathrm{x}, \mathrm{y} \in \llbracket \mathrm{F} \mu \mathrm{F} \rrbracket, \mathrm{X} \subseteq \llbracket \mu \mathrm{F} \rrbracket^{2}$.
$\mathrm{x} \sim \mathrm{y} \wedge \mu \mathrm{O}(\mathrm{F}) \subseteq \mathrm{X} \Rightarrow$ (in x , in y$) \in \mathrm{O}(\mathrm{F})(\mathrm{X})$
$\Leftrightarrow\{$ Definition of $O(F)$.
$\forall \mathrm{x}, \mathrm{y} \in \llbracket \mathrm{F} \mu \mathrm{F} \rrbracket, \mathrm{X} \subseteq \llbracket \mu \mathrm{F} \rrbracket^{2}$.
$\mathrm{x} \sim \mathrm{y} \wedge \mu \mathrm{O}(\mathrm{F}) \subseteq \mathrm{X} \Rightarrow(\mathrm{x}, \mathrm{y}) \in \mathrm{O}^{\prime} _\mathrm{F}(\mathrm{F})(\mathrm{X})$
$\Leftarrow\{$ Generalise. $\}$
$\forall \mathrm{G} \leq \mathrm{F}, \mathrm{x}, \mathrm{y} \in \llbracket \mathrm{G} \mu \mathrm{F} \rrbracket, \mathrm{X} \subseteq \llbracket \mu \mathrm{F} \rrbracket^{2}$.
$x \sim y \wedge \mu 0(F) \subseteq X \Rightarrow(x, y) \in O^{\prime} _F(G)(X)$
$\Leftarrow\{$ Induction over G. \}
$\forall \mathrm{G} \leq \mathrm{F}, \mathrm{X} \subseteq \llbracket \mu \mathrm{F} \rrbracket^{2}$.
$\mu \mathrm{O}(\mathrm{F}) \subseteq \mathrm{X}$
$\Rightarrow\left(\forall G^{\prime}<G, x, y \in \llbracket G^{\prime} \mu F \rrbracket . x \sim y \Rightarrow(x, y) \in O^{\prime} _F\left(G^{\prime}\right)(X)\right)$
$\Rightarrow \forall x, y \in \llbracket G \mu F \rrbracket . x \sim y \Rightarrow(x, y) \in O^{\prime} _F(G)(X)$
\Leftrightarrow \{ Case analysis. \}
 - G = Id:
$\forall \mathrm{X} \subseteq \llbracket \mu \mathrm{F} \rrbracket^{2}, \mathrm{x}, \mathrm{y} \in \llbracket \mu \mathrm{F} \rrbracket$.
$\mu 0(F) \subseteq X \wedge x \sim y \Rightarrow(x, y) \in X$

Section 5: Proofs relating in, out and the PER

$$
\Leftrightarrow \underset{T}{\{ }(\mathrm{x}, \mathrm{y}) \in \mu \mathrm{O}(\mathrm{~F}) .\}
$$

- $\mathrm{G}=\mathrm{K}_{-} \sigma$:

```
    *x, y \in\llbracket\sigma\rrbracket.
        x}~\textrm{y}=>\textrm{x}~\textrm{y
\Leftrightarrow
    \top
```

- $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}$:
$\forall \mathrm{X} \subseteq \llbracket \mu \mathrm{F} \rrbracket^{2}$.
$\mu 0(F) \subseteq X$
$\Rightarrow\left(\forall G^{\prime}<G, x, y \in \llbracket G^{\prime} \mu F \rrbracket . x \sim y \Rightarrow(x, y) \in O^{\prime} _F\left(G^{\prime}\right)(X)\right)$
$\Rightarrow \forall x_{1}, y_{1} \in \llbracket G_{1} \mu F \rrbracket, x_{2}, y_{2} \in \llbracket G_{2} \mu F \rrbracket$.
$\mathrm{x}_{1} \sim \mathrm{y}_{1} \wedge \mathrm{x}_{2} \sim \mathrm{y}_{2} \Rightarrow\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \in \mathrm{O}^{\prime}{ }_{\mathrm{H}} \mathrm{F}\left(\mathrm{G}_{1}\right)(\mathrm{X}) \wedge\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \in \mathrm{O}^{\prime}{ }_{\mathrm{Z}} \mathrm{F}\left(\mathrm{G}_{2}\right)(\mathrm{X})$
\Leftrightarrow
\top
- $G=G_{1}+G_{2}$:

```
    \forallX\subseteq\llbracket\muF\rrbracket}\mp@subsup{|}{}{2}
        \muO(F)\subseteqX
        # (\forall G' < G, x, y \in\llbracketG' }\mu\textrm{F}\rrbracket. x ~ y = (x, y) \in O'_F(G')(X))
    =>\quad\forall \mp@subsup{x}{1}{},\mp@subsup{\textrm{y}}{1}{}\in\llbracket\mp@subsup{\textrm{G}}{1}{}\mu\textrm{F}\rrbracket.
        \mp@subsup{x}{1}{}~\mp@subsup{y}{1}{}=>(\mp@subsup{x}{1}{},\mp@subsup{y}{1}{})\in\mp@subsup{0}{}{\prime}\mp@subsup{}{~}{\prime}F(\mp@subsup{G}{1}{})(X)
        \wedge \forall ( }\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{y}}{2}{}\in\llbracket\mp@subsup{\textrm{G}}{2}{}\mu\textrm{FF}\rrbracket
                        x
\Leftrightarrow
    \top
```

- $\nu \mathrm{F}, \Rightarrow$:
$\mathrm{x} \sim \mathrm{y}: \nu \mathrm{F}$
$\Leftrightarrow\{$ Def $\sim, \nu F$ fixpoint. $\}$
$(x, y) \in \nu O(F)=O(F)(\nu O(F))$
$\Leftrightarrow\{\operatorname{Def} O(F)$.
(out x, out y) $\in O^{\prime}$ _ $F(F)(\nu D(F))$
\Rightarrow \{ Initial statement above. \}
out $\mathrm{x} \sim$ out $\mathrm{y}: \mathrm{F} \nu \mathrm{F}$
- $\nu \mathrm{F}, \Leftarrow:$

$$
\begin{aligned}
& \forall \mathrm{x}, \mathrm{y} \in \llbracket \nu \mathrm{~F} \rrbracket \text {. out } \mathrm{x} \sim \text { out } \mathrm{y} \Rightarrow \mathrm{x} \sim \mathrm{y} \\
& \Leftrightarrow \\
& \forall \mathrm{x}, \mathrm{y} \in \llbracket \nu \mathrm{~F} \rrbracket \text {. out } \mathrm{x} \sim \text { out } \mathrm{y} \Rightarrow(\mathrm{x}, \mathrm{y}) \in \nu 0(\mathrm{~F})
\end{aligned}
$$

Section 5: Proofs relating in, out and the PER

```
& Use coinduction. Let
    { X = { (x, y) \in\llbracket\nuF\rrbracket \ | out x ~ out y }.
    X\subseteqO(F)(X)
\Leftrightarrow
    *x, y \in\llbracket\nuF\rrbracket. out x ~ out y
        # (x, y) \in O(F)(X)
\Leftrightarrow{ in/out are inverses, definition of O(F). }
    |x,y\in\llbracketF \nuF\rrbracket. x ~ y = (x, y) \in O'_F(F)(X)
&{ Generalise. }
    \forallG\leqF, x, y \in\llbracketG \nuF\rrbracket. x ~ y = (x, y) \in O'_F(G)(X)
& { Induction over G. }
    G \leq F .
        (\forallG'< G, x, y \in\llbracketG' \nuF\rrbracket. x ~ y = (x, y) \in O'_F(G')(X))
        => \forallx,y \in\llbracketG vF\rrbracket. x ~ y = (x, y) \in O'_F(G)(X)
\Leftrightarrow { Case analysis. }
- G = Id:
    * x, y }\in\llbracket\nuF\rrbracket. x ~ y = out x ~ out y
    & { m part of proof. }
- G = K_\sigma:
    \forall\textrm{x},\textrm{y}\in\llbracket\sigma\rrbracket. x ~ y = x ~ y
    \Leftrightarrow
        \top
- G = G1 }\times\mp@subsup{G}{2}{}
    (\forall G' < G, x, y \in\llbracketG' \nuF\rrbracket. x ~ y = (x, y) \in O'_F(G')(X))
    =>\forall x
        x
        =>( }\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{y}}{1}{})\in\mp@subsup{0}{}{\prime}\mp@subsup{_}{_}{\prime}(\mp@subsup{\textrm{G}}{1}{})(\textrm{X})\wedge(\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{y}}{2}{})\in\mp@subsup{0}{}{\prime}\mp@subsup{}{_}{\prime}\textrm{F}(\mp@subsup{\textrm{G}}{2}{})(\textrm{X}
    \Leftrightarrow
    T
-G = G 
    (\forall G' < G, x, y \in\llbracketG' \nuF\rrbracket. x ~ y = (x, y) \in O'_F(G')(X))
```



```
        \wedge \forall }\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{y}}{2}{}\in\llbracket\mp@subsup{G}{2}{}\nu\textrm{F}\rrbracket. \mp@subsup{x}{2}{}~\mp@subsup{\textrm{y}}{2}{}=>(\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{y}}{2}{})\in\mp@subsup{0}{}{\prime}_\textrm{F}(\mp@subsup{\textrm{G}}{2}{})(\textrm{X}
\Leftrightarrow
    \top
```


6 The PER is a PER

Let us now prove that the "PER" is a PER. Since all definitions are symmetric the relation is obviously symmetric. Transitivity follows by induction over the type structure. The only non-trivial cases are those for $\mu \mathrm{F}$ and $\nu \mathrm{F}$.
$\mu \mathrm{F}$
$\forall \mathrm{F}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in \llbracket \mu \mathrm{F} \rrbracket$.
$\mathrm{x} \sim \mathrm{y}: \mu \mathrm{F} \wedge \mathrm{y} \sim \mathrm{z}: \mu \mathrm{F} \Rightarrow \mathrm{x} \sim \mathrm{z}: \mu \mathrm{F}$
\Leftrightarrow Definition \sim
$\forall \mathrm{F}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in \llbracket \mu \mathrm{F} \rrbracket$.
$(\mathrm{x}, \mathrm{y}) \in \mu \mathrm{O}(\mathrm{F}) \wedge \mathrm{y} \sim \mathrm{z}: \mu \mathrm{F} \Rightarrow \mathrm{x} \sim \mathrm{z}: \mu \mathrm{F}$
\Leftarrow Proof by induction. Define X_F \equiv
$\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \llbracket \mu \mathrm{F} \rrbracket \wedge \mathrm{x} \sim \mathrm{y} \wedge(\forall \mathrm{z} \in \llbracket \mu \mathrm{F} \rrbracket . \mathrm{y} \sim \mathrm{z} \Rightarrow \mathrm{x} \sim \mathrm{z})\}$.
Prove that $O(F)\left(X _F\right) \subseteq X_{-} F$ which implies that $\mu O(F) \subseteq X_{-} F$.
$\forall \mathrm{F}, \mathrm{x}, \mathrm{y} \in \llbracket \mu \mathrm{F} \rrbracket$.
$(\mathrm{x}, \mathrm{y}) \in \mathrm{O}(\mathrm{F})\left(\mathrm{X} _\mathrm{F}\right) \Rightarrow \mathrm{x} \sim \mathrm{y} \wedge(\forall \mathrm{z} \in \llbracket \mu \mathrm{F} \rrbracket . \mathrm{y} \sim \mathrm{z} \Rightarrow \mathrm{x} \sim \mathrm{z})$
\Leftrightarrow Rewrite, in/out bijections, see also per-and-in-out.
$\forall \mathrm{F}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in \llbracket \mathrm{F} \mu \mathrm{F} \rrbracket$.
$(\mathrm{x}, \mathrm{y}) \in \mathrm{O}^{\prime}{ }^{\prime} \mathrm{F}(\mathrm{F})\left(\mathrm{X} _\mathrm{F}\right) \Rightarrow \mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sim \mathrm{z} \Rightarrow \mathrm{x} \sim \mathrm{z}$
\Leftarrow Generalise.
$\forall \mathrm{F}, \mathrm{G} \leq \mathrm{F}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in \llbracket \mathrm{G} \mu \mathrm{F} \rrbracket$.
(x, y) $\in \mathrm{O}^{\prime}$ _ $\mathrm{F}(\mathrm{G})\left(\mathrm{X} _\mathrm{F}\right) \Rightarrow \mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sim \mathrm{z} \Rightarrow \mathrm{x} \sim \mathrm{z}$
\Leftarrow Induction over G.
$\forall \mathrm{F}, \mathrm{G} \leq \mathrm{F}$.
$\left(\forall G^{\prime}<G, x, y, z \in \llbracket G^{\prime} \mu F \rrbracket\right.$.
(x, y) $\in \mathrm{O}^{\prime}$ _F(G') (X_F) $\Rightarrow \mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sim \mathrm{z} \Rightarrow \mathrm{x} \sim \mathrm{z}$)
$\Rightarrow \forall x, y, z \in \llbracket G \mu F \rrbracket$.
(x, y) $\in \mathrm{O}^{\prime}$ _F(G)(X_F) $\Rightarrow \mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sim \mathrm{z} \Rightarrow \mathrm{x} \sim \mathrm{z}$
\Leftarrow Case on G.

- G = Id:
\Leftarrow Nothing < Id, definition O'_F(Id) and Id.

```
F, x, y, z \in\llbracket\muF\rrbracket.
    x ~ y ^ y ~ z = x ~ z
    # x }~\textrm{y}\wedge\textrm{y}~\textrm{z}=>\textrm{x}~\textrm{z
& Assumption.
T
- G = K_\sigma \leq F:
&Nothing < K_\sigma, definition O'_F(K_\sigma) and K_\sigma.
|x, y, z \in\llbracket\sigma\rrbracket.
    x ~ y }=>\textrm{x}~\textrm{y}\wedge\textrm{y}~\textrm{z}=>\textrm{x}~\textrm{z
& Assumption.
x, y, z \in\llbracket\sigma\rrbracket.
    x ~ y ^ y ~ z = x ~ z
\Leftarrow \mp@code { O u t e r ~ i n d u c t i v e ~ h y p o t h e s i s ~ ( ~ } \sigma < \nu F ) \text { .}
T
-G = G1 }\times\mp@subsup{\textrm{G}}{2}{}
& Definition O'_F(G1 }\times\mp@subsup{G}{2}{\prime}\mathrm{ ).
F F.
        (\forall G' < G, x, y, z \in \llbracketG' }\textrm{F}\rrbracket
            (x, y) \in O'_F(G')(X_F) => x ~ y ^ y ~ z = x ~ z)
    => \forall x, y, z \in \llbracketG \muF\rrbracket.
```



```
                                    ( (b
        => x ~ y ^ y ~ z = x ~ z
\LeftrightarrowRewrite. z \in\llbracket(G
    z = ( }\mp@subsup{z}{1}{},\mp@subsup{z}{2}{\prime})
F
        ( }\forall\mp@subsup{G}{}{\prime}<<G,x,y,z\in\llbracketG'\muF\rrbracket
            (x, y) \in O'_F(G')(X_F) = x ~ y ^ y ~ z = x ~ z)
```



```
        =>(\mp@subsup{a}{1}{},\mp@subsup{b}{1}{})~(\mp@subsup{a}{2}{},\mp@subsup{b}{2}{})\wedge(\mp@subsup{a}{2}{},\mp@subsup{b}{2}{})~(\mp@subsup{z}{1}{},\mp@subsup{z}{2}{})=>(\mp@subsup{a}{1}{},\mp@subsup{b}{1}{})~(\mp@subsup{z}{1}{},\mp@subsup{z}{2}{})
```

\Leftarrow Specialise.

```
F}\mathrm{ .
            ((\forall a (1, a}\mp@subsup{a}{2}{},\mp@subsup{z}{1}{}\in\llbracket\mp@subsup{G}{1}{}\mu\textrm{F}\rrbracket
```



```
        \wedge
        (\forall \mp@subsup{b}{1}{},\mp@subsup{b}{2}{},\mp@subsup{\textrm{z}}{2}{}\in\llbracket\mp@subsup{G}{2}{}\mu\textrm{F}\rrbracket.
```



```
        )
    )
    =>\forall a
        (a
        =>(\mp@subsup{a}{1}{},\mp@subsup{b}{1}{})~(\mp@subsup{a}{2}{},\mp@subsup{b}{2}{})\wedge(\mp@subsup{a}{2}{},\mp@subsup{b}{2}{})~(\mp@subsup{z}{1}{},\mp@subsup{z}{2}{})=>(\mp@subsup{a}{1}{},\mp@subsup{b}{1}{})~(\mp@subsup{z}{1}{},\mp@subsup{z}{2}{})
&Assumption, definition of ~
\top
-G = G1 + G :
    & Definition O'_F(G
    F}\mathrm{ .
        (\forall G' < G, x, y, z \in\llbracketG' }|\textrm{F}\rrbracket
            (x, y) \in O'_F(G')(X_F) = x ~ y ^ y ~ z = x ~ z)
        => (\forallx,y f \llbracketGG \muF\rrbracket, z \in\llbracketG \muF\rrbracket.
            (x, y) \in O'_F(G. (X_F) = inl(x) ~ inl(y) ^ inl(y) ~ z m inl(x) ~ z)
            ^
            (\forallx,y \in\llbracketGG2 \muF\rrbracket, z \in \llbracketG \muF\rrbracket.
            (x, y) \in O'_F(G2)(X_F) => inr (x) ~ inr (y) ^ inr (y) ~ z m inr (x) ~ z)
    | Definition ~, inl(y) ~ z implies that z = inl(z'), and similarly
    for inr.
    F
        (\forall G'< G, x, y, z \in\llbracketG' }|\textrm{F}\rrbracket
            (x, y) \in O'_F(G')(X_F) = x ~ y ^ y ~ z = x ~ z)
    =>(\forall\textrm{x},\textrm{y},\textrm{z}\in\llbracket\mp@subsup{G}{1}{}\mu\textrm{F}\rrbracket.
            (x, y) \in O, _F(G1)(X_F) => x ~ y ^ y ~ z m x ~ z)
            ^
            (\forallx,y, z \in \llbracketG G \muF\rrbracket.
            (x, y) \in O'_F(Gq)(X_F) = x ~ y ^ y ~ z = x ~ z)
    & Assumption.
    T
\nuF
FF, x, y, z \in\llbracket\nuF\rrbracket.
    x}~\textrm{y}\wedge\textrm{y}~\textrm{z}=>\textrm{x}~\textrm{z
```

```
| Definition ~.
F F, x, y, z \in \llbracket\nuF\rrbracket.
    x ~ y ^ y ~ z = (x, z) \in \nuO(F)
& Rewrite.
F, x, z \in\llbracket |F\rrbracket.
    (\exists y \in\llbracket\nuF\rrbracket. x ~ y ^ y ~ z) => (x, z) \in \nuO(F)
&Proof by coinduction. Define X_F \equiv
        {(x, z) \in\llbracket\nuF\rrbracket\mp@subsup{\rrbracket}{}{2}|\existsy\in\llbracket\nuF\rrbracket. x ~ y ^ y ~ z }.
    Prove that X_F \subseteqO(F)(X_F) which implies that X_F\subseteq\nuO(F).
F, x, z \in \llbracket\nuF\rrbracket.
    (x, z) \in X_F = (x, z) \in O(F)(X_F)
& Rewrite.
F, x, y, z \in\llbracket | F\rrbracket.
    x ~ y ^ y ~ z = (x, z) \in O(F)(X_F)
|in/out bijections, see also per-and-in-out.
F F, x, y, z \in\llbracketF \nuF\rrbracket.
    x ~ y ^ y ~ z = (x, z) \in O'_F(F)(X_F)
Generalise.
F, G \leq F, x, z \in \llbracketG vF\rrbracket.
    x ~ y ^ y ~ z = (x, z) \in O'_F(G)(X_F)
& Induction over G.
F, G \leq F.
    (\forallG'<G, x, y, z \in\llbracketG' \nuF\rrbracket.
        x ~ y ^ y ~ z = (x, z) \in O'_F(G')(X_F))
    =>\forallx, y, z \in \llbracketG \nuF\rrbracket.
        x ~ y ^ y ~ z = (x, z) \in O'_F(G)(X_F)
& Case on G.
- G = Id:
    & Nothing < Id, definition O'_F(Id) and Id.
    F F, x, y, z \in\llbracket\nuF\rrbracket.
    x ~ y ^ y ~ z = (x, z) \in X_F
```

```
| Definition X_F, assumption.
T
- G = K_\sigma \leq F:
    &Nothing < K_\sigma, definition O'_F(K_\sigma) and K_\sigma.
    x, y, z \in\llbracket\sigma\rrbracket.
    x ~ y ^ y ~ z = x ~ z
    & Outer inductive hypothesis ( }\sigma<\nu\textrm{L}\mathrm{ ).
    \top
- G = G }\mp@subsup{\textrm{G}}{1}{}\times\mp@subsup{\textrm{G}}{2}{}
```

 \(\Leftarrow\) Definition \(0^{\prime}\) _F \(\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right)\).
 \(\forall\) F.
 \(\left(\forall G^{\prime}<G, x, y, z \in \llbracket G^{\prime} \nu F \rrbracket\right.\).
 \(\left.\mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sim \mathrm{z} \Rightarrow(\mathrm{x}, \mathrm{z}) \in \mathrm{O}^{\prime} _\mathrm{F}\left(\mathrm{G}^{\prime}\right)\left(\mathrm{X} _\mathrm{F}\right)\right)\)
 \(\Rightarrow \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \llbracket \mathrm{G} \nu \mathrm{F} \rrbracket\).
 \(\mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sim \mathrm{z}\)
 \(\Rightarrow(x, z) \in\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \mid\left(a_{1}, a_{2}\right) \in 0^{\prime}{ }_{-} F\left(G_{1}\right)\left(X X_{1} F\right)\right.\),
 \(\left.\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right) \in \mathrm{O}^{\prime}{ }_{-} \mathrm{F}\left(\mathrm{G}_{2}\right)\left(\mathrm{X} _\mathrm{F}\right)\right\}\)
 $\Leftrightarrow \mathrm{x}, \mathrm{y}, \mathrm{z} \in \llbracket\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right) \nu \mathrm{F} \rrbracket \cap \operatorname{dom}(\sim)$ implies that $\mathrm{x}=\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$,
$\mathrm{y}=\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \mathrm{z}=\left(\mathrm{a}_{3}, \mathrm{~b}_{3}\right)$. Rewrite.
\forall F.
$\left(\forall G^{\prime}<G, x, y, z \in \llbracket G^{\prime} \nu F \rrbracket\right.$.
$\mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sim \mathrm{z} \Rightarrow(\mathrm{x}, \mathrm{z}) \in \mathrm{O}^{\prime}$ _F(G')(X_F))
$\Rightarrow \forall a_{1}, a_{2}, a_{3} \in \llbracket G_{1} \nu F \rrbracket, b_{1}, b_{2}, b_{3} \in \llbracket G_{2} \nu F \rrbracket$.
$\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right) \wedge\left(a_{2}, b_{2}\right) \sim\left(a_{3}, b_{3}\right)$
$\Rightarrow\left(a_{1}, a_{3}\right) \in 0^{\prime} _F\left(G_{1}\right)\left(X _F\right) \wedge\left(b_{1}, b_{3}\right) \in O^{\prime} _F\left(G_{2}\right)\left(X _F\right)$
\Leftrightarrow Definition \sim
\forall F.
$\left(\forall G^{\prime}<G, x, y, z \in \llbracket G^{\prime} \nu F \rrbracket\right.$.
$\mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sim \mathrm{z} \Rightarrow(\mathrm{x}, \mathrm{z}) \in \mathrm{O}^{\prime}$ _F $\left.\left(\mathrm{G}{ }^{\prime}\right)\left(\mathrm{X} _\mathrm{F}\right)\right)$
$\Rightarrow \forall a_{1}, a_{2}, a_{3} \in \llbracket G_{1} \nu F \rrbracket, b_{1}, b_{2}, b_{3} \in \llbracket G_{2} \nu F \rrbracket$.
$\mathrm{a}_{1} \sim \mathrm{a}_{2} \wedge \mathrm{a}_{2} \sim \mathrm{a}_{3} \wedge \mathrm{~b}_{1} \sim \mathrm{~b}_{2} \wedge \mathrm{~b}_{2} \sim \mathrm{~b}_{3}$
$\Rightarrow\left(a_{1}, a_{3}\right) \in 0^{\prime}{ }_{-} F\left(G_{1}\right)\left(X _F\right) \wedge\left(b_{1}, b_{3}\right) \in 0^{\prime}{ }_{_} F\left(G_{2}\right)\left(X _F\right)$
\Leftarrow Assumption.
T

```
- G = G }\mp@subsup{\textrm{G}}{1}{}+\mp@subsup{\textrm{G}}{2}{}
& Definition O'_F(G1 + G ( ).
F
    (\forall G' < G, x, y, z \in |G' \nuF\rrbracket.
        x ~ y ^ y ~ z = (x, z) \in O'_F(G')(X_F))
    =>\forallx, y, z \in\llbracketG \nuF\rrbracket.
        x ~ y ^ y ~ z
        =>(x, z) \in { (inl(x'), inl(z') | (x', z') \in O'_F(G1)(X_F) }
                                \cup{(inr(x'), inr(z') | (x', z') \in O'_F(G_)(X_F) }
&x~y: (G1 + G ) vF implies that x = inl (x
    x = inr( }\mp@subsup{\textrm{x}}{2}{}\mathrm{ ), y = inr( (y2), and similarly for y and z. Definition
    of ~.
F
    (\forall G' < G, x, y, z \in \llbracketG' \nuF\rrbracket.
        x ~ y ^ y ~ z = (x, z) \in O'_F(G')(X_F))
    =>((\forall \mp@subsup{x}{1}{},\mp@subsup{y}{1}{},\mp@subsup{\textrm{z}}{1}{}\in\llbracket\mp@subsup{G}{1}{}\nuF\rrbracket.
```



```
        ^
        (\forall \mp@subsup{x}{2}{}, \mp@subsup{y}{2}{},\mp@subsup{\textrm{z}}{2}{}\in\llbracket\mp@subsup{G}{2}{}\nuF\rrbracket.
```



```
        )
& Assumption.
\top
```


7 Some types are troublesome

```
Theorem: }\perp\in\operatorname{dom(~_\sigma) iff \sigma is generated by the following grammar:
    \chi ::= \nuId | \muK_\chi | \nuK_\chi
    Corollary: If vId isn't used, then }\perp\not\in\operatorname{dom(~).
    Note that \llbracket\chi\rrbracket= {\perp} for all these types.
Proof:
#: By induction over the structure of \sigma.
For all types except }\mu\textrm{F},\nu\textrm{F}\mathrm{ we have }\perp\not\in\operatorname{dom(~\sigma) by definition.
For }\mu/\nu\mathrm{ we have the following:
        \perp \in dom(~)
    #
        (\perp, \perp) \in \mu/\nuO(F)
=> { Fixpoint, \mu/\nuO(F) = O(F)(\mu/\nuO(F)). }
        ( }\perp,\perp)\inO(F)(\mu/\nuO(F)
    => { out is strict. }
    (\perp, \perp) \in O'_F(F) ( }\mu/\nu0(F)
```

Now let us proceed by case analysis on F :

- $\mathrm{F}=\mathrm{Id}:$
$\nu I d$ is generated by the grammar.
μ Id is not, but $\perp \notin \operatorname{dom}\left(\sim _\mu I d\right)$ since the empty set is a fixpoint
of $\mathrm{O}(\mathrm{Id})$, so we get a contradiction.
- $F=K_{-} \tau$:
We have $O^{\prime}{ }_{\mathrm{K}} \mathrm{F}(\mathrm{F})(\mu / \nu 0(\mathrm{~F}))=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \operatorname{dom}\left(\sim_{\sim} \tau\right), \mathrm{x} \sim \mathrm{y}\right\}$,
so $(\perp, \perp) \in O^{\prime} _F(F)(\mu / \nu 0(F))$ implies that $\perp \in \operatorname{dom}\left(\sim_{-} \tau\right)$. By the
inductive hypothesis we get that τ is generated by the grammar,
and this implies that $\mu / \nu K_{-} \tau$ is.
- $\mathrm{F}=\mathrm{F}_{1} \times \mathrm{F}_{2}$ or $\mathrm{F}_{1}+\mathrm{F}_{2}$:

By the definition of 0^{\prime} _F(F) we immediately get that (\perp, \perp) \notin $O^{\prime} \quad \mathrm{F}(\mathrm{F})(\mu / \nu 0(\mathrm{~F}))$, so we have a contradiction.
\Leftarrow : By induction over the structure of the grammar.

- $\chi=\nu I d:$

We need to show that $(\perp, \perp) \in \nu 0$ (Id), and by coinduction this is true if $X \subseteq O(I d)(X)$ for some $X \in \wp\left(\llbracket \nu I d \rrbracket^{2}\right)$ with $(\perp, \perp) \in X$. This is satisfied by $\mathrm{X}=\{(\perp, \perp)\}$.

- $\chi=\mu K_{-} \chi$:

By inductive hypothesis we get that $\perp \in \operatorname{dom}\left(\sim_{_} \chi\right)$. This implies that $(\perp, \perp) \in O^{\prime} K_{-} K_{(} K_{-}$) (X) for any X, in particular for $\mu O\left(K_{-} \chi\right)$. Hence, by strictness of in, $(\perp, \perp) \in O\left(K_{-} \chi\right)\left(\mu K_{-} \chi\right)=$ $\mu K_{-} \chi$.

- $\chi=\nu K_{-} \chi$:

Analogously to the $\mu K_{-} \chi$ case.

Theorem: $\langle\langle\sigma\rangle\rangle \neq \emptyset$ for types defined according to the following grammar:


```
F' ::= K_\sigma | F' < F | F < F' | F' + F | F + F'
F ::= Id | K_\sigma | F 人 F | F + F
Note that a type belongs to this grammar iff it syntactically contains 1 (proof by induction).
```

Proof: By induction over the type structure.
Easy for $1, \times,+, \rightarrow$.

For μF^{\prime} :
Recall:
$\langle\langle\mu \mathrm{F}\rangle\rangle=$ The codomain of the initial object in F -Alg (SET).
Since the total functions in and out both exist, we know that $\left\langle\left\langle\mu F^{\prime}\right\rangle\right\rangle=\emptyset \Leftrightarrow\left\langle\left\langle F^{\prime} \mu F^{\prime}\right\rangle\right\rangle=\emptyset$. We will now prove that $\left\langle\left\langle\mu F^{\prime}\right\rangle\right\rangle=\emptyset \Leftrightarrow$ $\left\langle\left\langle F^{\prime}{ }^{\prime} \mu F^{\prime}\right\rangle\right\rangle=\emptyset$ is impossible for functors F^{\prime} ' of the restricted kind

```
    defined above.
    Proof by induction over structure of F'':
    F'' = Id: Impossible.
    F'' = K_\tau (with \\langle\tau\rangle\rangle=\emptyset): Impossible (by inductive hypothesis).
    F'' = K_\tau (with }\langle\langle\tau\rangle\rangle\not=\emptyset\mathrm{ ): Done.
    F'' = F F }\times\mp@subsup{\mp@code{F}}{2}{}\mathrm{ or F F 
    restricted as above): Done by inductive hypothesis since \langle\langleF', \muF'\rangle
    = \emptyset iff }\langle\langle\mp@subsup{F}{1}{}\mu\textrm{F},\rangle\rangle\rangle=\emptyset\mathrm{ and }\langle\langle\mp@subsup{F}{2}{}\mu\mp@subsup{\textrm{F}}{}{\prime}\rangle\rangle=\emptyset
For \nuF: Similarly.
```


8 The function fix is not in the PER

For most types σ. fix $\notin \operatorname{dom}\left(\sim_{-} \sigma\right)$

Proof:
id $\in \operatorname{dom}(\sim)$, so fix $\in \operatorname{dom}(\sim)$ would imply that fix $i d=\perp \in \operatorname{dom}(\sim)$, which it does not for most types (see troublesome-types).

9 The fundamental theorem

If t does not contain uses of seq at type $\sigma \rightarrow \tau \rightarrow \tau$ ，where dom（ $\sim \quad \sigma$ ） includes \perp ，then the following is true：

$$
\begin{aligned}
& \left(\forall \mathrm{x} \in \mathrm{FV}(\mathrm{t}) . \Gamma_{1}(\mathrm{x}) \sim \Gamma_{2}(\mathrm{x})\right) \\
& \Rightarrow \llbracket \mathrm{t} \rrbracket \Gamma_{1} \sim \llbracket \mathrm{t} \rrbracket \Gamma_{2} .
\end{aligned}
$$

Proof by induction over structure of t ．
Inductive hypothesis：
$\forall t^{\prime}<t, \Gamma_{1}{ }^{\prime}, \Gamma_{2}{ }^{\prime}$ ．
t＇\neq seq at the wrong types \wedge
$\left(\forall \mathrm{x} \in \mathrm{FV}\left(\mathrm{t}{ }^{\prime}\right) . \Gamma_{1}{ }^{\prime}(\mathrm{x}) \sim \Gamma_{2}^{\prime}(\mathrm{x})\right)$
$\Rightarrow \llbracket \mathrm{t}^{\prime} \rrbracket \Gamma_{1}{ }^{\prime} \sim \llbracket \mathrm{t}^{\prime} \rrbracket \Gamma_{2}{ }^{\prime}$ ．
－ $\mathrm{t}=\mathrm{x}$ ：By assumption．
－ $\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2}$ ：
$\llbracket t_{1} t_{2} \rrbracket \Gamma_{1}$
$=$
$\left(\llbracket \mathrm{t}_{1} \rrbracket \Gamma_{1}\right)\left(\llbracket \mathrm{t}_{2} \rrbracket \Gamma_{1}\right)$
\sim Inductive hypothesis twice，definition of \sim ．
$\left(\llbracket \mathrm{t}_{1} \rrbracket \Gamma_{2}\right)\left(\llbracket \mathrm{t}_{2} \rrbracket \Gamma_{2}\right)$
＝
$\llbracket \mathrm{t}_{1} \mathrm{t}_{2} \rrbracket \Gamma_{2}$
－ $\mathrm{t}=\lambda \mathrm{x} . \mathrm{t}_{1}$ ：
$\llbracket \lambda \mathrm{x} . \mathrm{t}_{1} \rrbracket \Gamma_{1}$
$=$
$\lambda \mathrm{v} . \llbracket \mathrm{t}_{1} \rrbracket \Gamma_{1}[\mathrm{x} \mapsto \mathrm{v}]$
\sim Inductive hypothesis，definition of \sim ．
$\lambda \mathrm{v} . \llbracket \mathrm{t}_{1} \rrbracket \Gamma_{2}[\mathrm{x} \mapsto \mathrm{v}]$
$=$
$\llbracket \lambda \mathrm{x} . \mathrm{t}_{1} \rrbracket \Gamma_{2}$
For the rest we don＇t have to use the inductive hypothesis．
－【 seq 】～【 seq】
$\forall \mathrm{x}_{1} \sim \mathrm{x}_{2}: \sigma, \mathrm{y}_{1} \sim \mathrm{y}_{2}: \sigma^{\prime} . \llbracket$ seq $\rrbracket \mathrm{x}_{1} \mathrm{y}_{1} \sim \llbracket$ seq 】 $\mathrm{x}_{2} \mathrm{y}_{2}$
$\Leftrightarrow \perp \notin \operatorname{dom}\left(\sim_{-} \sigma\right)$ by assumption．
－【1】～【1】
\Leftrightarrow By definition．
－【（，）】～【（，）】

```
    \forall\mp@subsup{\textrm{x}}{1}{}~\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{y}}{1}{}~\mp@subsup{\textrm{y}}{2}{}.(\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{})~(\mp@subsup{\textrm{y}}{1}{},\mp@subsup{\textrm{y}}{2}{})
    \top
```

 \(\Leftrightarrow\)
 －【fst 』～【fst 』
$\forall \mathrm{p} \sim \mathrm{q} . \llbracket \mathrm{fst}$ 』 $\mathrm{p} \sim$ 【 fst 】q
$\Leftrightarrow \underset{T}{p} \sim q: \sigma \times \tau \Rightarrow p \neq \perp \neq q$ ．
－snd analogous．
－【inl 】～【 inl】 $\forall \mathrm{x} \sim \mathrm{y} . \operatorname{inl}(\mathrm{x}) \sim \operatorname{inl}(\mathrm{y})$
\Leftrightarrow T
－inr analogous．
－【 case 】～【 case 】
$\forall \mathrm{x}_{1} \sim \mathrm{x}_{2}, \mathrm{f}_{1} \sim \mathrm{f}_{2}, \mathrm{~g}_{1} \sim \mathrm{~g}_{2}$.
\llbracket case 】 $\mathrm{x}_{1} \mathrm{f}_{1} \mathrm{~g}_{1} \sim \llbracket$ case 】 $\mathrm{x}_{2} \mathrm{f}_{2} \mathrm{~g}_{2}$
$\Leftrightarrow \mathrm{x}_{\mathrm{T}} \sim \mathrm{x}_{2}: \sigma+\tau \Rightarrow \mathrm{x}_{1} \neq \perp \neq \mathrm{x}_{2}$ ．
－【 in $\rrbracket \sim$ in \rrbracket
$\forall \mathrm{x} \sim \mathrm{y} . \llbracket$ in 】 $\mathrm{x} \sim$ 【in】 y
\Leftrightarrow See per－and－in－out． $\forall \mathrm{x} \sim \mathrm{y} . \mathrm{x} \sim \mathrm{y}$
\Leftrightarrow T
－【 out 】～【 out 』

$$
\forall \mathrm{x} \sim \mathrm{y} . \llbracket \text { out } \rrbracket \mathrm{x} \sim \llbracket \text { out } \rrbracket \mathrm{y}
$$

\Leftrightarrow See per－and－in－out．
$\forall \mathrm{x} \sim \mathrm{y} . \mathrm{x} \sim \mathrm{y}$
\Leftrightarrow \top
－fold：

F：Polynomial functor on CPO＿\perp ．
fold＿F＝λ f．fix（ $\lambda \mathrm{g}$ ．f $\circ \mathrm{L}(\mathrm{F}) \mathrm{g} \circ$ out）

```
F F. fold ~ fold
| Def ~.
\forall F, f ~ g : F \tau -> \tau, x ~ y : \muF. fold f x ~ fold g y
&iven F, f, g, let X \subseteq\wp(\llbracket |F \rrbracket 2) be the set of all pairs
        (x, y) with x, y : \muF for which fold f x ~ fold g y. Use induction,
        i.e. prove that O(F)(X)\subseteqX, which implies that \muO(F)\subseteqX, i.e.
        fold f x ~ fold g y for all (x, y) \in \muO(F) ? dom(~_\muF)}\mp@subsup{}{}{2}
F F,f ~ g : F \tau -> \tau, x, y : \muF.
    fold f x ~ fold g y
    # \forall x', y' : \muF.
        (x', y') \in O(F)(x, y) => fold f x' ~ fold g y'
| Def fold, property of fix.
\forall\mp@code{f}}\textrm{f}~\textrm{g}:\textrm{F}\tau->\tau,\textrm{x},\textrm{y}:\mu\textrm{F}
    fold f x ~ fold g y
    => }\forall\mp@subsup{\textrm{x}}{}{\prime},\mp@subsup{y}{}{\prime}: : \mu\textrm{F}
        (x', y') \in O(F)(x, y)
        # (f \circ L(F) (fold f) ○ out) x' ~ (g ○ L(F) (fold g) ○ out) y'
&ef ~, f ~ g.
F, f ~ g : F \tau -> \tau, x, y : \muF.
    fold f x ~ fold g y
    => }\forall\mp@subsup{\textrm{x}}{}{\prime},\mp@subsup{\textrm{y}}{}{\prime}:\mu\textrm{F}
        (x', y') \in O(F)(x, y)
        =(L(F) (fold f) ○ out) x' ~ (L(F) (fold g) o out) y'
Def O(F), out, in isomorphisms.
\forall\mp@code{F,f ~ g : F \tau }->\tau,\textrm{x},\textrm{y}:\mu\textrm{F}.
    fold f x ~ fold g y
    => }\forall\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime}: : F \muF
        (x', y') \in O'_F(F)(x, y) = L(F) (fold f) x' ~ L(F) (fold g) y'
Generalise.
F F, f ~ g : F \tau -> \tau, x, y : \muF.
    fold f x ~ fold g y
    => }\forall\textrm{G},\mp@subsup{\textrm{x}}{}{\prime},\mp@subsup{y}{}{\prime}: : G \muF
        (x', y') \in D'_F(G) (x, y) = L(G) (fold f) x' ~ L(G) (fold g) y'
& Induction over structure of G.
```

```
F F,f ~ g : F \tau -> \tau, x, y : \muF.
    fold f x ~ fold g y
    => G .
        ( }\forall\mp@subsup{G}{}{\prime}< < G , x', y' : G' \muF
            (x', y') \in O'_F(G')(x, y) = L(G') (fold f) x' ~ L(G') (fold g) y')
            => }\forall\mp@subsup{\textrm{x}}{}{\prime},\mp@subsup{\textrm{y}}{}{\prime}:=\textrm{G}\mu\textrm{F}
            (x', y') \in O'_F(G)(x, y) = L(G) (fold f) x' ~ L(G) (fold g) y'
& Case over G.
\circ G = Id.
    | Def L(Id), O'_F(Id), nothing < Id.
    \forallF,f ~ g : F \tau -> \tau, x, y : \muF.
        fold f x ~ fold g y
        => \forall x', y' : \muF.
            (x', y') \in {(x, y) } # (fold f) x' ~ (fold g) y'
    Assumption. (Top-level inductive hypothesis.)
    T
\circ G = K_\sigma:
    | Def L(K_\sigma), O'_F(K_\sigma), nothing < K_\sigma.
    f ~ g : F \tau }->\tau,\textrm{x},\textrm{y}:\mu\textrm{F}
        fold f x ~ fold g y
        => }\forall\textrm{x},\mp@code{y' : \sigma.
            (x', y') \in{(a, b) | a, b \in dom(~_\sigma), a ~ b } # x' ~ y'
    A Assumption.
    \top
    G= G1}\times\mp@subsup{G}{2}{}
    & Def O'_F(G}\mp@subsup{G}{1}{}\times\mp@subsup{G}{2}{})
```



```
        and seq p = id when p f L .
```

```
f ~ g : F \tau -> \tau, x, y : }\mu\textrm{F}
    fold f x ~ fold g y
```



```
            L L(G1) (fold f) a }\mp@subsup{\textrm{a}}{1}{}~\textrm{L}(\mp@subsup{\textrm{G}}{1}{})\mathrm{ (fold g) b
            \wedge
            \forall a , , b
                L L(G2) (fold f) a a ~ L(G2) (fold g) b
        )
    => \forall x', y' : G \muF.
```



```
                                    (a2, b
        # (L(GG) (fold f) (fst x'), L(G (G) (fold f) (snd x')) ~
            (L(G⿴囗⿱一一儿
A Assumption.
\top
\circG=G1 + G :
& Def O'_F(G}\mp@subsup{G}{1}{}+\mp@subsup{G}{2}{})
f ~ g : F \tau }->\tau,\textrm{x},\textrm{y}:\mu\textrm{F}
    fold f x ~ fold g y
    =>(\forall a m, b
            L(G
            \wedge
            \forall a , , b
                L
        )
    => \forall x', y' : G \muF.
        (x', y') \in { (inl(x'), inl(y')) | (x', y') \in O'_F(G1)(x, y)} U
                                { (inr(x'), inr(y')) | (x', y') \in O'_F(Gq)(x, y) }
        # L(G) (fold f) x' ~ L(G) (fold g) y'
|ef L(G1+G
```

```
    f ~g : F \tau -> \tau, x, y : }\mu\textrm{F}
    fold f x ~ fold g y
```



```
            \wedge
            \forall a , , b
                L (G2) (fold f) a
        )
    => \forall x', y' : G \muF.
        (x', y') \in O'_F(GG) (x, y)
            = inl(L(G}\mp@subsup{G}{1}{})(fold f) x') ~ inl(L(G1) (fold g) y')
        ^
        (x', y') \in O'_F(G_)(x, y)
            = inr(L(G2) (fold f) x') ~ inr(L(G2) (fold g) y')
    A Assumption, def ~.
    \top
- unfold:
```

F: Polynomial functor on CPO.
unfold_F $=\lambda f$. fix ($\lambda \mathrm{g}$. in $\circ \mathrm{L}(\mathrm{F}) \mathrm{g} \circ \mathrm{f}$)
\forall F. unfold \sim unfold
\Leftrightarrow Def \sim
$\forall \mathrm{F}, \mathrm{f} \sim \mathrm{g}: \tau \rightarrow \mathrm{F} \tau, \mathrm{x} \sim \mathrm{y}: \tau$. unfold $\mathrm{f} \mathrm{x} \sim$ unfold g y
\Leftarrow Given $\mathrm{F}, \mathrm{f}, \mathrm{g}$, let $\mathrm{X} \subseteq \wp\left(\llbracket \nu \mathrm{F} \rrbracket^{2}\right)$ be
\{ (unfold f x', unfold g y') | $\left.x^{\prime}, y^{\prime}: ~ \tau, x^{\prime} \sim y^{\prime}\right\}$.
Use coinduction, i.e. prove that $X \subseteq O(F)(X)$, which implies that
$X \subseteq \nu O(F)$, i.e. (unfold $f x$, unfold $g y) \in \nu O(F)$ for all $x \sim y: \tau$.
$\forall \mathrm{F}, \mathrm{f} \sim \mathrm{g}: \tau \rightarrow \mathrm{F} \tau, \mathrm{x} \sim \mathrm{y}: \tau$.
(unfold f x, unfold g y) \in
$0(F)\left(\left\{\right.\right.$ (unfold $f x^{\prime}$, unfold $\left.\left.\left.g y^{\prime}\right) \mid x^{\prime}, y^{\prime}: \tau, x^{\prime} \sim y^{\prime}\right\}\right)$
$\Leftrightarrow \operatorname{Def} \mathrm{O}(\mathrm{F})$.
$\forall \mathrm{F}, \mathrm{f} \sim \mathrm{g}: \tau \rightarrow \mathrm{F} \tau, \mathrm{x} \sim \mathrm{y}: \tau$.
(unfold f x, unfold g y) \in
$\left\{(\operatorname{in}(a), \operatorname{in}(b)) \mid(a, b) \in 0^{\prime} _F(F)\left(\left\{\right.\right.\right.$ (unfold $f x^{\prime}$, unfold $\left.g y^{\prime}\right)$
| $\left.x^{\prime}, y^{\prime}: ~ \tau, x^{\prime} \sim y^{\prime}\right\}$) \}
\Leftrightarrow Def unfold, property of fix.

```
\forall F, f ~ g : \tau -> F \tau, x ~ y : \tau.
    (in (L(F) (unfold f) (f x)), in (L(F) (unfold g) (g y)))
    \in{(in(a), in(b)) | (a, b) \in O'_F(F)({ (unfold f x', unfold g y')
                                    | x', y' : \tau, x' ~ y' }) }
&Rwrite. (Note that the part below is slightly stronger than the
    one above for purely historical reasons...)
\forall\mp@code{F,f}~\textrm{g}:\tau->\textrm{F}\tau,\textrm{x}~\textrm{y}:\tau.
    \exists x' ~ y' : \tau.
        (L(F) (unfold f) (f x), L(F) (unfold g) (g y))
        G O'_F(F)(unfold f x', unfold g y')
Generalise.
\forall\mp@code{f}}\textrm{f}~\textrm{g}:\tau->\textrm{F}\tau,\textrm{x}~\textrm{y}:\tau
    \exists x' ~ y' : \tau.
    G.
        \forallf' ~ g' : \tau }->\mathrm{ G т.
            (L(G) (unfold f) (f' x), L(G) (unfold g) (g' y))
            G O'_F(G)(unfold f x', unfold g y')
& Induction over structure of G.
F, f ~ g : \tau }->\textrm{F}\tau,\textrm{x}~\textrm{y}:\tau
    \exists x' ~ y': \tau.
    G.
        G'< G.
            f
                (L(G') (unfold f) (f' x), L(G') (unfold g) (g' y))
                G O'_F(G')(unfold f x', unfold g y')
        #
        \forallf
            (L(G) (unfold f) (f' x), L(G) (unfold g) (g' y))
            G O'_F(G)(unfold f x', unfold g y')
& Case over G.
O G = Id:
    & Def L(Id), O'_F(Id), nothing < Id:
    \forallF,f~g : \tau -> F \tau, x ~ y : \tau.
        \exists x' ~ y' : \tau.
            |
                (unfold f (f' x), unfold g (g' y))
                \epsilon { (unfold f x', unfold g y') }
    & f' x ~ g' y : \tau by definition of ~. For the existential
            quantifier we choose (' = f' x, y' = g' y.
```

```
    \top
G = K_\sigma:
    & Def L(K_\sigma), O'_F(K_\sigma), nothing < K_\sigma:
    \forallF,f~g : \tau > F \tau, x ~ y : \tau.
        \exists x' ~ y' : \tau.
            | f' ~ g' : \tau }->\sigma
                (f' x, g' y) \in{(x', y') | x', y'\prime : \sigma, x'' ~ y' 
    f' x ~ g' y by definition of ~. For the existential quantifier
        we can choose x' = x, y' = y.
    \top
G = G1}\times\mp@subsup{\textrm{G}}{2}{}
| Def L(G}\mp@subsup{G}{1}{}\times\mp@subsup{G}{2}{}),O\_F(\mp@subsup{G}{1}{}\times\mp@subsup{G}{2}{})
        f' x ~ g' y : (G
    \forall\mp@code{f f ~ g : \tau }->\textrm{F}\tau,\textrm{x}~\textrm{y}:\tau.
        \exists}\mp@subsup{\textrm{X}}{}{\prime}~\mp@subsup{\textrm{y}}{}{\prime}: : \tau
            G' < G.
            | f}~~g': \tau >G' \tau.
                (L(G') (unfold f) (f' x), L(G') (unfold g) (g' y))
                    G O'_F(G')(unfold f x', unfold g y')
```



```
        | f
            ( ( L(G) (unfold f) (fst (f' x))
                , L(G2) (unfold f) (snd (f' x)) )
            , ( L(G, (G) (unfold g) (fst (g' x))
                        , L(G}\mp@subsup{\textrm{g}}{2}{}) (unfold g) (snd (g' x)) ) )
            \in{((\mp@subsup{a}{1}{},\mp@subsup{b}{1}{}),(\mp@subsup{a}{2}{},\mp@subsup{b}{2}{}))
                | ( }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})\in\mp@subsup{O}{}{\prime}_F(\mp@subsup{G}{1}{})(unfold f x', unfold g y')
                        ( }\mp@subsup{\textrm{b}}{1}{},\mp@subsup{b}{2}{\prime})\in\mp@subsup{O}{}{\prime}_F(\mp@subsup{G}{2}{})(unfold f x', unfold g y') 
    &Rewrite, specialise.
```

```
FF,f ~ g : \tau -> F \tau, x ~ y : \tau.
    \exists x' ~ y' : \tau.
        ( }\forall\textrm{f},~\textrm{g}, : \tau -> G G \tau.
                            (L(G1) (unfold f) (f' x), L(G}\mp@subsup{G}{1}{}) (unfold g) (g' y))
```



```
        \wedge
        |
            (L(G2) (unfold f) (f' x), L(Gq) (unfold g) (g' y))
            G O'_F(G2)(unfold f x', unfold g y')
        )
        #
        | f
            ( ( L(G) (unfold f) (fst (f' x))
                        , L(G2) (unfold f) (snd (f' x)) )
            , ( L(G1) (unfold g) (fst (g' x))
            , L(G2) (unfold g) (snd (g' x)) ) )
            \in{((\mp@subsup{a}{1}{},\mp@subsup{b}{1}{}),(\mp@subsup{a}{2}{},\mp@subsup{b}{2}{}))
                        | (a1, a a ) \in O'_F(G
                                    ( }\mp@subsup{\textrm{b}}{1}{},\mp@subsup{b}{2}{\prime})\in\mp@subsup{O}{}{\prime}_\textrm{F}(\mp@subsup{\textrm{G}}{2}{})\mathrm{ (unfold f x', unfold g y') }
\LeftrightarrowAssumption, fst \circ f' ~ fst \circ g' : \tau }->\mp@subsup{G}{1}{
    snd \circ f' ~ snd \circ g' : \tau }->\mp@subsup{G}{2}{}\tau\mathrm{ by def }~\mathrm{ .
T
G= G1 + G %:
| Def O'_F(G}\mp@subsup{G}{1}{}+\mp@subsup{G}{2}{})
\forallF,f~g : \tau -> F \tau, x ~ y : \tau.
        \exists x' ~ y' : \tau.
        G'< G.
            | f
                        (L(G') (unfold f) (f' x), L(G') (unfold g) (g' y))
            G O'_F(G')(unfold f x', unfold g y')
        #
        \forallf' ~ g' : \tau -> G \tau.
            (L(G) (unfold f) (f' x), L(G) (unfold g) (g' y))
            \in { (inl(x'), inl(y'))
                        | (x', y') \in O'_F(Gi)(unfold f x', unfold g y')} U
            { (inr(x'), inr(y'))
            | (x', y') \in O'_F(Gq)(unfold f x', unfold g y') }
& Two cases. f' x ~ g' y # both inl or both inr.
\circ f' x = inl(a), g' y = inl(b):
    &ef L(G
```

```
    \forall\mp@code{f,f}~\textrm{g}:\tau->\textrm{F}\tau,\textrm{x}~\textrm{y}:\tau.
    \exists x' ~ y' : \tau.
        G'<G.
            |' ~ g' : \tau }->\mathrm{ G' т.
                (L(G') (unfold f) (f' x), L(G') (unfold g) (g' y))
                G O'_F(G')(unfold f x', unfold g y')
        #
        \forallf}~~g': : | G \tau.
            \existsa~b : G | \tau. f' x = inl(a) ^ g' y = inl(b)
            =>(inl(L(G)
            \in{(inl(x'), inl(y'))
                        | (x', y') \in O'_F(G
&Rewrite, specialise.
    \forall\mp@code{F,f}~\textrm{g}:\tau->\textrm{F}\tau,\textrm{x}~\textrm{y}:\tau.
    \exists}\mp@subsup{\textrm{x}}{}{\prime}~\mp@subsup{\textrm{y}}{}{\prime}: : \tau
            |
                (L(G1) (unfold f) (f' x), L(G}\mp@subsup{G}{1}{}) (unfold g) (g' y))
                G O'_F(G1)(unfold f x', unfold g y')
            #
            \forall f' ~ g'\prime : \tau }->\textrm{G}\tau
                \existsa~b : G G \tau. f' 
            =>(L(G)
                G O'_F(G1)(unfold f x', unfold g y')
                            \LeftrightarrowAssumption, choose f' = \lambdax. a, g' = \lambday. b. f', g' : \tau -> G ( \tau,
        both continuous, and f' ~ g' since a ~ b.
    T
\circ f' x = inr(a), g' y = inr(b): Analogous.
```


10 The PER is monotone

```
The predicate ~_\sigma can be viewed as a function ~_\sigma : \llbracket \sigma \rrbracket 2 -> 1_ &:
```

$\sim_{-} \sigma(\mathrm{x}, \mathrm{y})=\left\{\star, \mathrm{x} \sim_{-} \sigma \mathrm{y}\right.$,
$\{\perp$, otherwise.
This function will now be shown to be monotone.
First note that it is enough to prove monotonicity for one argument,
since the relation is symmetric. We need to show the following:
$\mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x} \sim \mathrm{y}^{\prime}$.
Proof: By induction over the type structure.
1: Done.
$\sigma \rightarrow \tau:$
Given: $f x \sim g y \sqsubseteq g \prime y \Rightarrow f x \sim g \prime y$
$\mathrm{f} \sim \mathrm{g} \sqsubseteq \mathrm{g}^{\prime}$
Need to prove: $f \sim g$,
Take $\mathrm{x} \sim \mathrm{y}$. We have $\mathrm{f} \mathrm{x} \sim \mathrm{g} \mathrm{y} \sqsubseteq \mathrm{g}$ ' y. Done.
$\sigma \times \tau:$
Given: $\mathrm{x}_{1} \sim \mathrm{x}_{2} \sqsubseteq \mathrm{x}_{2}{ }^{\prime} \Rightarrow \mathrm{x}_{1} \sim \mathrm{x}_{2}{ }^{\prime}$
$\mathrm{y}_{1} \sim \mathrm{y}_{2} \sqsubseteq \mathrm{y}_{2}{ }^{\prime} \Rightarrow \mathrm{y}_{1} \sim \mathrm{y}_{2}{ }^{\prime}$
$\mathrm{p} \sim \mathrm{q} \sqsubseteq \mathrm{q}^{\prime}$
Need to prove: $p \sim q^{\prime}$
Since $p \sim q$ we get that $p, q \neq \perp$ which implies that $p=\left(x_{1}, y_{1}\right)$ and
$\mathrm{q}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ for some values with $\mathrm{x}_{1} \sim \mathrm{x}_{2}, \mathrm{y}_{1} \sim \mathrm{y}_{2}$. Furthermore
$\mathrm{q} \sqsubseteq \mathrm{q}^{\prime}$, so $\mathrm{q}^{\prime}=\left(\mathrm{x}_{2}{ }^{\prime}, \mathrm{y}_{2}{ }^{\prime}\right)$ for some $\mathrm{x}_{2}{ }^{\prime}, \mathrm{y}_{2}{ }^{\prime}$ with $\mathrm{x}_{2} \sqsubseteq \mathrm{x}_{2}{ }^{\prime}$,
$\mathrm{y}_{2} \sqsubseteq \mathrm{y}_{2}{ }^{\prime}$. By the inductive hypothesis we then get that $\mathrm{p} \sim \mathrm{q}^{\prime}$.
$\sigma+\tau$:
Given: $\mathrm{a} \sim \mathrm{b} \sqsubseteq \mathrm{b}^{\prime} \Rightarrow \mathrm{a} \sim \mathrm{b}^{\prime}$
$\mathrm{p} \sim \mathrm{q} \sqsubseteq \mathrm{q}^{\prime}$
Need to prove: $p \sim q^{\prime}$
Since $p \sim q$ we get that $p, q \neq \perp$ which implies either that $p=$
inl (a) and $q=\operatorname{inl}(b)$ or that $p=\operatorname{inr}(a)$ and $q=\operatorname{inr}(b)$, for some a,
b with $\mathrm{a} \sim \mathrm{b}$. Furthermore $\mathrm{q} \sqsubseteq \mathrm{q}^{\prime}$, so in the inl case we get q' =
inl(b') for some b' with $b \sqsubseteq b^{\prime}$. By the inductive hypothesis we then get that $p \sim q^{\prime}$. The inr case is analogous.
$\mu \mathrm{F}:$

```
    \(\forall \mathrm{x}, \mathrm{y}, \mathrm{y}{ }^{\prime} \in \llbracket \mu \mathrm{F} \rrbracket . \mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x} \sim \mathrm{y}^{\prime}\)
\(\Leftarrow\)
    \(\forall \mathrm{x}, \mathrm{y}, \mathrm{x}, \mathrm{y}^{\prime} \in \llbracket \mu \mathrm{F} \rrbracket . \mathrm{x} \sim \mathrm{y} \wedge \mathrm{x} \sqsubseteq \mathrm{x}{ }^{\prime} \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x}{ }^{\prime} \sim \mathrm{y}^{\prime}\)
    \{ Use induction. Let
\(\Leftarrow \mid \quad X=\left\{(x, y) \in \llbracket \mu F \rrbracket^{2} \mid \forall x^{\prime}, y^{\prime} \in \llbracket \mu F \rrbracket . x \sqsubseteq x x^{\prime} \wedge y \sqsubseteq y^{\prime} \Rightarrow x^{\prime} \sim y^{\prime}\right\}\).
    \(\{\) We are done if we can show that \(O(F)(X) \subseteq X\).
    \(\forall(\mathrm{x}, \mathrm{y}) \in \mathrm{O}(\mathrm{F})(\mathrm{X})\).
        \(\forall x^{\prime}, y^{\prime} \in \llbracket \mu F \rrbracket\).
            \(\mathrm{x} \sqsubseteq \mathrm{x}{ }^{\prime} \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x}{ }^{\prime} \sim \mathrm{y}^{\prime}\)
\(\Leftrightarrow\{\) in, out isomorphisms, see also per-and-in-out. \}
    \(\forall(x, y) \in 0^{\prime}{ }^{\prime} F(F)(X)\).
        \(\forall x^{\prime}, y^{\prime} \in \llbracket F \mu F \rrbracket\).
            \(\mathrm{x} \sqsubseteq \mathrm{x}{ }^{\prime} \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x}{ }^{\prime} \sim \mathrm{y}^{\prime}\)
\(\Leftarrow\{\) Generalise. \}
    \(\forall \mathrm{G} \leq \mathrm{F}\).
        \(\forall(x, y) \in D^{\prime} \quad F(G)(X)\).
            \(\forall x^{\prime}, y^{\prime} \in \llbracket G \mu F \rrbracket\).
                \(\mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x}^{\prime} \sim \mathrm{y}^{\prime}\)
\(\Leftrightarrow\{\) Induction over G. \}
    \(\forall \mathrm{G} \leq \mathrm{F}\).
        \(\left(\forall G^{\prime}<G,(x, y) \in O^{\prime}{ }^{\prime} F\left(G^{\prime}\right)(X)\right.\).
            \(\forall x^{\prime}, y^{\prime} \in \llbracket G^{\prime} \mu F \rrbracket\).
                    \(\mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x}{ }^{\prime} \sim \mathrm{y}^{\prime}\)
        )
        \(\Rightarrow \forall(x, y) \in D^{\prime} \_F(G)(X)\).
            \(\forall x^{\prime}, y^{\prime} \in \llbracket G \mu F \rrbracket\).
                    \(\mathrm{x} \sqsubseteq \mathrm{x}^{\prime} \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x}^{\prime} \sim \mathrm{y}^{\prime}\)
\(\Leftrightarrow\) \{ Case analysis. \}
- G = Id:
```

$$
\begin{aligned}
\forall & (x, y) \in x . \\
& \forall x x^{\prime}, y y^{\prime} \in \llbracket \mu \mathrm{F} \rrbracket . \\
& x \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x} \\
& \sim \mathrm{y}^{\prime} \\
\Leftrightarrow & \{\text { Definition of } \mathrm{X} .\}
\end{aligned}
$$

- $\mathrm{G}=\mathrm{K}_{-} \sigma \leq \mathrm{F}$:

$$
\begin{aligned}
& \forall \mathrm{x}, \mathrm{y} \in \llbracket \sigma \rrbracket . \\
& \quad \mathrm{x} \sim \mathrm{y} \\
& \Rightarrow \forall \mathrm{x}, \mathrm{y}, \in \llbracket \sigma \rrbracket . \\
& \quad \mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x}, \sim \mathrm{y}^{\prime}
\end{aligned}
$$

Section 10: The PER is monotone

```
& { Outer inductive hypothesis, \sigma< % F. }
```

- $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}$:

```
    ( }\forall\mp@subsup{G}{}{\prime}<G, (x,y) \in O'_F(G')(X)
                * x', y' }\in\llbracketG\mp@subsup{G}{}{\prime}\mu\textrm{F}\rrbracket
                    x}\sqsubseteq\textrm{x}'\wedge y\sqsubseteq y' = x' ~ y'
    )
```



```
            \forall \mp@subsup{x}{1}{\prime}},\mp@subsup{,}{1}{\prime}\mp@subsup{}{1}{\prime}\in\llbracket\mp@subsup{G}{1}{}\mu\textrm{F}\rrbracket,\mp@subsup{x}{2}{\prime},\mp@subsup{y}{2}{\prime},\in\llbracket\mp@subsup{G}{2}{}\mu\textrm{F}\rrbracket
                \mp@subsup{x}{1}{}\sqsubseteq\mp@subsup{\textrm{x}}{1}{\prime}}\mp@subsup{}{}{\prime}\wedge\mp@subsup{\textrm{x}}{2}{}\sqsubseteq\mp@subsup{\textrm{x}}{2}{\prime}\mp@subsup{}{}{\prime}\wedge ^ \mp@subsup{\textrm{y}}{1}{}\sqsubseteq\mp@subsup{\textrm{y}}{1}{\prime},\wedge ^ \mp@subsup{\textrm{y}}{2}{}\sqsubseteq\mp@subsup{\textrm{y}}{2}{\prime}\mp@subsup{}{}{\prime
                => }\mp@subsup{\textrm{x}}{1}{\prime
\Leftrightarrow
    T
```

- $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}$:

```
        ( \forall G' < G, (x, y) \in O'_F(G')(X).
            * ', y' }\in\llbracketG' MF\rrbracket
                x}\sqsubseteq\textrm{x},\wedge\textrm{y}\sqsubseteq\textrm{y},=>\mp@subsup{\textrm{x}}{}{\prime}~\mp@subsup{\textrm{y}}{}{\prime
    )
    => \forall( }\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{y}}{1}{})\in\mp@subsup{0}{}{\prime}_\textrm{F}(\mp@subsup{\textrm{G}}{1}{})(\textrm{X})
        \forall\mp@subsup{x}{1}{\prime}}
                \mp@subsup{x}{1}{}\sqsubseteq\mp@subsup{x}{1}{\prime}}\mp@subsup{}{}{\prime}\wedge\mp@subsup{\textrm{y}}{1}{}\sqsubseteq\mp@subsup{\textrm{y}}{1}{\prime}\mp@subsup{}{}{\prime}=>\mp@subsup{\textrm{x}}{1}{\prime}\mp@subsup{}{}{\prime}~\mp@subsup{\textrm{y}}{1}{\prime
            \wedge \forall (x
                * }\mp@subsup{\textrm{x}}{2}{\prime},\mp@subsup{\textrm{y}}{2}{\prime},\in\llbracket\mp@subsup{G}{2}{}\mu\textrm{F}\rrbracket
                \mp@subsup{x}{2}{}}\sqsubseteq\mp@subsup{\textrm{x}}{2}{\prime}\mp@subsup{}{}{\prime}\wedge \mp@subsup{\textrm{y}}{2}{}\sqsubseteq\mp@subsup{\textrm{y}}{2}{\prime}\mp@subsup{}{}{\prime}=>\mp@subsup{\textrm{x}}{2}{\prime}\mp@subsup{}{}{\prime}~\mp@subsup{\textrm{y}}{2}{}\mp@subsup{}{}{\prime
    \Leftrightarrow
    \top
```

νF :

```
    \(\forall \mathrm{x}, \mathrm{y}, \mathrm{y}{ }^{\prime} \in \llbracket \nu \mathrm{F} \rrbracket . \mathrm{x} \sim \mathrm{y} \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x} \sim \mathrm{y}^{\prime}\)
\(\nLeftarrow \mathrm{x}, \mathrm{y}, \mathrm{x}, \mathrm{y}^{\prime} \in \llbracket \nu \mathrm{F} \rrbracket . \mathrm{x} \sim \mathrm{y} \wedge \mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \Rightarrow \mathrm{x}, \sim \mathrm{y}\),
    \{ Use coinduction. Let
\(\Leftarrow \mid \quad X=\left\{\left(x y^{\prime}, y^{\prime}\right) \mid x, y, x^{\prime}, y^{\prime} \in \llbracket \nu F \rrbracket, x \sim y, x \sqsubseteq x^{\prime}, y \sqsubseteq y^{\prime}\right\}\).
    \(\{\) We are done if we can show that \(X \subseteq O(F)(X)\).
    \(\forall \mathrm{x}, \mathrm{y}, \mathrm{x}^{\prime}, \mathrm{y}, \in \llbracket \nu \mathrm{F} \rrbracket\).
        \(\mathrm{x} \sim \mathrm{y} \wedge \mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}\),
        \(\Rightarrow\left(x^{\prime}, y^{\prime}\right) \in O(F)(X)\)
\(\Leftrightarrow\{\) in, out isomorphisms, see also per-and-in-out. \}
    \(\forall \mathrm{x}, \mathrm{y}, \mathrm{x}^{\prime}, \mathrm{y}, \in \llbracket \mathrm{F} \nu \mathrm{F} \rrbracket\).
        \(\mathrm{x} \sim \mathrm{y} \wedge \mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}\),
        \(\Rightarrow\) ( \(x^{\prime}, y^{\prime}\) ) \(\in 0^{\prime} \_F(F)(X)\)
\(\Leftarrow\{\) Generalise. \(\}\)
```

```
    \forallG\leqF, x, y, x', y' }\in\llbracketG vF\rrbracket
        x ~ y ^ x \sqsubseteq x' ^ y \sqsubseteq y'
        =(x', y') \in O'_F(G)(X)
& { Induction over G. }
    G \leq F.
        ( \forallG'< < G, x, y, x', y' \in\llbracketG' \nuF\rrbracket.
            x ~ y ^ x }\sqsubseteq\textrm{x},\wedge\textrm{y}\sqsubseteq\mp@subsup{\textrm{y}}{}{\prime
            = (x', y') \in O'_F(G')(X)
        )
        =>\forallx, y, x', y' }\in\llbracketG \nuF\rrbracket
        x}~\textrm{y}\wedge\textrm{x}\sqsubseteq\textrm{x},\wedge\textrm{y}\sqsubseteq\textrm{y}
        =>(x', y') \in O'_F(G)(X)
\Leftrightarrow { Case analysis. }
- \(G=I d:\)
```

 \(\forall \mathrm{x}, \mathrm{y}, \mathrm{x}^{\prime}, \mathrm{y}, \in \llbracket \nu \mathrm{F} \rrbracket\).
 \(\mathrm{x} \sim \mathrm{y} \wedge \mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}\),
 \(\Rightarrow\left(x^{\prime}, y^{\prime}\right) \in X\)
 \(\Leftrightarrow \underset{\top}{\{ }\) Definition of \(X\).
 - $\mathrm{G}=\mathrm{K}_{-} \sigma \leq \mathrm{F}$:
$\forall \mathrm{x}, \mathrm{y}, \mathrm{x}, \mathrm{y}^{\prime} \in \llbracket \sigma \rrbracket$.
$\quad \mathrm{x} \sim \mathrm{y} \wedge \mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime}$
$\quad \Rightarrow \mathrm{x}, \sim \mathrm{y}$,
$\Leftrightarrow\{$ Outer inductive hypothesis, $\sigma<\nu F$. \}
- $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}$:

```
    \(\left(\forall G^{\prime}<G, x, y, x^{\prime}, y^{\prime} \in \llbracket G^{\prime} \nu F \rrbracket\right.\).
            \(\mathrm{x} \sim \mathrm{y} \wedge \mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime}\)
            \(\Rightarrow\left(x^{\prime}, y^{\prime}\right) \in D^{\prime} \_F\left(G^{\prime}\right)(X)\)
    )
    \(\Rightarrow \forall \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{y}_{1}{ }^{\prime} \in \llbracket \mathrm{G}_{1} \nu \mathrm{~F} \rrbracket, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{x}_{2}{ }^{\prime}, \mathrm{y}_{2}{ }^{\prime} \in \llbracket \mathrm{G}_{2} \nu \mathrm{~F} \rrbracket\).
        \(\mathrm{x}_{1} \sim \mathrm{y}_{1} \wedge \mathrm{x}_{2} \sim \mathrm{y}_{2} \wedge\)
        \(\mathrm{x}_{1} \sqsubseteq \mathrm{x}_{1}{ }^{\prime} \wedge \mathrm{y}_{1} \sqsubseteq \mathrm{y}_{1}{ }^{\prime} \wedge \mathrm{x}_{2} \sqsubseteq \mathrm{x}_{2}{ }^{\prime} \wedge \mathrm{y}_{2} \sqsubseteq \mathrm{y}_{2}{ }^{\prime}\)
        \(\Rightarrow\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{y}_{1}{ }^{\prime}\right) \in \mathrm{O}^{\prime}{ }_{\mathrm{Z}} \mathrm{F}\left(\mathrm{G}_{1}\right)(\mathrm{X}) \wedge\left(\mathrm{x}_{2}{ }^{\prime}, \mathrm{y}_{2}{ }^{\prime}\right) \in \mathrm{O}^{\prime}{ }_{\mathrm{\prime}} \mathrm{~F}\left(\mathrm{G}_{2}\right)(\mathrm{X})\)
    T
```

 \(\Leftrightarrow\)
 - $G=G_{1}+G_{2}$:

$$
\Leftrightarrow
$$

When recursive types are not used the function $\sim_{-} \sigma$ is also continuous, i.e. least upper bounds are preserved:

$$
\bigsqcup_{-} i\left(x_{-} i \sim y_{-} i\right)=\bigsqcup_{-} i\left(x_{-} i\right) \sim \bigsqcup_{-} i\left(y_{-} i\right)
$$

Proof:

Without recursive types all CPOs are finite, so monotonicity implies continuity.

$$
\begin{aligned}
& \left(\forall G^{\prime}<G, x, y, x^{\prime}, y^{\prime} \in \llbracket G^{\prime} \nu F \rrbracket .\right. \\
& \mathrm{x} \sim \mathrm{y} \wedge \mathrm{x} \sqsubseteq \mathrm{x}, \wedge \mathrm{y} \sqsubseteq \mathrm{y}^{\prime} \\
& \Rightarrow\left(x^{\prime}, y^{\prime}\right) \in 0^{\prime} _F\left(G^{\prime}\right)(X) \\
& \text {) } \\
& \Rightarrow \quad \forall \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{y}_{1}{ }^{\prime} \in \llbracket \mathrm{G}_{1} \nu \mathrm{~V} \rrbracket \text {. } \\
& \mathrm{x}_{1} \sim \mathrm{y}_{1} \wedge \mathrm{x}_{1} \sqsubseteq \mathrm{x}_{1}, \wedge \mathrm{y}_{1} \sqsubseteq \mathrm{y}_{1}, \\
& \Rightarrow\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{y}_{1}{ }^{\prime}\right) \in \mathrm{O}^{\prime}{ }^{\prime} \mathrm{F}\left(\mathrm{G}_{1}\right)(\mathrm{X}) \\
& \wedge \forall \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{x}_{2}{ }^{\prime}, \mathrm{y}_{2}{ }^{\prime} \in \llbracket \mathrm{G}_{2} \nu \mathrm{~F} \rrbracket \text {. } \\
& \mathrm{x}_{2} \sim \mathrm{y}_{2} \wedge \mathrm{x}_{2} \sqsubseteq \mathrm{x}_{2}, \wedge \mathrm{y}_{2} \sqsubseteq \mathrm{y}_{2}{ }^{\prime} \\
& \Rightarrow\left(\mathrm{x}_{2}{ }^{\prime}, \mathrm{y}_{2}{ }^{\prime}\right) \in \mathrm{O}^{\prime}{ }^{\prime} \mathrm{F}\left(\mathrm{G}_{2}\right)(\mathrm{X}) \\
& \top
\end{aligned}
$$

11 Sizes can be assigned to some values

Each value of μ-type can be assigned a size

Since \mathbb{N} is a set we can use fold at the type

$$
(\mathrm{F} \mathbb{N} \rightarrow \mathbb{N}) \rightarrow\langle\langle\mu \mathrm{F}\rangle\rangle \rightarrow \mathbb{N}
$$

(Note that $\langle\langle\mu \mathrm{F}\rangle\rangle$ is the codomain of in, so the above is well-typed.)

```
size_ \(\mu \mathrm{F}:\langle\langle\mu \mathrm{F}\rangle\rangle \rightarrow \mathbb{N}\)
size_ \(\mu \mathrm{F}\) x = 1 + fold size'_F x
    size'_G : G \(\mathbb{N} \rightarrow \mathbb{N}\)
    size'_Id \(\quad=1+s\)
    size'_( \(\left.\mathrm{K}_{-} \tau\right) \quad \mathrm{x} \quad=1\)
    size'_( \(\mathrm{F}_{1} \times \mathrm{F}_{2}\) ) ( \(\mathrm{x}_{1}, \mathrm{x}_{2}\) ) = \(1+\) size'_ \(\mathrm{F}_{1} \mathrm{x}_{1}+\operatorname{size}{ }^{\prime}{ }^{2} \mathrm{~F}_{2} \mathrm{x}_{2}\)
    size'_( \(\mathrm{F}_{1}+\mathrm{F}_{2}\) ) inl \(\left(\mathrm{x}_{1}\right)=1+\operatorname{size}{ }^{\prime}{ }^{\prime} \mathrm{F}_{1} \mathrm{x}_{1}\)
    size' \(\left(F_{1}+F_{2}\right) \operatorname{inr}\left(x_{2}\right)=1+\operatorname{size}{ }^{\prime}{ }^{\prime} F_{2} x_{2}\)
    size' is well-defined since the size of the index functor always
```

 decreases.
 size_ $\perp, \mu \mathrm{F}:\left\langle\llbracket \mu \mathrm{F} \rrbracket \rightarrow \mathbb{N} _\perp\right\rangle$
size_ $\perp, \mu \mathrm{F}$ x $=1$ + fold size'_ \perp, F x
size' $_\perp, \mathrm{G}:\left\langle\mathrm{L}(\mathrm{G}) \mathbb{N} _\perp \rightarrow \mathbb{N} _\perp\right\rangle$
size' ${ }^{\prime} \perp, \mathrm{G} \quad \perp \quad=\perp$
size' ${ }^{\prime} \perp$, Id $\quad=1+\mathrm{s}$
size'_ \perp, (K_ τ) \quad x 1
size' $_\perp,\left(\mathrm{F}_{1} \times \mathrm{F}_{2}\right)\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=1+$ size ${ }^{\prime} \perp, \mathrm{F}_{1} \mathrm{x}_{1}+$ size ${ }^{\prime}{ }^{\prime} \perp, \mathrm{F}_{2} \mathrm{x}_{2}$
size' $_\perp,\left(F_{1}+F_{2}\right) \operatorname{inl}\left(x_{1}\right)=1+\operatorname{size}{ }^{\prime}{ }_{-} \perp, F_{1} x_{1}$
size' $_\perp,\left(F_{1}+F_{2}\right) \operatorname{inr}\left(x_{2}\right)=1+\operatorname{size}{ }^{\prime} _\perp, F_{2} X_{2}$
size'_ \perp is well-defined since the size of the index functor always
decreases.
We assume that all arithmetical operations are strict. This implies
that all functions above can be seen as arrows in CPO_ \perp.
Now we can prove that $\mathrm{x} \sim \mathrm{y} \Rightarrow$ size_ $\perp \mathrm{x}=$ size_ $\perp \mathrm{y} \neq \perp$. This implies
that we can define a size for PER elements:

```
size_~,\muF : [~_\muF] }->\mathbb{N
size_~,\muF [x] = size_ 
```

Proof:
First define \sim for $\mathbb{N} _\perp$ (note that $\mathbb{N} _\perp \neq \mu F$ for any F since we have too many liftings):

Section 11: Sizes can be assigned to some values

$$
\mathrm{m} \sim \mathrm{n} \Leftrightarrow \mathrm{~m}=\mathrm{n} \neq \perp
$$

This yields a PER.
We are done if we can show fold, (o), (1+), size' $\perp, F \in \operatorname{dom}(\sim)$.

1. fold:

Here we have fold $\in\left\langle\left\langle L(F) \mathbb{N} _\perp \rightarrow \mathbb{N} _\perp\right\rangle \rightarrow\left\langle\llbracket \mu \mathrm{F} \rrbracket \rightarrow \mathbb{N} _\perp\right\rangle\right\rangle$, for some polynomial functor F, with the definition fold $=\lambda f . f i x(\lambda g . f \circ L(F) g \circ o u t)$.

The only difference between this definition and the previous, general definition of fold is that we have replaced a semantic domain $\llbracket \sigma \rrbracket$ with $\mathbb{N} _\perp$. Now, $\mathbb{N} _\perp$ cannot be represented as a semantic domain $\llbracket \sigma \rrbracket$. However, to prove that the definition above is well-formed and that fold is in $\operatorname{dom}(\sim)$ we can still use the proofs for the general fold. The reason is that the only property needed of $\mathbb{N} _\perp$ for the proofs to go through is that it is a CPO with a PER ~ defined on it. (Maybe it does not even need to be a CPO, but that is irrelevant.)
2. (o): Easy.
3. (1+): Easy.
4. size' \perp, F: Easy induction over F.

This gives rise to an inductive proof method: We can prove something by induction over the size of something of μ-type.

For simplicity we define the size of elements of type $G \mu F$ as well:


```
size_ \(\perp,(G \mu F) \quad x \quad=\) size'_ \(\perp, G\) ( \(G(f o l d\) size'_ \(\perp, F) x\) )
size_~, (G \(\mu \mathrm{F})[\mathrm{x}]=\) size_ \(\perp,(\mathrm{G} \mu \mathrm{F}) \mathrm{x}\)
```

We get a couple of easy lemmas, stated in general form, valid both for size and size_~:

```
size (in x) > size x
size (x, y) > size x
size (x, y) > size y
size inl(x) > size x
size inr(y) > size y
```

Note that the size does not decrease for $\mu I d$. In fact it is not even well-defined. This is no problem, though, since $\left\langle\langle\mu I d\rangle=\left[\sim_{\sim} \mu I d\right]=\emptyset\right.$.

Section 11: Sizes can be assigned to some values

```
Examples
    size_\mu\mp@subsup{K}{1}{}(in *)
    1 + fold size'_K (in *)
=
    1 + size'_K ( }\mp@subsup{K}{1}{\prime}(fold size'_K K ) \star)
=
    1 + size'_K}\mp@subsup{}{1}{*}
    2
    size_\mu(K ( + Id) (in inr(in inl(*)))
=
    1 + fold size'_(K ( + Id) (in inr(in inl(\star)))
    1 + size'_(K ( + Id) (( K + Id) (fold size'_(K ( + Id)) inr(in inl(*)))
=
    1 + size'_(K ( + Id) (inr(fold size'_(K ( + Id) (in inl(*))))
    2 + size'_Id (fold size'_(K ( + Id) (in inl(*)))
    3 + fold size'_(K ( + Id) (in inl(*))
    3 + size'_(K ( + Id) ((K ( + Id) (fold size'_( (K + Id)) inl(*))
    3 + size'_(K ( + Id) inl(*)
    4 + size'_K K *
=
    5
```


12 The approximation lemma

```
approx_\perp is defined in
    [Graham Hutton and Jeremy Gibbons
    The Generic Approximation Lemma
    Information Processing Letters 79(4) p197-201, August 2001]:
approx_\perp}\in\mathbb{N}->\langle\llbracket\nuF\rrbracket->\llbracket\nuF\rrbracket
approx_\perp 0 = 埧. }
approx_\perp(n+1) = in o L(F) (approx_\perp n) o out
We have the approximation lemma:
    * x, y \in\llbracket\nuF\rrbracket
        x = y }\Leftrightarrow|\textrm{n}\in\mathbb{N}. approx_\perp n x = approx_\perp n y.
```

(Since we are working in CPO and all polynomial functors are locally
continuous.)

We can generalise the approximation lemma slightly. Define
approx_ $\perp, G \in \mathbb{N} \rightarrow\langle\llbracket G \nu F \rrbracket \rightarrow \llbracket G \quad \nu F \rrbracket\rangle$
approx_ $\perp, G \mathrm{n}=\mathrm{L}(\mathrm{G})\left(\operatorname{approx} _\perp \mathrm{n}\right.$) .

We get

```
    \(\forall x, y \in \llbracket G \nu F \rrbracket\)
        \(\mathrm{x}=\mathrm{y} \Leftrightarrow \forall \mathrm{n} \in \mathbb{N}\). approx_ \(\perp, \mathrm{G} \mathrm{n} \mathrm{x}=\operatorname{approx}_{-} \perp, \mathrm{G} \mathrm{n} \mathrm{y}\).
```

Proof:
\Rightarrow : Trivial
\Leftarrow : Done by easy induction over G.

13 Explicit characterisations of recursive type formers

Explicit characterisations of $\left[\sim _\mu \mathrm{F}\right],\left[\sim _\nu F\right],\langle\langle\mu \mathrm{F}\rangle\rangle$ and $\langle\langle\nu \mathrm{F}\rangle\rangle$

Define the following monotone operators on the complete lattices $\left(\wp\left(\left[\sim _\mu / \nu F\right]\right), \subseteq\right)$ and $\left.(\wp(\langle\mu / \nu F\rangle\rangle), \subseteq\right)$:
$S(F): \wp\left(\left[\sim _\mu / \nu F\right]\right) \rightarrow \wp\left(\left[\sim _\mu / \nu F\right]\right)$
$\mathrm{S}(\mathrm{F})(\mathrm{X})=\left\{\operatorname{in} \mathrm{x} \mid \mathrm{x} \in \mathrm{S}^{\prime}\right.$ _F(F)(X)$\}$
$S^{\prime}{ }^{\prime} F(G): \wp\left(\left[\sim_{-} \tau\right]\right) \rightarrow \wp\left(\left[\sim_{-}(G \tau)\right]\right)$
S^{\prime} _F $(\mathrm{Id})(\mathrm{X})=\mathrm{X}$
$S^{\prime}{ }_{-} F\left(K_{-} \sigma\right)\left(\right.$ _ $\left._{-}\right)=\left[\sim_{-} \sigma\right]$
$S^{\prime}{ }^{\prime} F\left(F_{1} \times F_{2}\right)(X)=\left\{[(x, y)] \mid[x] \in S^{\prime}{ }_{-} F\left(F_{1}\right)(X),[y] \in S^{\prime}{ }^{\prime}{ }^{\prime} F\left(F_{2}\right)(X)\right\}$
$S^{\prime}{ }^{\prime} F\left(F_{1}+F_{2}\right)(X)=\left\{[i n l(x)] \mid[x] \in S^{\prime}{ }_{2} F\left(F_{1}\right)(X)\right\} \cup$
$\left\{[\operatorname{inr}(y)]\right.$ | $\left.[y] \in S^{\prime} _F\left(F_{2}\right)(X)\right\}$
$\hat{S}(F): \wp(\langle\langle\mu / \nu F\rangle\rangle) \rightarrow \wp(\langle\langle\mu / \nu F\rangle\rangle)$
$\hat{S}(F)(X)=\left\{\right.$ in $\left.x \mid x \in \hat{S}^{\prime} _F(F)(X)\right\}$
$\left.\left.\hat{S}^{\prime}{ }^{\prime} \mathrm{F}(\mathrm{G}): \wp(\langle\tau\rangle\rangle\right) \rightarrow \wp(\langle/ \mathrm{G} \tau\rangle\rangle\right)$
$\hat{S}^{\prime}{ }^{\prime} \mathrm{F}^{\mathrm{F}}(\mathrm{Id})(\mathrm{X})=\mathrm{X}$
$\hat{S}{ }^{\prime} _F\left(K_{-} \sigma\right)\left({ }_{-}\right)=\langle\langle\sigma\rangle\rangle$
$\hat{S}^{\prime}{ }_{_} \mathrm{F}\left(\mathrm{F}_{1} \times \mathrm{F}_{2}\right)(\mathrm{X})=\hat{\mathrm{S}}{ }^{\prime} _\mathrm{F}\left(\mathrm{F}_{1}\right)(\mathrm{X}) \times \hat{\mathrm{S}}^{\prime}{ }_{-} \mathrm{F}\left(\mathrm{F}_{2}\right)(\mathrm{X})$
$\hat{S}^{\prime}{ }_{\mathrm{H}} \mathrm{F}\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)(\mathrm{X})=\hat{S}^{\prime}{ }^{\prime} \mathrm{F}\left(\mathrm{F}_{1}\right)(\mathrm{X})+\hat{S}^{\prime}{ }_{\mathrm{H}} \mathrm{F}\left(\mathrm{F}_{2}\right)(\mathrm{X})$

We will show that
$\mu \mathrm{S}(\mathrm{F})=\left[\sim_{_} \mu \mathrm{F}\right]$,
$\mu \hat{\mathrm{S}}(\mathrm{F})=\langle\langle\mu \mathrm{F}\rangle\rangle$,
$\nu S(F)=\left[\sim _\nu F\right]$, and
$\nu \hat{S}(F)=\langle\langle\nu F\rangle\rangle$.
(Note that all fixpoints exist since the lattices are complete.)

1. $\mu \mathrm{S}(\mathrm{F})=\left[\sim_{_} \mu \mathrm{F}\right]:$

- We know that $\mu \mathrm{S}(\mathrm{F}) \subseteq\left[\sim _\mu \mathrm{F}\right]$ by construction (complete lattice).
- $\mu \mathrm{S}(\mathrm{F}) \supseteq\left[\sim _\mu \mathrm{F}\right]:$

$$
\begin{aligned}
& \forall \mathrm{x} \in\left[\sim_{\sim} \mu \mathrm{F}\right] . \mathrm{x} \in \mu \mathrm{~S}(\mathrm{~F}) \\
\Leftarrow & \{\text { Generalise. }\}
\end{aligned}
$$


```
&{ Induction on size of x. }
    \forallG, x \in [~_(G \muF)].
        \forallG', x' }\in[\mp@subsup{~}{_}{\prime}(G'\muF)]
            size_~,(G' \muF) x' < size_~,(G \muF) x
            => x' }\in\mp@subsup{S}{}{\prime}_F(G')(\muS(F)
    # x \in S' _F(G)( }\mu\textrm{S}(\textrm{F})
\Leftrightarrow { Case analysis on G. }
- G = Id:
\Leftrightarrow { Definition S'_F(Id). }
    \forallx\in[~_\muF].
            \forall G', x' }\in[~~_(G' \muF)]
                size_~,(G' \muF) x' < size_~,\muF x
                # x' }\in\mp@subsup{S}{}{\prime}_(F(G')(\muS(F)
        => x }\in\mu\textrm{S}(\textrm{F}
\Leftrightarrow{ Fixpoint. }
        \forallx\in[~_\muF].
            \forall G', x' \in [~_(G' \muF)].
                size_~,(G' \muF) x' < size_~,\muF x
                # x' }\in\mp@subsup{S}{}{\prime}_F(G')(\muS(F)
            => x < S(F)(\muS(F))
\Leftrightarrow{ Definition of S, in/out inverses. }
        \forallx\in[~_\muF].
            \forall G', x' }\in[~~~(G' \muF)]
            size_~,(G' \muF) x' < size_~, \muF x
            => x' }\in\mp@subsup{S}{}{\prime
```



```
\Leftrightarrow { size_~,(F \muF) (out x) < size_~,\muF x (see size). }
    \top
- G = K_\sigma:
\Leftarrow{ Definition S'_F(K_\sigma), simplification. }
    |x\in[~_\sigma].
        x }\in[~~~\sigma
\Leftrightarrow { Assumption. }
```


Section 13: Explicit characterisations of recursive type formers

```
    \top
- G = G }\mp@subsup{\textrm{G}}{1}{}\times\mp@subsup{\textrm{G}}{2}{
\Leftrightarrow{ Definition S'_F (G1 }\times\mp@subsup{G}{2}{\prime}).
    \forallx\in[~_(G \muF)].
        \forall G', x' \in [~_(G' }\mu\textrm{F})]
            size_~,(G' \muF) x' < size_~,(G \muF) x
            # x' }\in\mp@subsup{S}{}{\prime
        => x \in{[(a, b)] | [a] \in S'_F(G)
\Leftrightarrow { Definition ~. }
    \forall[(x, y)] \in [~_(G \muF)].
        G',
            size_~,(G' \muF) x' < size_~,(G \muF) [(x, y)]
            # x' }\in\mp@subsup{S}{}{\prime
        => [x] \in S'_F(G)
\Leftrightarrow{ size_~,(G1 \muF) [x] < size_~,(G \muF) [(x, y)], and similarly
        for [y] (see size). }
    \top
- G = G }\mp@subsup{\textrm{G}}{1}{}+\mp@subsup{\textrm{G}}{2}{}
\Leftrightarrow{ Definition S'_F(G1 + G ( ) . }
    \forallx\in[~_(G \muF)].
        \forall G', x' }\in[\mp@subsup{~}{~}{\prime}(G' \muF)]
            size_~,(G' \muF) x' < size_~,(G \muF) x
            # x' }\in\mp@subsup{S}{}{\prime}_F(G')(\muS(F)
        => x < { [inl(a)] | [a] \in S'_F(G1) (\muS(F)) }
            V x \in{[inr(b)] | [b] G S'_F(Gq)(\muS(F))}
\Leftrightarrow{ We assume x = [inl(y)] for some y. The other case is
            analogous. }
        \forall [y] \in [~_ (G (G \muF)].
            \forall G', x' \in [~_(G' }\mu\textrm{F})]
                size_~,(G' }\mu\textrm{F})\textrm{x}'< < size_~,(G \muF) [inl(y)
                # x' }\in\mp@subsup{S}{}{\prime}\mp@subsup{}{~}{\prime}F(\mp@subsup{G}{}{\prime})(\muS(F)
        => [y] \in S'_F(G1)(\muS(F))
\Leftrightarrow{ size_~,(G1 \muF) [y] < size_~,(G \muF) [inl(y)] (see size). }
    \top
```

2. $\mu \hat{S}(\mathrm{~F})=\langle\langle\mu \mathrm{F}\rangle\rangle$:

This proof is _almost_ a carbon copy of the previous one.

- We know that $\mu \hat{S}(\mathrm{~F}) \subseteq\langle\langle\mu \mathrm{F}\rangle\rangle$ by construction (complete lattice).
- $\mu \hat{S}(F) \supseteq\langle\langle\mu \mathrm{F}\rangle\rangle:$
$\forall \mathrm{x} \in\langle\langle\mu \mathrm{F}\rangle\rangle . \mathrm{x} \in \mu \hat{\mathrm{S}}(\mathrm{F})$
$\Leftarrow\{$ Generalise. $\}$
$\forall G, x \in\langle\langle G \mu F\rangle\rangle . x \in \hat{S}^{\prime}{ }^{\prime} F(G)(\mu \hat{S}(F))$
$\Leftarrow\{$ Induction on size of x.$\}$
$\forall \mathrm{G}, \mathrm{x} \in\langle\langle\mathrm{G} \mu \mathrm{F}\rangle\rangle$.
$\forall G^{\prime}, x^{\prime} \in\left\langle\left\langle G^{\prime} \mu F\right\rangle\right\rangle$.
size_(G' $\mu \mathrm{F}$) $\mathrm{x}^{\prime}<\operatorname{size}_{-}(\mathrm{G} \mu \mathrm{F}) \mathrm{x}$
$\Rightarrow x^{\prime} \in \hat{S}^{\prime} _F\left(G^{\prime}\right)(\mu \hat{S}(F))$
$\Rightarrow \mathrm{x} \in \hat{\mathrm{S}}^{\prime}{ }_{\mathrm{Z}} \mathrm{F}(\mathrm{G})(\mu \hat{\mathrm{S}}(\mathrm{F}))$
$\Leftrightarrow\{$ Case analysis on G. \}
- $G=I d:$
$\Leftrightarrow\left\{\right.$ Definition \hat{S}^{\prime} _F(Id). \}
$\forall \mathrm{x} \in\langle\langle\mu \mathrm{F}\rangle\rangle$.
$\forall G^{\prime}, x^{\prime} \in\left\langle\left\langle G^{\prime} \mu F\right\rangle\right\rangle$.
size_($\left.G^{\prime} \mu F\right) X^{\prime}$ < size_ $\mu \mathrm{F} x$
$\Rightarrow x^{\prime} \in \hat{S}^{\prime}{ }^{\prime} F\left(G^{\prime}\right)(\mu \hat{S}(F))$
$\Rightarrow \mathrm{x} \in \mu \hat{\mathrm{S}}(\mathrm{F})$
$\Leftrightarrow\{$ Fixpoint. \}
$\forall \mathrm{x} \in\langle\langle\mu \mathrm{F}\rangle\rangle$.
$\forall G^{\prime}, x^{\prime} \in\left\langle\left\langle G^{\prime} \mu F\right\rangle\right\rangle$.
size_(G' $\mu \mathrm{F}$) x ' $<\operatorname{size}_{-\mu \mathrm{F}} \mathrm{x}$
$\Rightarrow \mathrm{x}^{\prime} \in \hat{S}^{\prime}{ }^{\prime} \mathrm{F}\left(\mathrm{G}^{\prime}\right)(\mu \hat{S}(\mathrm{~F}))$
$\Rightarrow \mathrm{x} \in \hat{\mathrm{S}}(\mathrm{F})(\mu \hat{\mathrm{S}}(\mathrm{F}))$
$\Leftrightarrow\{$ Definition of S, in/out inverses. \}

Section 13: Explicit characterisations of recursive type formers

```
    \forallx\in\langle\langle\muF\rangle\rangle.
        | G', x' }\in\langle\langleG', \muF\rangle\rangle
        size_(G' }\mu\textrm{F})\textrm{x}\mathrm{ ' < size_ }\mu\textrm{F}
        # x' }\in\mp@subsup{\hat{S}}{}{\prime}\mp@subsup{}{~}{\prime}F(G')(\mu\hat{S}(F)
    => out x \in \hat{S'}_F(F)(\mu\hat{S}(F))
\Leftrightarrow { size_(F \muF) (out x) < size_\muF x (see size). }
    \top
- G = K_\sigma:
    &{ Definition S',_F(K_\sigma), simplification. }
    \forall\textrm{x}\in\langle\langle\sigma\rangle\rangle.
        x}\in|\langle\sigma\rangle
\Leftrightarrow { Assumption. }
    \top
- G = G
    \Leftrightarrow{ Definition \hat{S'_F (G1}\times (G2). }
        \forallx\in\langle\G \muF\rangle\rangle.
            \forallG', x' }\in\langle\langle|G' \muF\rangle\rangle
                size_(G' \muF) x' < size_(G \muF) x
                # x' }\in\mp@subsup{\hat{S}}{}{\prime
```



```
& { Definition\/|G \muF\rangle. }
        \forall(x, y) }\in\langle\langleG \muF\rangle\rangle
            \forall G', x' }\in\langle\langleG' \muF\rangle\rangle
                size_(G' }\mu\textrm{F})\textrm{x}\mathrm{ ' < size_(G }\mu\textrm{F})(\textrm{x},\textrm{y}
                # x' }\in\mp@subsup{\hat{S}}{}{\prime
            m x \in \hat{S}}\mp@subsup{}{\prime}{_
\Leftrightarrow{ size_(G1 \muF) x < size_(G \muF) (x, y), and similarly
            for y (see size).}
    T
```

- $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}$:
$\Leftrightarrow\left\{\right.$ Definition $\left.\hat{S}^{\prime}{ }^{\prime} F\left(G_{1}+G_{2}\right).\right\}$

Section 13: Explicit characterisations of recursive type formers

```
    * x \in \\langleG \muF
    \forall G', x' }\in\langle\langleG\mp@subsup{G}{}{\prime}\muF\rangle\rangle
        size_(G' }\mu\textrm{F})\textrm{x}\mathrm{ ' < size_(G }\mu\textrm{F})\textrm{x
        # x' \in S\hat{S}
```



```
        V x \in{ inr(b) | b \in \hat{S}}\mp@subsup{}{\prime}{\prime
& { We assume x = inl(y) for some y. The other case is
    analogous.}
    y }\in|\langle|\mp@subsup{G}{1}{}\mu\textrm{F}\rangle\rangle
    |G
        size_(G' }\mu\textrm{F}) \mp@subsup{x}{}{\prime}< < size_(G \muF) inl(y
        # x' \in \hat{S}}\mp@subsup{}{\prime}{\prime}F(G')(\mu\hat{S}(F)
    # y \in \hat{S}}\mp@subsup{}{~}{\prime}\mp@subsup{F}{}{F}(\mp@subsup{\textrm{G}}{1}{})(\mu\hat{S}(F)
\Leftrightarrow{ size_(G1 \muF) y < size_(G \muF) inl(y) (see size). }
\top
```

3. $\nu S(F)=\left[\sim _\nu F\right]:$

- We know that $\nu S(F) \subseteq\left[\sim _\nu F\right]$ by construction (complete lattice).
- $\nu S(F) \supseteq\left[\sim _\nu F\right]:$
$\left[\sim _\nu F\right] \subseteq \nu S(F)$
$\Leftarrow\{$ Coinduction. \}
$\left[\sim_{_} \nu F\right] \subseteq S(F)\left(\left[\sim _\nu F\right]\right)$
$\Leftrightarrow\{$ Definition of $\mathrm{S}(\mathrm{F})$. \}
$\left[\sim _\nu F\right] \subseteq\left\{\operatorname{in} x \mid x \in S^{\prime} _F(F)\left(\left[\sim _\nu F\right]\right)\right\}$
\Leftrightarrow \{ in/out isomorphisms. \}
$\left[\sim_{_}(F \nu F)\right] \subseteq S^{\prime} _F(F)\left(\left[\sim _\nu F\right]\right)$
\Leftarrow \{ Generalise. \}
$\forall G .\left[\sim_{-}(G \nu F)\right] \subseteq S^{\prime} _F(G)\left(\left[\sim_{-} \nu F\right]\right)$
$\Leftarrow\{$ Induction. \}

Section 13: Explicit characterisations of recursive type formers

```
    \forallg.
    \forall G' < G. [~_(G' \nuF)] \subseteq S'_F(G')([~_\nuF])
    => [~_(G \nuF)] \subseteq S'_F(G)([~_\nuF])
\Leftrightarrow { Case analysis. }
- G = Id:
    \Leftrightarrow { Simplify. }
        [~_\nuF]\subseteq[~_\nuF]
    \Leftrightarrow
    T
- G = K_\sigma:
    \Leftrightarrow { Simplify. }
        [~_\sigma] \subseteq[~_\sigma]
    \Leftrightarrow
    \top
- G = G }\mp@subsup{\textrm{G}}{1}{}\times\mp@subsup{\textrm{G}}{2}{}\mathrm{ :
    \Leftrightarrow { Simplify. }
    \forallG'<G. [~_(G' \nuF)] \subseteq S'_F(G')([~_\nuF])
    # [~_(GG \nuF)] \subseteq S'_F (G G ) ([~_\nuF])
            \wedge[~_(G)
\Leftrightarrow
    T
- G = G }\mp@subsup{\textrm{F}}{1}{}+\mp@subsup{\textrm{G}}{2}{}\mathrm{ :
    \Leftrightarrow { Simplify. }
        \forall G' < G. [~_(G' \nuF)] \subseteq S'_F(G') ([~_\nuF])
        # [~_(G)
```



```
    \Leftrightarrow
        \top
```

This proof is _almost_ a carbon copy of the previous one.
4. $\nu \hat{S}(F)=\langle\langle\nu F\rangle\rangle$:

- We know that $\nu \hat{S}(F) \subseteq\langle\langle\nu F\rangle\rangle$ by construction (complete lattice).
- $\nu \hat{S}(F) \supseteq\langle\langle\nu F\rangle\rangle:$
$\langle\langle\nu F\rangle\rangle \subseteq \nu \hat{S}(F)$
$\Leftarrow\{$ Coinduction. $\}$
$\langle\langle\nu F\rangle\rangle \subseteq \hat{\mathrm{S}}(\mathrm{F})(\langle\langle\nu \mathrm{F}\rangle\rangle)$
$\Leftrightarrow\{$ Definition of $\widehat{S}(F)$.
$\langle\langle\nu F\rangle\rangle \subseteq\left\{\operatorname{in} \mathrm{x} \mid \mathrm{x} \in \hat{S}^{\prime}{ }^{\prime} \mathrm{F}(\mathrm{F})(\langle\langle\nu \mathrm{F}\rangle\rangle)\right\}$
$\Leftrightarrow\{$ in/out isomorphisms. \}
$\langle\langle F \nu F\rangle\rangle \subseteq \hat{S}^{\prime}{ }^{\prime} F(F)(\langle\nu \nu F\rangle)$
$\Leftarrow\{$ Generalise. $\}$
$\forall G .\langle\langle G \quad \nu F\rangle\rangle \subseteq \hat{S}^{\prime} \quad _F(G)(\langle\langle\nu F\rangle)$
$\Leftarrow\{$ Induction. $\}$
\forall G.
$\forall G^{\prime}<G .\left\langle\left\langle G^{\prime} \nu F\right\rangle\right\rangle \subseteq \hat{S}^{\prime} _F\left(G^{\prime}\right)(\langle\langle\nu F\rangle\rangle)$
$\left.\Rightarrow\langle\langle G \nu F\rangle\rangle \subseteq \hat{S}{ }^{\prime} _F(G)(\langle\nu F\rangle\rangle\right)$
$\Leftrightarrow\{$ Case analysis. $\}$
- $G=I d:$
$\Leftrightarrow\{$ Simplify. \}
$\langle\langle\nu F\rangle\rangle \subseteq\langle\langle\nu F\rangle\rangle$
\Leftrightarrow
T
- $G=K_{-} \sigma$:
$\Leftrightarrow\{$ Simplify. \}
$\langle\langle\sigma\rangle\rangle \subseteq\langle\langle\sigma\rangle\rangle$

```
\Leftrightarrow
    \top
- G = G }\mp@subsup{\textrm{G}}{1}{}\times\mp@subsup{\textrm{G}}{2}{}\mathrm{ :
\Leftrightarrow{ Simplify. }
    \forall\mp@subsup{G}{}{\prime}<<G. \langle\langleG'
```



```
    \Leftrightarrow
    T
- G = G }\mp@subsup{\textrm{G}}{1}{}+\mp@subsup{\textrm{G}}{2}{}\mathrm{ :
    \Leftrightarrow{ Simplify. }
    \forall G' < G. \\langleG' 
```



```
        \wedge\langle\langleG2 \nuF\rangle\rangle\subseteq S\hat{S}
    \Leftrightarrow
    \top
```


14 A characterisation of the PER, valid for functionfree types

```
Whenever \sigma does not contain any function spaces we have
    x ~_\sigma y }\Leftrightarrow\textrm{x}\in\operatorname{dom}(~_\sigma) ^ x = y .
```

Note first that the \Leftarrow case is easy, and $\mathrm{x} \sim_{\text {_ }} \sigma$ y directly implies that
$\mathrm{x} \in \operatorname{dom}\left(\sim_{_} \sigma\right)$. For
$\mathrm{x} \sim_{-} \sigma \mathrm{y} \Rightarrow \mathrm{x}=\mathrm{y}$
we use induction over the structure of σ.
1, +, \times : Easy.
$\mu \mathrm{F}$:

```
    x ~_\muF y }=>\textrm{x}=\textrm{y
    & Induction. Let
        { X = { (x, x) | x f \llbracket F F\rrbracket}.
        O(F)(X) \subseteqX
    \Leftrightarrow
    \forall(x, y) \in O(F)(X). x = y
    \Leftrightarrow { in, out bijections. }
        \forall(x, y) \in O'_F(F)(X). x = y
    \Leftarrow
        \forallG\leqF. (x, y) \in O'_F(G)(X). x = y
    &{ Induction over G. }
        G \leq F.
                \forall G' < G, (x, y) \in O'_F(G')(X). x = y
        => }\forall\mathrm{ (x, y) & O'_F(G)(X). x = y
    \Leftrightarrow{ Case analysis. }
    - G = Id: Trivial.
    - G = K_\tau: By outer inductive hypothesis.
    - G = G1 }\times\mp@subsup{G}{2}{}\mathrm{ or }\mp@subsup{G}{1}{}+\mp@subsup{G}{2}{}\mathrm{ : By inner inductive hypothesis.
```

νF :

```
    \forallx, y \in\llbracket\nuF\rrbracket. x ~_\nuF y }=>\textrm{x}=\textrm{y
    & { in, out bijections. }
    * x, y \in\llbracketF \nuF\rrbracket. x ~_(F \nuF) y }=>=x=
    &{ Generalise. }
    \forallG\leqF, x, y \in\llbracketG \nuF\rrbracket. x ~_(G \nuF) y }=>\textrm{f}=\textrm{x}=\textrm{y
    \Leftrightarrow{ The generalised approximation lemma. }
    \forallG\leqF, x, y \in\llbracketG \nuF\rrbracket. x ~_(G \nuF) y
        # }\forall\textrm{n}\in\mathbb{N}\mathrm{ . approx_ &,G n x = approx_ &,G n y
\Leftrightarrow
    | n \in\mathbb{N},\textrm{G}\leq\textrm{F},\textrm{x},\textrm{y}\in\llbracketG\nuF\rrbracket.
        x ~_(G \nuF) y m approx_\perp,G n x = approx_ &,G n y
```

Section 14: A characterisation of the PER, valid for function-free types

We proceed by lexicographic induction over first n and then G.

- $\mathrm{n}=0, \mathrm{G}=\mathrm{Id}:$ Trivial.
- $\mathrm{n}=\mathrm{k}+1, \mathrm{G}=\mathrm{Id}, \mathrm{x}=\mathrm{in} \mathrm{x}^{\prime}, \mathrm{y}=$ in $\mathrm{y}^{\prime}:$
approx_ \perp, Id (k+1) (in $\left.x^{\prime}\right)$
$=$
in (approx_」, F k x')
$=\left\{\right.$ Inductive hypothesis, $\left.x^{\prime} \sim y^{\prime}.\right\}$ in (approx_ $\perp, F \mathrm{k} \mathrm{y}^{\prime}$)
$=$ approx_ \perp, Id (k+1) (in $\left.\mathrm{y}^{\prime}\right)$
- $G=K_{-} \tau$:
approx_ $\perp, K_{-} \tau \mathrm{n} \mathrm{x}$
$=$
x
$=$ \{ Outer inductive hypothesis. \} y
$=$ approx_ $\perp, K_{-} \tau \mathrm{n}$ y
- $G=G_{1} \times G_{2}, x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right):$ $\operatorname{approx} _\perp,\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right) \mathrm{n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
$=$
(approx_ $\perp, \mathrm{G}_{1} \mathrm{n} \mathrm{x}_{1}$, approx_ $\perp, \mathrm{G}_{2} \mathrm{n} \mathrm{x}_{2}$)
$=\left\{\right.$ Inductive hypothesis, $\left.\mathrm{x}_{1} \sim \mathrm{y}_{1}, \mathrm{x}_{2} \sim \mathrm{y}_{2}.\right\}$ (approx_ $\perp, \mathrm{G}_{1} \mathrm{n} \mathrm{y}_{1}$, approx_ $\perp, \mathrm{G}_{2} \mathrm{n} \mathrm{y}_{2}$)
$=$ $\operatorname{approx} _\perp,\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right) \mathrm{n}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$
- $G=G_{1}+G_{2}, x=\operatorname{inl}\left(x_{1}\right), y=\operatorname{inl}\left(y_{1}\right)$, other case analogous. approx_ $\perp,\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right) \mathrm{n} \operatorname{inl}\left(\mathrm{x}_{1}\right)$
$=$ inl (approx_ $\perp, \mathrm{G}_{1} \mathrm{n} \mathrm{x}_{1}$)
$=\left\{\right.$ Inductive hypothesis, $\left.\mathrm{x}_{1} \sim \mathrm{y}_{1}.\right\}$ inl (approx_ $\perp, \mathrm{G}_{1} \mathrm{n} \mathrm{y}_{1}$)
$=$ approx_ $\perp,\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right) \mathrm{n} \operatorname{inl}\left(\mathrm{y}_{1}\right)$
(It may be nicer to use coinduction _for equality_ instead of the approximation lemma here. Indeed that could be true for the other proofs that use the approximation lemma as well. Maybe a general scheme for coinduction, that includes both \sim and $=$, could be set up.)

Section 15: The PER gives rise to a distributive bicartesian closed category

15 The PER gives rise to a distributive bicartesian closed category

This part proves that the PER model gives rise to a bicartesian closed category.

Note: Originally it was proved that the category was also distributive (i.e. $(\sigma \times \tau)+(\sigma \times \gamma) \cong \sigma \times(\tau+\gamma))$, but apparently this follows since the category is bicartesian closed. See e.g. Huwig and Poigné, A note on inconsistencies caused by fixpoints in a cartesian closed category, Theoretical Computer Science 73(1), 101-112, 1990.

- It is a category

For lack of a better idea, name the category PER.

Objects: Types σ.
Morphisms: A morphism from σ to τ is an equivalence class of functions in $\operatorname{dom}\left(\sim_{-}(\sigma \rightarrow \tau)\right)$.

Composition: [f] $\circ[\mathrm{g}]=[\mathrm{f} \circ \mathrm{g}]=[\lambda \mathrm{v} . \mathrm{f}(\mathrm{g} v)]$ (well-defined and associative).

Identity: id_o = [id_o] (a proper identity).
(Properties are inherited from the underlying structure.)

- Terminal object

```
The terminal object is 1 with [~_1] = {[\star]}. (This object is
apparently isomorphic to \nuId, since [~_\nuId] = {[\perp]}.)
We need to prove that there is exactly one morphism !_\sigma : \sigma }->1
At least one: [\llbracket\lambdax. \star\rrbracket] = [\lambdav. \star] : \sigma 
At most one: Assume f : \sigma -> 1. Then, for any x }\in[~~\sigma] we have
f x = [\star]. The result (f = [\lambdav . *]) follows by extensionality.
- Initial object
```

The initial object is μ Id with $\left[\sim_{\sim} \mu I d\right]=\emptyset$.
We need to prove that there is exactly one morphism <_ $\sigma: \mu I d \rightarrow \sigma$.

Section 15: The PER gives rise to a distributive bicartesian closed category

```
At least one: [\lambdav. \perp] : \muId }->\sigma.(Note that \lambdav. \perp \in dom(~) since it i
non-bottom and dom(~_\muId) = \emptyset.)
At most one: Assume f : \muId }->\sigma\mathrm{ . Then, since dom( }\mp@subsup{~}{_}{\prime}\muId)=\emptyset, we hav
that f = [\lambdav. \perp]. Done.
```

- Products

The product construction is the product (\times) of the type system.
For the morphisms we have $[f] \Delta[g]=[\lambda v$. (f v, g v)], fst $=$ $[\llbracket f s t \rrbracket]$, snd $=[\llbracket$ snd $\rrbracket]$ (all well-defined).

```
Now, take arbitrary f : \gamma >\sigma and g : \gamma }->\tau\mathrm{ . We have to show that
    h = f \Delta g & fst \circ h = f ^ snd \circ h = g.
#: fst ○ ([f] \Delta [g])
            [\llbracketfst\rrbracket ○ (\lambdav. (f v, g v))]
            [\lambdav. f v]
        =
            [f]
    Similarly for snd o h = g.
\Leftarrow: Assume that fst \circ [h] = [f] and snd ○ [h] = [g]. For an arbitrary v
    we get that
            [fst (h v)] = [f v]
    and
            [snd (h v)] = [g v].
    Hence, since }\perp\not\in\operatorname{dom(~) for product types,
            [h v] = [(f v, g v)],
    i.e.
            [h] = [\lambdav. (f v, g v)] = [f] \Delta [g].
```

- Coproducts
The coproduct construction is the sum (+) of the type system.
For the morphisms we have $[f] \nabla[g]=[\lambda v . \llbracket c a s e \rrbracket v f g]$, inl $=$
$[\llbracket i n l \rrbracket]$, inr $=[\llbracket i n r \rrbracket]$ (all well-defined).
Now, take arbitrary $f:\left[\sim_{-} \sigma\right] \rightarrow\left[\sim_{\gamma} \gamma\right]$ and $g:\left[\sim_{_} \tau\right] \rightarrow\left[\sim_{-} \gamma\right]$. We have
to show that
$h=f \nabla g \Leftrightarrow h \circ$ inl $=f \wedge h \circ$ inr $=g$.

Section 15: The PER gives rise to a distributive bicartesian closed category

```
#: ([f] \nabla [g]) ○ inl
    =
        [(\lambdav. \llbracketcase\rrbracket v f g) ○ inl]
    [\lambdav. \llbracketcase\rrbracket inl(v) f g]
    =
        [\lambdav. f v]
    =
        [f]
    Similarly for h o inr = g.
&: Assume that h ○ inl = f and h o inr = g. For arbitrary vs we get
    that
        [h inl(v)] = [f v]
    and
        [h inr(v)] = [g v].
    Hence, since }\perp\not\in\operatorname{dom(~) for product types,
        [h v] = [\llbracketcase\rrbracket v f g],
    i.e.
        [h] = f \nabla g.
```

- Exponentials

The exponential $\sigma^{\wedge} \tau$ is $\tau \rightarrow \sigma$.
The corresponding morphisms are apply $=[\lambda(f, x) . f x]$ and curry $=$ [$\lambda \mathrm{f} x \mathrm{y} . \mathrm{f}(\mathrm{x}, \mathrm{y})$].

Actually we can easily derive curry from the universal property. (Note that we cannot assume that curry is a morphism. The expression curry f has to be defined for all f, but this only implies that curry is a total function from $\left[\sim_{-}((\sigma \times \tau) \rightarrow \gamma)\right]$ to $\left[\sim_{_}(\sigma \rightarrow(\tau \rightarrow \gamma))\right]$.)

```
    [g] = curry [f] \Leftrightarrow apply ○ ([g] 人 id) = [f]
    [g] = curry [f] & [\lambda(f, x). f x] ○ ([g] 人 id) = [f]
\Leftrightarrow{ As above. }
    [g] = curry [f] \Leftrightarrow [\lambda(f, x). f x] o [\lambda(x, y). (g x, y)] = [f]
\Leftrightarrow
    [g] = curry [f] \Leftrightarrow [\lambda(x, y). g x y] = [f]
\Leftrightarrow
    [g] = curry [f] \Leftrightarrow [g x y] = [f (x, y)]
\Leftrightarrow { Extensionality. }
    (curry [f]) [x] [y] = [f (x, y)]
\Leftrightarrow
    curry [f] = [\lambdax y. f (x, y)]
\Leftrightarrow { Now we know that curry is a morphism. }
    curry = [\lambdaf x y. f (x, y)]
```

Section 15：The PER gives rise to a distributive bicartesian closed category
－Initial algebras

Given a polynomial functor F ，we will prove that（ $\mu \mathrm{F}$ ，in）with in $=$ ［in］：$F \mu F \rightarrow \mu F$ is an initial F－algebra．That is，for any A ，we have that fold＿F $=$［〔fold＿F】］：$(\mathrm{FA} \rightarrow \mathrm{A}) \rightarrow \mu \mathrm{F} \rightarrow \mathrm{A}$ satisfies
$\forall \mathrm{h}: \mu \mathrm{F} \rightarrow \mathrm{A}, \mathrm{f}: \mathrm{FA} \rightarrow \mathrm{A}$
$h=f o l d _F f \Leftrightarrow h \circ$ in $=f \circ F h$.

Proof：

First notice that $\mu \mathrm{F}$ is a type，and that the morphisms above are actually morphisms of the correct types．

Note also that out＝［out］is used below．

1．Show that
$h=f o l d _F f \Rightarrow h \circ$ in $=f \circ F h$,
i．e．show that
fold＿F f \circ in $=f \circ F$（fold＿F f）
or equivalently（［in］／［out］are bijections since in／out are）
fold＿F f＝f o F（fold＿F f）o out．

We can restate this as follows：For any［f］，show that
$\left[\llbracket f o l d _F \rrbracket f\right]=\left[f \circ L(F)\left(\llbracket f o l d _F \rrbracket f\right) \circ\right.$ out $]$
（see functor－properties for proof that $F=[L(F)])$ ．By the definition of 【fold＿F】 and fix we have that
$\llbracket f o l d _F \rrbracket f=f \circ L(F)\left(\llbracket f o l d _F \rrbracket f\right) \circ$ out，
and hence we are done（since $\llbracket f o l d _F \rrbracket f \in \operatorname{dom}(\sim)$ ）．

2．Show that
$[\mathrm{h}] \circ$ in $=[\mathrm{f}] \circ \mathrm{F}[\mathrm{h}] \Rightarrow[\mathrm{h}]=\mathrm{fold} \mathrm{_F}[\mathrm{f}]$ ，
i．e．
$[h]=[f \circ L(F) h \circ$ out $] \Rightarrow[h]=\left[\llbracket f \circ 1 d _F \rrbracket f\right]$, or，using extensionality，

Section 15: The PER gives rise to a distributive bicartesian closed category

```
    [h] = [f ○ L(F) h o out]
    => \forall [x] \in [~_\muF]. [h x] = [\llbracketfold_F\rrbracketf x].
Proof by induction over size of x (somewhat inspired by proof in
Meseguer and Goguen, Initiality, induction, and computability):
    \forall [x] \in [~_\muF]
        [h x] = [\llbracketfold_F\rrbracketf x]
\Leftrightarrow{ Properties of h and \llbracketfold_F\rrbracket. }
    \forall[x] \in [~_\muF].
        [(f \circ L(F) h ○ out) x] = [(f o L(F) (\llbracketfold_F\rrbracketf) o out) x]
\Leftarrow{ Generalise. }
    \forall[x] \in [~_\muF].
        [(L(F) h o out) x] = [(L(F) (\llbracketfold_F\rrbracketf) o out) x]
\Leftrightarrow { in/out bijections. }
    \forall[x] \in [~_(F \muF)].
        [L(F) h x] = [L(F) (\llbracketfold_F\rrbracketf) x]
& { Generalise. }
    G G, [x] [ [~_(G \muF)].
        [L(G) h x] = [L(G) (\llbracketfold_F\rrbracketf) x]
&{Proof by induction over size of x. }
    \forallG, [x] \in [~_(G \muF)].
        \forall\mp@code{', [x'] }\in[~~_(G' }\mu\textrm{F})]
            size_~,(G' \muF) [x'] < size_~,(G \muF) [x]
            => [L(G') h x'] = [L(G') (\llbracketfold_F\rrbracket f) x']
        => [L(G) h x] = [L(G) (\llbracketfold_F\rrbracketf) x]
\Leftrightarrow{ Case analysis on G. }
- G = Id:
    & { Definition of Id, L(Id). }
        \forall[x] \in [~_\muF].
            \forall G', [x'] \in [~_(G' \muF)].
            size_~,(G' \muF) [x'] < size_~,\muF [x]
            => [L(G') h x'] = [L(G') (\llbracketfold_F\rrbracket f) x']
            [h x] = [\llbracketfold_F\rrbracketf x]
```

Section 15: The PER gives rise to a distributive bicartesian closed category

```
\Leftrightarrow{ Properties of h and \llbracketfold_F\rrbracket. }
    \forall[x] \in [~_\muF].
        \forall G', [x'] \in [~_(G' \muF)].
        size_~,(G' \muF) [x'] < size_~,\muF [x]
        => [L(G') h x'] = [L(G') (\llbracketfold_F\rrbracket f) x']
        [(f \circ L(F) h ○ out) x] = [(f \circ L(F) (\llbracketfold_F\rrbracketf) ○ out) x]
& { Generalise. }
    \forall[x] \in [~_\muF].
        \forall G', [x'] }\in[\mp@subsup{~}{_}{\prime}(G' MF)]
        size_~,(G' \muF) [x'] < size_~,\muF [x]
        => [L(G') h x'] = [L(G') (\llbracketfold_F\rrbracket f) x']
        [L(F) h (out x)] = [L(F) (\llbracketfold_F\rrbracketf) (out x)]
\Leftrightarrow{ size_~,(F \muF) [out x] < size_~, \muF [x] (see size). }
    T
- G = K_\sigma:
    \Leftarrow{ Definition of K_\sigma, L(K_\sigma), simplification. }
    \forall[x] \in [~_\sigma].
        # [x] = [x]
\Leftrightarrow{ Assumption. }
```

 T
 - $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}$:
$\Leftrightarrow\{$ Definition of $L(G), \sim$. \}
$\forall\left[\left(x_{1}, x_{2}\right)\right] \in\left[\sim_{-}(G \mu F)\right]$.
$\forall G^{\prime},\left[x^{\prime}\right] \in\left[\sim_{-}(G \prime \mu F)\right]$.
size_~, (G' $\mu \mathrm{F}) \quad[\mathrm{x}$ '] < size_~, $\mu \mathrm{F}[\mathrm{x}]$
$\Rightarrow\left[L\left(G^{\prime}\right) h x^{\prime}\right]=\left[L\left(G^{\prime}\right)\left(\llbracket f o l d _F \rrbracket f\right) x^{\prime}\right]$
$\left[L\left(G_{1}\right) h x_{1}\right]=\left[L\left(G_{1}\right)\left(\llbracket f o l d_{-} F \rrbracket f\right) x_{1}\right] \wedge$
$\left[L\left(G_{2}\right) h x_{2}\right]=\left[L\left(G_{2}\right)\left(\llbracket f o l d _F \rrbracket f\right) x_{2}\right]$
$\Leftrightarrow\left\{\right.$ size_~, $\left(\mathrm{G}_{1} \mu \mathrm{~F}\right)\left[\mathrm{x}_{1}\right]<\operatorname{size}_{\sim} \sim,(\mathrm{G} \mu \mathrm{F})$ [($\left.\left.\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right]$, and similarly
for $\left[x_{2}\right]$ (see size). \}
T

Section 15: The PER gives rise to a distributive bicartesian closed category

```
- G = G1 + G :
    & { We treat one case here (inl). The other one is analogous.
        Definition of L(G), ~.}
        \forall[inl(x)] \in [~_(G \muF)].
        \forall G', [x'] \in [~_(G' }\mu\textrm{F})]
            size_~,(G' \muF) [x'] < size_~,(G \muF) [x]
            => [L(G') h x'] = [L(G') (\llbracketfold_F\rrbracket f) x']
        = [L(GG) h x] = [L(G (G) (\llbracketfold_F\rrbracketf) x]
    \Leftrightarrow { size_~,(G1 \muF) [x] < size_~, (G \muF) [inl(x)] (see size). }
        T
```

- Final coalgebras

Given a polynomial functor F, we will prove that ($\nu \mathrm{F}$, out) with out $=$ [out] : $\nu F \rightarrow F \nu F$ is a final F-coalgebra. That is, for any τ, we have that unfold_F $=\left[\llbracket u n f o l d _F \rrbracket\right]:(\tau \rightarrow F \tau) \rightarrow \tau \rightarrow \nu F$ satisfies
$\forall \mathrm{h}: \tau \rightarrow \nu \mathrm{F}, \mathrm{f}: \tau \rightarrow \mathrm{F} \tau$.
$h=u n f o l d _F f \Leftrightarrow$ out $\circ h=F h \circ f$.
Proof:

First notice that $\nu \mathrm{F}$ is a type, and that the morphisms above are actually morphisms of the correct types.

1. Show that

$$
\mathrm{h}=\text { unfold_F } \mathrm{f} \Leftrightarrow \text { out } \circ \mathrm{h}=\mathrm{Fh} \circ \mathrm{f},
$$

i.e. show that

$$
\text { out } \circ \text { unfold_F f = F (unfold_F f) } \circ \mathrm{f} \text {, }
$$

or equivalently ([in]/[out] are bijections since in/out are)
unfold_F f = in \circ F (unfold_F f) \circ f.
We can restate this as follows: For any [f], show that
$\left[\llbracket u n f o l d _F \rrbracket f\right]=\left[i n \circ L(F)\left(\llbracket u n f o l d _F \rrbracket f\right) \circ f\right]$
(see functor-properties for proof that $F=[L(F)])$. By the definition of $\llbracket u n f o l d _F \rrbracket$ and fix we have that

Section 15: The PER gives rise to a distributive bicartesian closed category

```
    \llbracketunfold_F\rrbracketf= in OL(F) (\llbracketunfold_F\rrbracketf) O f,
and hence we are done (since \llbracketunfold_F\rrbracketf \in dom(~)).
2. Show that
    out ○ [h] = F [h] ○ [f] # [h] = unfold_F [f],
i.e.
    [h] = [in O L(F) h O f] # [h] = [\llbracketunfold_F\rrbracketf],
or, using extensionality,
    [h] = [in ○ L(F) h ○ f]
    => }\forall[x]\in[~~\tau]. [h x] = [\llbracketunfold_F\rrbracket f x].
Proof:
    \forall[x] \in [~_\tau]. [h x] = [\llbracketunfold_F\rrbracket f x]
    { Use coinduction. Let
\Leftarrow}| X={(h x, \llbracketunfold_F\rrbracketf x) | x f dom(~_\tau) }
    { We need to show that X \subseteqO(F)(X).
    \forallx\in dom(~_\tau). (h x, \llbracketunfold_F\rrbracketf x) \in O(F)(X)
\Leftrightarrow{ Top-level assumption about h, property of \llbracketunfold_F\rrbracket. }
    |x\in dom(~_\tau).
    ((in ○ L(F) h ○ f) x, (in ○ L(F) (\llbracketunfold_F\rrbracketf) ○ f) x) \in O(F)(X)
& { Definition of O(F), in/out bijections. }
    x 的m(~_\tau).
        ((L(F) h ○ f) x, (L(F) (\llbracketunfold_F\rrbracket f) o f) x) \in O'_F(F)(X)
\Leftarrow{ Generalise. }
    x f dom(~_(F \tau)).
        (L(F) h x, L(F) (\llbracketunfold_F\f) x) \in O'_F(F)(X)
& { Generalise. }
    \forall\mp@code{G}x\in\operatorname{dom(~_(G \tau)).}
        (L(G) h x, L(G) (\llbracketunfold_F\f) x) \in O'_F(G)(X)
& { Induction over G. }
```

Section 15: The PER gives rise to a distributive bicartesian closed category

```
    G.
    \forall G' < G, x \in dom(~_(G' \tau)).
        (L(G') h x, L(G') (\llbracketunfold_F\rrbracketf) x) \in O'_F(G')(X)
    => }\forall\textrm{x}\in\operatorname{dom(~_(G \tau)).
        (L(G) h x, L(G) (\llbracketunfold_F\rrbracketf) x) \in O'_F(G)(X)
\Leftrightarrow { Case analysis on G. }
- G = Id:
    x 酎(~_\tau).
        (h x, \llbracketunfold_F\rrbracketf x) \in X
\Leftrightarrow { Definition of X. }
    T
- G = K_\sigma:
    \forallx\in dom(~_\sigma).
        (x, x) f { (x, y) | x, y \in dom(~_\sigma), x ~ y }
    \Leftrightarrow{ Assumption. }
    T
-G = G1 }\times\mp@subsup{G}{2}{2}
    \forall G' < G, x \in dom(~_(G' \tau)).
        (L(G') h x, L(G') (\llbracketunfold_F\rrbracketf) x) \in O'_F(G')(X)
    => }\forall\textrm{x}\in\operatorname{dom(~_(G \tau)).
        (L(G) h x, L(G) (\llbracketunfold_F\rrbracketf) x) \in O'_F(G)(X)
\Leftrightarrow{ Definition of L(G) and O'_F(G). }
    \forall G' < G, x \in dom(~_(G' \tau)).
        (L(G') h x, L(G') (\llbracketunfold_F\rrbracketf) x) \in O'_F(G')(X)
    => \forall x 
```



```
    \Leftrightarrow{ Assumption. }
    T
```

Section 15: The PER gives rise to a distributive bicartesian closed category

```
- G = G
    \forallG' < G, x \in dom(~_(G' \tau)).
        (L(G') h x, L(G') (\llbracketunfold_F\rrbracketf) x) \in O'_F(G')(X)
    =>\forallx 酎(~_(G \tau)).
        (L(G) h x, L(G) (\llbracketunfold_F\rrbracket f) x) \in O'_F(G)(X)
\Leftrightarrow { Definition of L(G) and O'_F(G). }
    \forall G' < G, x \in dom(~_(G' \tau)).
        (L(G') h x, L(G') (\llbracketunfold_F\rrbracketf) x) \in O'_F(G')(X)
    =>\quad\forall \mp@subsup{x}{1}{}\in\operatorname{dom}(~_(G}\mp@subsup{\textrm{G}}{1}{}\tau))
```



```
        \wedge \forall x x < dom(~_(G}\mp@subsup{\textrm{G}}{2}{}\tau))
```


$\Leftrightarrow\{$ Assumption. \}
T

Section 16: A characterisation of emptiness of domains of the PER

16 A characterisation of emptiness of domains of the PER

$\operatorname{dom}\left(\sim _\sigma\right)=\emptyset \Leftrightarrow\langle\langle\sigma\rangle\rangle=\emptyset$

Proof by induction over the type structure:

- $\sigma=1: \operatorname{dom}\left(\sim_{-}\right) \neq \emptyset \wedge\langle\langle\sigma\rangle\rangle \neq \emptyset$.
- $\sigma=\sigma_{1} \times \sigma_{2}$:
$\operatorname{dom}\left(\sim _\sigma\right)=\emptyset$
$\Leftrightarrow\{$ Definition of \sim. $\}$
$\operatorname{dom}\left(\sim_{-} \sigma_{1}\right)=\emptyset \vee \operatorname{dom}\left(\sim_{-} \sigma_{2}\right)=\emptyset$
\Leftrightarrow \{ Inductive hypothesis. \}
$\left\langle\left\langle\sigma_{1}\right\rangle\right\rangle=\emptyset \vee\left\langle\left\langle\sigma_{2}\right\rangle\right\rangle=\emptyset$
\Leftrightarrow
$\langle\langle\sigma\rangle\rangle=\emptyset$
- $\sigma=\sigma_{1}+\sigma_{2}$:
$\operatorname{dom}\left(\sim _\sigma\right)=\emptyset$
$\Leftrightarrow\{$ Definition of \sim. \}
$\operatorname{dom}\left(\sim_{_} \sigma_{1}\right)=\emptyset \wedge \operatorname{dom}\left(\sim \sigma_{2}\right)=\emptyset$
$\Leftrightarrow\{$ Inductive hypothesis. \}
$\left\langle\left\langle\sigma_{1}\right\rangle\right\rangle=\emptyset \wedge\left\langle\left\langle\sigma_{2}\right\rangle\right\rangle=\emptyset$
\Leftrightarrow
$\langle\langle\sigma\rangle\rangle=\emptyset$
- $\sigma=\sigma_{1} \rightarrow \sigma_{2}$:
$\operatorname{dom}\left(\sim_{-} \sigma\right)=\emptyset$
$\Leftrightarrow\{$ Definition of \sim. \}
$\left\{\mathrm{f} \in \llbracket \sigma_{1} \rightarrow \sigma_{2} \rrbracket \mid \mathrm{f} \neq \perp, \forall \mathrm{x}, \mathrm{y} \in \llbracket \sigma_{1} \rrbracket . \mathrm{x} \sim \mathrm{y} \Rightarrow \mathrm{f} \mathrm{x} \sim \mathrm{f} \mathrm{y}\right\}=\emptyset$
$\left\{\mathrm{f} \in\left\langle\llbracket \sigma_{1} \rrbracket \rightarrow \llbracket \sigma_{2} \rrbracket\right\rangle \mid \forall \mathrm{x}, \mathrm{y} \in \llbracket \sigma_{1} \rrbracket . \mathrm{x} \sim \mathrm{y} \Rightarrow \mathrm{f} \mathrm{x} \sim \mathrm{f} \mathrm{y}\right\}=\emptyset$
\Leftrightarrow
$\neg\left(\exists \mathrm{f} \in\left\langle\llbracket \sigma_{1} \rrbracket \rightarrow \llbracket \sigma_{2} \rrbracket\right\rangle . \forall \mathrm{x}, \mathrm{y} \in \llbracket \sigma_{1} \rrbracket . \mathrm{x} \sim \mathrm{y} \Rightarrow \mathrm{f} \mathrm{x} \sim \mathrm{f} \mathrm{y}\right)$
$\left\{\right.$ Assume $\exists \mathrm{f} \in\left\langle\llbracket \sigma_{1} \rrbracket \rightarrow \llbracket \sigma_{2} \rrbracket\right\rangle . \forall \mathrm{x}, \mathrm{y} \in \llbracket \sigma_{1} \rrbracket . \mathrm{x} \sim \mathrm{y} \Rightarrow \mathrm{f} \mathrm{x} \sim \mathrm{f} \mathrm{y}$. Then either $\operatorname{dom}\left(\sim_{_} \sigma_{1}\right)=\emptyset$ or we must have $\operatorname{dom}\left(\sim_{-} \sigma_{2}\right) \neq \emptyset$.
\Leftrightarrow On the other hand, assume $\operatorname{dom}\left(\sim_{-} \sigma_{1}\right)=\emptyset$. Since $\left\langle\llbracket \sigma_{1} \rrbracket \rightarrow \llbracket \sigma_{2} \rrbracket\right\rangle \neq \emptyset$ (take $\lambda \mathrm{v} . \perp$, for instance), we immediately get what we want. Finally, assume $\operatorname{dom}\left(\sim_{-} \sigma_{2}\right) \neq \emptyset$. Take $z \in \operatorname{dom}\left(\sim_{_} \sigma_{2}\right)$ and let $f=$ \{ $\lambda \mathrm{v}$. z. Done.

Section 16: A characterisation of emptiness of domains of the PER

$$
\begin{aligned}
& \neg\left(\operatorname{dom}\left(\sim_{-} \sigma_{1}\right)=\emptyset \vee \operatorname{dom}\left(\sim_{-} \sigma_{2}\right) \neq \emptyset\right) \\
\Leftrightarrow & \operatorname{dom}\left(\sim_{-} \sigma_{1}\right) \neq \emptyset \wedge \operatorname{dom}\left(\sim_{-} \sigma_{2}\right)=\emptyset \\
\Leftrightarrow & \{\text { Inductive hypothesis. }\} \\
& \left\langle\left\langle\sigma_{1}\right\rangle\right\rangle \neq \emptyset \wedge\left\langle\left\langle\sigma_{2}\right\rangle\right\rangle=\emptyset \\
\Leftrightarrow & \langle\langle\sigma\rangle\rangle=\emptyset
\end{aligned}
$$

- $\sigma=\mu \mathrm{F}$:

$$
\operatorname{dom}\left(\sim_{_} \sigma\right)=\emptyset \Leftrightarrow\langle\langle\sigma\rangle\rangle=\emptyset
$$

$\Leftrightarrow\{$ Definition of \sim. \} $\mu 0(F)=\emptyset \Leftrightarrow\langle\langle\mu \mathrm{F}\rangle\rangle=\emptyset$
$\Leftrightarrow\{$ See explicit-characterisations. \} $\mu 0(F)=\emptyset \Leftrightarrow \mu \hat{S}(F)=\emptyset$
$\Leftrightarrow\{$ Induction, plus the fact that \emptyset is a prefix point on both sides \{ above.
$0(F)(\emptyset) \subseteq \emptyset \Leftrightarrow \widehat{S}(F)(\emptyset) \subseteq \emptyset$
\Leftrightarrow
$O(F)(\emptyset)=\emptyset \Leftrightarrow \widehat{S}(F)(\emptyset)=\emptyset$
\Leftrightarrow
$O^{\prime}{ }_{-} F(F)(\emptyset)=\emptyset \Leftrightarrow \hat{S}^{\prime}{ }^{\prime} F(F)(\emptyset)=\emptyset$
$\Leftarrow\{$ Generalise. $\}$
$\forall \mathrm{G} \leq \mathrm{F} . \mathrm{O}^{\prime} _\mathrm{F}(\mathrm{G})(\emptyset)=\emptyset \Leftrightarrow \hat{S}^{\prime}{ }^{\prime} \mathrm{F}(\mathrm{G})(\emptyset)=\emptyset$
$\Leftarrow\{$ Induction. $\}$
$\forall \mathrm{G} \leq \mathrm{F}$.
$\forall G^{\prime}<G \cdot O^{\prime} _F\left(G^{\prime}\right)(\emptyset)=\emptyset \Leftrightarrow \hat{S}^{\prime}{ }^{\prime} F\left(G^{\prime}\right)(\emptyset)=\emptyset$
$\Rightarrow O^{\prime}{ }_{-} F(G)(\emptyset)=\emptyset \Leftrightarrow \hat{S^{\prime}}{ }^{\prime} F(G)(\emptyset)=\emptyset$
$\Leftrightarrow\{$ Case analysis. $\}$

- $G=I d:$

$$
\begin{aligned}
& 0^{\prime} _F(G)(\emptyset)=\emptyset \Leftrightarrow \hat{S}^{\prime}{ }_{-} F(G)(\emptyset)=\emptyset \\
& \Leftrightarrow \\
& \quad
\end{aligned}
$$

- $G=K_{-} \tau$:

$$
\begin{aligned}
& 0^{\prime}{ }_{-} F(G)(\emptyset)=\emptyset \Leftrightarrow \hat{S}^{\prime}{ }_{-} F(G)(\emptyset)=\emptyset \\
& \Leftrightarrow \sim_{-} \tau=\emptyset \Leftrightarrow\langle\langle\tau\rangle\rangle=\emptyset \\
& \Leftrightarrow \text { dom }\left(\sim_{-} \tau\right)=\emptyset \Leftrightarrow\langle\langle\tau\rangle=\emptyset \\
& \Leftrightarrow\left\{\text { Outer inductive hypothesis, } \tau<\mu \mathrm{F} \text { since } K_{-} \tau \leq F .\right\} \\
& \quad T
\end{aligned}
$$

- $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}$:

$$
0^{\prime} _F(G)(\emptyset)=\emptyset \Leftrightarrow \hat{S}^{\prime} _F(G)(\emptyset)=\emptyset
$$

\Leftrightarrow

Section 16: A characterisation of emptiness of domains of the PER


```
    \Leftrightarrow { Inner inductive hypothesis. }
    T
- G = G }\mp@subsup{\textrm{G}}{1}{}+\mp@subsup{\textrm{G}}{2}{}\mathrm{ :
    O'_F(G)(\emptyset) = \emptyset\Leftrightarrow\hat{S}
    \Leftrightarrow
    (O'_F(G)
    \Leftrightarrow{ Inner inductive hypothesis. }
    \top
- \sigma = \nuF:
```

First we define two subsets of the set of functors, using the following grammars:

```
E ::= K_\tau | E + E | E < F | F 人 E
            (For \tau with }\langle\langle\tau\rangle\rangle=\emptyset.
NE ::= Id | K_\tau | NE + F | F + NE | NE > NE
            (For \tau with }\langle\langle\tau\rangle\rangle\not=\emptyset.
```

The union of these subsets is the set of all functors. We can prove this by induction over the structure of a functor:

- Id: Included in NE.
- $K_{-} \tau$: Included in either E or $N E$, depending on whether $\langle\langle\tau\rangle=\emptyset$ or not.
- $\mathrm{F}_{1} \times \mathrm{F}_{2}$: Inductively we know that F_{1} and F_{2} are both included in either E or NE. We get two cases:
- One of F_{1} and F_{2} in $E: F_{1} \times F_{2}$ in E.
- F_{1} and F_{2} both in NE: $F_{1} \times F_{2}$ in NE.
- $\mathrm{F}_{1}+\mathrm{F}_{2}$: Analogously.

Now we will prove the following four statements, thereby establishing that dom ($\left.\sim _\nu F\right)=\emptyset \Leftrightarrow\langle\langle\nu F\rangle\rangle=\emptyset:$

1. $\operatorname{dom}\left(\sim _\nu E\right)=\emptyset$,
2. $\langle\langle\nu E\rangle=\emptyset$,
3. $\operatorname{dom}\left(\sim _\nu N E\right) \neq \emptyset$, and
4. $\langle\langle\nu N E\rangle \neq \emptyset$.

Section 16: A characterisation of emptiness of domains of the PER

1. Note first that $\operatorname{dom}\left(\sim_{_} \nu E\right)=\emptyset$ iff $\left[\sim_{_} \nu E\right]=\emptyset$. We have:
[~_ $\nu \mathrm{E}]$
= \{ See explicit-characterisations. \} $\nu S(E)$
$=\{$ Fixpoint. $\}$ S(E) ($\nu S(E)$)
$=\{$ Definition of $S(E)$. \}
\{ [in x] | [x] $\in S^{\prime}$ _E(E) ($\left.\left.\nu S(E)\right)\right\}$
Note that $\left\{[i n x] \mid[x] \in S^{\prime}{ }^{\prime} E(E)(\nu S(E))\right\}=\emptyset$ iff
$S^{\prime}{ }^{\prime} E(E)(\nu S(E))=\emptyset$. We will now prove the generalised statement
$S^{\prime} _E(G)(\nu S(E))=\emptyset$, for arbitrary G given by the grammar E, by induction over G :

- $G=K_{-} \tau,\langle\langle\tau\rangle=\emptyset:$
$S^{\prime} _E\left(K_{-} \tau\right)(\nu S(E))$
$=$
[~_ $\tau]$
$=\{$ Outer inductive hypothesis. \}
\emptyset
- $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}$:
$S^{\prime}{ }_{-} E\left(G_{1}+G_{2}\right)(\nu S(E))$
=
$\left\{[\operatorname{inl}(x)]\right.$ | $\left.[x] \in S^{\prime}, E\left(G_{1}\right)(\nu S(E))\right\} \cup$
$\left\{[\operatorname{inr}(y)]\right.$ | $\left.[y] \in S^{\prime} _E\left(G_{2}\right)(\nu S(E))\right\}$
$=\{$ Inductive hypothesis. \}
$\{[\operatorname{inl}(x)]$ | $[x] \in \emptyset\} \cup$
$\{[\operatorname{inr}(y)] \mid[y] \in \emptyset\}$
$=$
\emptyset
- $G=G_{1} \times F:$
$S^{\prime}{ }^{\prime} E\left(G_{1} \times F\right)(\nu S(E))$
$=$
$\left\{[(x, y)] \mid[x] \in S^{\prime}{ }^{\prime} E\left(G_{1}\right)(\nu S(E)),[y] \in S^{\prime}{ }^{\prime} E(F)(\nu S(E))\right\}$
$=\{$ Inductive hypothesis. \}
$\left\{[(x, y)] \mid[x] \in \emptyset,[y] \in S^{\prime}{ }^{\prime} E(F)(\nu S(E))\right\}$
=
\emptyset
- $\mathrm{G}=\mathrm{F} \times \mathrm{G}_{2}$:

Similarly.
2. This proof follows the general structure of the proof of $1 .$.

Section 16: A characterisation of emptiness of domains of the PER
3. By the fundamental theorem we know that $u \in \llbracket \nu F \rrbracket$ defined by
$u=\llbracket u n f o l d(\lambda x . y) \star \rrbracket[y \mapsto v]$
(with $v \in \llbracket F 1 \rrbracket)$ is in $\operatorname{dom}\left(\sim _\nu F\right)$ if $v \in \operatorname{dom}\left(\sim_{-}(F 1)\right)$.
We will now prove $\operatorname{dom}\left(\sim _\nu G\right) \neq \emptyset$ by proving that dom($\left.\sim_{-}(G 1)\right) \neq \emptyset$, for arbitrary G given by the grammar NE. The proof uses induction over G:

- $G=I d:$
$\star \in \operatorname{dom}\left(\sim_{1}\right)$
- $G=K_{-} \tau,\langle\langle\tau\rangle \neq \emptyset:$
$\left\langle\langle\tau\rangle \neq \emptyset\right.$ implies $\operatorname{dom}\left(\sim _\tau\right) \neq \emptyset$ by the outer inductive hypothesis.
- $G=G_{1} \times G_{2}$:

By the inductive hypothesis we know that there is a
$\mathrm{v}_{1} \in \operatorname{dom}\left(\sim_{-}\left(\mathrm{G}_{1} 1\right)\right)$ and $\mathrm{a} \mathrm{v}_{2} \in \operatorname{dom}\left(\sim_{-}\left(\mathrm{G}_{2} 1\right)\right)$. Hence $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right) \in$ $\operatorname{dom}\left(\sim_{-}\left(\left(G_{1} \times G_{2}\right) 1\right)\right)$.

- $G=G_{1}+F:$

By the inductive hypothesis we know that there is a $\mathrm{v} \in \operatorname{dom}\left(\sim_{-}\left(G_{1} 1\right)\right)$. Hence $\operatorname{inl}(v) \in \operatorname{dom}\left(\sim_{-}\left(\left(G_{1}+F\right) 1\right)\right)$.

- $\mathrm{G}=\mathrm{F}+\mathrm{G}_{2}$:

Similarly.
4. This proof follows the general structure of the proof of 3 .

17 The partial surjective homomorphism

For all types σ ：

```
\exists j_\sigma:\\langle\sigma\rangle\rangle\rightsquigarrow [~_\sigma].
    j_\sigma is surjective
    ^
```


First note that，due to cardinality issues，we cannot find a bijective （total）function like the one above：

All Scott domains have cardinality $\leq|\wp(\mathbb{N})|$ since 1．Scott domains are ω－algebraic，
2．an ω－algebraic domain has a countable set of basis elements，and 3．every element of an ω－algebraic domain is the least upper bound of an ω－chain of basis elements．

Now let Nat $=\mu(1+$ Id $)$ ．【Nat】 is a Scott domain since S－DOM（the category of Scott domains and continuous functions）is closed under direct limits and $1+$ Id is a locally continuous functor．（See Fokkinga and Meijer，Program Calculation Properties of Continuous Algebras for hints that $\llbracket \mathrm{Nat} \rrbracket$ can actually be constructed using a direct limit．）
$\llbracket($ Nat \rightarrow Nat）\rightarrow Nat】 is also a Scott domain since S－DOM is closed under function spaces．Hence $\mid \llbracket($ Nat \rightarrow Nat $) \rightarrow$ Nat $\rrbracket|\leq|\wp(\mathbb{N})|$ ．On the other hand， $\mid\langle\langle(N a t \rightarrow$ Nat $) \rightarrow N a t\rangle\rangle|=|(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}|=|\wp(\wp(\mathbb{N}))|>$ $|\wp(\mathbb{N})|$ ．Hence j cannot be bijective for all types．
（Domain theory results taken from Abbas Edalat＇s lecture notes for the course＂Domain Theory and Exact Computation＂given 2002 at Imperial College．）

Second，note that j has to be partial：
Take the total function isInfinite $\in\langle\langle C o N a t \rightarrow$ Bool \rangle ，with CoNat $=$ $\nu(1+I d)$ and Bool $=1+1$ ，defined by
isInfinite $n=\left\{\begin{array}{l}\{\text { True，} j n \text { is defined and equal to }[\omega] \text { ，} \\ \{\text { False，otherwise．}\end{array}\right.$
（Here $\omega=\llbracket u n f o l d$ inr $\star \rrbracket$ is the infinite＂natural number＂，True $=$ inl (\star) and False $=\operatorname{inr}(\star)$ ．Note that isInfinite takes j as an implicit parameter．）

```
Assume that we can find a function satisfying the specification of
j, and assume that j_(CoNat }->\mathrm{ Bool) is total.
We get
    (j isInfinite) (j n) = j (isInfinite n) = j True,
whenever j n = [\omega] and whenever j n is defined but different from
[\omega] we get
    (j isInfinite) (j n) = j False.
Notice that {j True} and {j False} are incomparable, since j is
surjective and }\perp\not\in\mathrm{ dom( __CoNat) (see troublesome-types). Notice also
that {j True} and {j False} are well-defined. (The application of j
is defined and the equivalence classes are singletons.)
Furthermore we have
    {j True}
= { See above. Note that j is surjective. }
    {j isInfinite} \omega
= { Continuity. }
    L_n {j isInfinite} inr n}(\perp)
```

This implies that $\{j$ isInfinite $\} \operatorname{inr}^{n}(\perp) \sqsubseteq\{j$ True\} for all $n \in \mathbb{N}$,
and furthermore $\{j$ isInfinite $\} \operatorname{inr}^{n}(\perp)=\{j$ True $\} \neq \perp$ for all $n \geq n_{0}$
for some $\mathrm{n}_{0} \in \mathbb{N}$.
By surjectivity of j we know that there is a subset $X \subseteq\langle\langle C o N a t\rangle$ such
that $j \mathrm{n}$ is defined for all $\mathrm{n} \in \mathrm{X}$ and
$\left\{\left[\operatorname{inr}^{\mathrm{n}}(\operatorname{inl}(\star))\right] \mid n \in \mathbb{N}\right\}=\{j n \mid n \in X\}$.
This means that
(j isInfinite) (j n) = j False
for all $n \in X$, so we get
$\{j$ isInfinite $\} \operatorname{inr}^{n}(i n l(\star))=\{j$ False $\}$
for all $\mathrm{n} \in \mathbb{N}$, and hence by monotonicity
$\{j$ isInfinite $\} \operatorname{inr}^{\mathrm{n}}(\perp) \sqsubseteq\{j$ False\},

Section 17: The partial surjective homomorphism
which contradicts what we derived above. Hence j_{-}(CoNat \rightarrow Bool) cannot be total. In particular, j isInfinite cannot be defined.

Third, if we add the requirements that

- j has to satisfy the main result (see main-result), and
- the definition of j for function spaces is the one given below, then we get that j is not injective. Note that these requirements are satisfied by the particular j defined below.

Let isIsInf $\in\langle\langle$ (CoNat \rightarrow Bool) \rightarrow Bool \rangle be defined by

$$
\text { isIsInf } f= \begin{cases}\{\text { True, } f=\text { isInfinite, } \\ \{\text { False, otherwise }\end{cases}
$$

(Notice that the definition of isInfinite does not depend on any properties of j, not even that it is total.)

Furthermore, let $k=\lambda f$. False $=\langle\langle\lambda f$. inr $\star\rangle\rangle$.

Assume now that j isIsInf and $\mathrm{j} k$ both exist. By surjectivity we have that for any $f \in\left[\sim_{\sim}^{(C o N a t ~} \rightarrow\right.$ Bool)] there is some f, \in
$\left\langle\langle C o N a t \rightarrow\right.$ Bool \rangle such that $f=j f^{\prime}$. We get
(j isIsInf) f = (j isIsInf) (j f') = j (isIsInf f').

Since j isInfinite is not defined we get that (j isIsInf) $f=$ j False for all $f \in\left[\sim_{\sim}(C o N a t \rightarrow B o o l)\right]$. The same is true for (j k) f. Hence, by extensionality, j isIsInf = j k, so j is not injective.

So, are j isIsInf and $j k$ both defined? By the requirement that j has to satisfy the main result, we get that $j k$ has to be defined (note that k is closed). Furthermore j isIsInf is defined (and equal to $j k$) by the second requirement above since j isInfinite is not defined.

Thanks to Ross Paterson for the idea in the last proof above.

Now, on to the proof of the main statement:
By lexicographic induction over

1. the type structure, and
2. the size of the argument (only defined for μ-types).

We simultaneously construct a total right inverse j^{-1} to j. The
function j^{-1} is then injective.

- $\sigma=1$:
$j \star=[\star]$.
$j^{-1}[\star]=\star$.
Surjective:

```
    \(j\left(j^{-1}[\star]\right)\)
    =
    \(j \star\)
```

 [\(\star\)].
 - $\sigma=\tau_{1} \times \tau_{2}$:
$j(x, y)=[(\{j x\},\{j y\})]$.
$j^{-1}[(x, y)]=\left(j^{-1}[x], j^{-1}[y]\right)$.
Surjective:
$j\left(j^{-1}[(x, y)]\right)$
$=j\left(j^{-1}[x], j^{-1}[y]\right)$
$=$
$\left[\left(\left\{j \quad\left(j^{-1}[x]\right)\right\},\left\{j\left(j^{-1}[y]\right)\right\}\right)\right]$
$=\{$ Inductive hypothesis. \}
[(\{[x]\}, \{[y]\})]
$=[(x, y)]$.
- $\sigma=\tau_{1}+\tau_{2}$:
$j \operatorname{inl}(x)=[\operatorname{inl}(\{j x\})]$,
$j \operatorname{inr}(y)=[\operatorname{inr}(\{j y\})]$.
$j^{-1}[\operatorname{inl}(x)]=\operatorname{inl}\left(j^{-1}[x]\right)$,
$j^{-1}[\operatorname{inr}(y)]=\operatorname{inr}\left(j^{-1}[y]\right)$.

Surjective:
$j\left(j^{-1}[\operatorname{inl}(x)]\right)$
$=$
$j \operatorname{inl}\left(j^{-1}[x]\right)$
$=$
$\left[\operatorname{inl}\left(\left\{j \quad\left(j^{-1} \quad[x]\right)\right\}\right)\right]$
$=$ \{ Inductive hypothesis. \}

Section 17: The partial surjective homomorphism

```
    [inl({[x]})]
=
    [inl(x)].
Other case analogous.
- \sigma = \tau 
[Definition taken from:
    Harvey Friedman
    Equality between functionals
    Logic Colloquium
    Lecture Notes in Mathematics 453
    Springer-Verlag
    1975]
Let j f be the element g \in [~_( }\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{})]\mathrm{ satisfying
    \forallx\in dom(j).g (j x) = j (f x) (which has to exist),
if it (g) exists (in which case it is unique, see below).
```


Uniqueness:

```
    Assume g1, g2 [ [~_ ( }\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{})]\mathrm{ , both satisfying the condition
    above. Then g}\mp@subsup{g}{1}{}=\mp@subsup{g}{2}{}\mathrm{ by extensionality (see definitions) since j_ }\mp@subsup{\tau}{1}{
    is surjective (by inductive hypothesis).
Surjectivity:
    Lemma:
        If }\langle\langle\mp@subsup{\tau}{2}{}\rangle\rangle=\emptyset\mathrm{ , then [ [_( ( }\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{})]=\emptyset\mathrm{ or }\langle\langle\mp@subsup{\tau}{1}{}\rangle\rangle=\emptyset
        Proof:
        We have
            dom(~_( }\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{\prime}))
            {f\in\llbracket\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{}\rrbracket|f\not=\perp,\forallx,y\in\llbracket\mp@subsup{\tau}{1}{}\rrbracket. x ~ y = f x ~ f y }.
        Furthermore j_ }\mp@subsup{\tau}{2}{}\mathrm{ is surjective, by inductive hypothesis, so }\langle\langle\mp@subsup{\tau}{2}{}\rangle
        = \emptyset implies that dom(~_\tau (2) = \emptyset. Thus f x ~ f y can never be
        true. Hence dom(~_( }\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{}))=\emptyset\mathrm{ , unless dom( ( _ }\mp@subsup{\tau}{1}{})=\emptyset\mathrm{ in which
        case we have dom(~_(\tau }\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{\prime}))=\llbracket\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{}\rrbracket\{\perp}\supseteq{\lambdav.\perp}\not
        \emptyset. Finally we have that dom (~_\tau
        per-empty).
    Three cases, based on the lemma:
    - }\langle\langle\mp@subsup{\tau}{2}{}\rangle\rangle=\emptyset, [\mp@subsup{~}{_}{\prime}(\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{})]=\emptyset
        j is trivially surjective ( }\textrm{j}=\emptyset,\mp@subsup{\textrm{j}}{}{-1}=\emptyset)
```

- $\left\langle\left\langle\tau_{2}\right\rangle\right\rangle=\emptyset, \quad\left[\sim_{-}\left(\tau_{1} \rightarrow \tau_{2}\right)\right] \neq \emptyset,\left\langle\left\langle\tau_{1}\right\rangle\right\rangle=\emptyset:$

Take any element $g \in\left[\sim_{\mathcal{Z}}\left(\tau_{1} \rightarrow \tau_{2}\right)\right]$. We have to show that $g=j f$ for some $f \in\left\langle\left\langle\tau_{1} \rightarrow \tau_{2}\right\rangle\right\rangle$. Note that $\left\langle\left\langle\tau_{1}\right\rangle\right\rangle=\left\langle\left\langle\tau_{2}\right\rangle\right\rangle=\emptyset$ implies that $\left\langle\left\langle\tau_{1} \rightarrow \tau_{2}\right\rangle\right\rangle=\emptyset \rightarrow \emptyset=\{\emptyset\}$. Let $f=\emptyset$. Now we have, for all $\mathrm{x} \in$ $\operatorname{dom}\left(j_{-} \tau_{1}\right)=\emptyset$, that $j(f x)=g(j x)$. Hence g is a (the) element satisfying the definition of $j f$.

Note that, since all elements in $\left[\sim_{\sim}\left(\tau_{1} \rightarrow \tau_{2}\right)\right]$ satisfy the definition of $j f$, we get that $\left[\sim_{\mathcal{L}}\left(\tau_{1} \rightarrow \tau_{2}\right)\right]=\{g\}$. It follows that j^{-1}, defined by $j^{-1} g=\emptyset$, is a total right inverse to j.

- $\left\langle\left\langle\tau_{2}\right\rangle\right\rangle \neq \emptyset:$

Take any element $g \in\left[\sim_{\mathcal{Z}}\left(\tau_{1} \rightarrow \tau_{2}\right)\right]$. We have to show that $g=j f$ for some $f \in\left\langle\left\langle\tau_{1} \rightarrow \tau_{2}\right\rangle\right\rangle$.

Let $f x=\left\{\begin{array}{l}\left\{j^{-1}(g(j x)), \text { if } x \in \operatorname{dom}\left(j_{-} \tau_{1}\right),\right. \\ \{y, \text { otherwise, }\end{array}\right.$
where y is an arbitrary element in $\left\langle\left\langle\tau_{2}\right\rangle\right\rangle \neq \emptyset$. Furthermore we know inductively that $j_{-} \tau_{2}$ has a (total) right inverse $j^{-1}:[\sim \sim \sigma]$ $\langle\langle\sigma\rangle$, so f is well-defined.

Now we have, for all $\mathrm{x} \in \operatorname{dom}(\mathrm{j})$,
j (f x)
$=\{x \in \operatorname{dom}(j)\}$
$j\left(j^{-1}(g(j x))\right)$
$=\left\{j^{-1}\right.$ is the right inverse of $\left.j\right\}$
g ($\mathrm{j} x)$.
Hence g is a (the) element satisfying the definition of $j f$.
Note that this shows that

$$
j^{-1} g=\lambda x .\left\{\begin{array}{l}
j^{-1}(g(j x)), \text { if } x \in \operatorname{dom}\left(j_{-} \tau_{1}\right), \\
\{y, \text { otherwise },
\end{array}\right.
$$

with y as above, is a total right inverse to j.
Distributivity:
If $j f$ and $j x$ both exist, then $j f(j x)=j(f x)$ by definition

Section 17: The partial surjective homomorphism
(and hence j (f x) has to exist).

- $\sigma=\mu \mathrm{F}$:

```
\(j:\langle\langle\mu \mathrm{F}\rangle\rangle \rightsquigarrow\left[\sim_{\sim} \mu \mathrm{F}\right]\)
\(j \mathrm{x}=\left[\right.\) in \(\left\{\mathrm{J} \_\mathrm{F}(\mathrm{F})\right.\) (out x\(\left.\left.)\right\}\right]\)
J_F (G) : \(\langle\langle G \mu F\rangle\rangle \leadsto\left[\sim_{-}(G \mu F)\right]\)
J_F (Id) \(x \quad=j x\)
J_F (K_o) \(\quad \mathrm{x} \quad \mathrm{j} x\)
\(J \_F\left(G_{1} \times G_{2}\right)(x, y)=\left[\left(\left\{J \_F\left(G_{1}\right) x\right\},\left\{J \_F\left(G_{2}\right) y\right\}\right)\right]\)
\(J \_F\left(G_{1}+G_{2}\right) \operatorname{inl}(x)=\left[\operatorname{inl}\left(\left\{J \_F\left(G_{1}\right) x\right\}\right)\right]\)
\(J \_F\left(G_{1}+G_{2}\right) \operatorname{inr}(y)=\left[\operatorname{inr}\left(\left\{J \_F\left(G_{2}\right) y\right\}\right)\right]\)
j is well-defined (modulo partiality of \(j\) for the K_o case), since
1. all uses of \(j\) in J_F are either at a smaller type (K_o), or apply
    to an argument which is smaller (Id, size defined in size), and
2. recursive uses of J_F in the definition of J_F(G) only use
    J_F(G') for \(G^{\prime}<G\).
\(j^{-1}:[\sim \sim \mu F] \rightarrow\langle\langle\mu F\rangle\rangle\)
\(j^{-1} \mathrm{x}=\) in ( \(\mathrm{J}^{-1} \_\mathrm{F}(\mathrm{F})\) [out \(\left.\{\mathrm{x}\}\right]\) )
\(\mathrm{J}^{-1} \_\mathrm{F}(\mathrm{G}):\left[\sim_{-}(\mathrm{G} \mu \mathrm{F})\right] \rightarrow\langle\langle\mathrm{G} \mu \mathrm{F}\rangle\rangle\)
\(J^{-1} \_F(I d) \quad x \quad=j^{-1} x\)
\(J^{-1} \_F\left(K_{-} \sigma\right) \quad x \quad=j^{-1} x\)
\(\mathrm{J}^{-1} \_\mathrm{F}\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right) \quad[(\mathrm{x}, \mathrm{y})]=\left(\mathrm{J}^{-1} \_\mathrm{F}\left(\mathrm{G}_{1}\right)[\mathrm{x}], \mathrm{J}^{-1} \_\mathrm{F}\left(\mathrm{G}_{2}\right) \quad[\mathrm{y}]\right)\)
\(\mathrm{J}^{-1} \_\mathrm{F}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right) \quad[\operatorname{inl}(\mathrm{x})]=\operatorname{inl}\left(\mathrm{J}^{-1} \_\mathrm{F}\left(\mathrm{G}_{1}\right)[\mathrm{x}]\right)\)
\(\mathrm{J}^{-1} \_\mathrm{F}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)\) [inr(y)]=inr(J-1\(\left.\_\mathrm{F}\left(\mathrm{G}_{2}\right)[\mathrm{y}]\right)\)
\(j^{-1}\) is well-defined for the same reasons that \(j\) is (using size_~
instead of size, see size), with no caveats regarding partiality.
    \(j\left(j^{-1}[i n x]\right)\)
\(=\)
    \(j\left(i n\left(J^{-1} \_F(F)[x]\right)\right)\)
\(=\)
    [in \(\left.\left\{J \_F(F)\left(J^{-1} \_F(F)[x]\right)\right\}\right]\)
\(=\{\) See lemma below. \}
    [in x]
```

Lemma: J_F (G) ($\mathrm{J}^{-1} _\mathrm{F}(\mathrm{G})[\mathrm{x}]$) $=[\mathrm{x}]$, proved by induction over $\mathrm{G} \leq \mathrm{F}$, with outer inductive hypothesis $j \circ j^{-1}=i d$ (which is $O K$ as long as we don't have $\mathrm{F}=\mathrm{Id}$, but then $\left[\sim_{_} \mu \mathrm{F}\right]=\emptyset$ anyway, as noted in definitions).

- $G=I d:$

J_F (Id) ($\mathrm{J}^{-1} _\mathrm{F}(\mathrm{Id}) ~[\mathrm{x}]$)
=
$j\left(j^{-1}[x]\right)$
$=\{$ Outer inductive hypothesis. \}
[x]

- $\mathrm{G}=\mathrm{K}_{-} \sigma$:

J_F (K_ σ) (J^{-1} _ $\left.\mathrm{F}\left(\mathrm{K}_{-} \sigma\right) \quad[\mathrm{x}]\right)$
=
$j\left(j^{-1}[x]\right)$
$=\{$ Outer inductive hypothesis ($\sigma<\nu \mathrm{F}$). \} [x]

- $G=G_{1} \times G_{2}$:
$J _F\left(G_{1} \times G_{2}\right)\left(J^{-1} _F\left(G_{1} \times G_{2}\right) \quad[(x, y)]\right)$
$=$
$J _F\left(G_{1} \times G_{2}\right)\left(J^{-1} _F\left(G_{1}\right) \quad[x], J^{-1} _F\left(G_{2}\right) \quad[y]\right)$
$\left[\left(\left\{J _F\left(G_{1}\right)\left(J^{-1} _F\left(G_{1}\right)[x]\right)\right\},\left\{J _F\left(G_{2}\right)\left(J^{-1} _F\left(G_{2}\right)[y]\right)\right\}\right)\right]$
$=\{$ Inner inductive hypothesis. \} [(\{[x]\}, \{[y]\})]
$=[(x, y)]$
- $G=G_{1}+G_{2}$:
$J _F\left(G_{1}+G_{2}\right)\left(J^{-1} _F\left(G_{1}+G_{2}\right)[i n l(x)]\right)$
$J _F\left(G_{1}+G_{2}\right) \operatorname{inl}\left(J^{-1} _F\left(G_{1}\right)[x]\right)$
$=$
[inl(\{J_F (G G_{1}) ($\left.\left.\left.\left.\mathrm{J}^{-1} _\mathrm{F}\left(\mathrm{G}_{1}\right) \quad[\mathrm{x}]\right)\right\}\right)\right]$
$=\{$ Inner inductive hypothesis. \} [inl($\{[\mathrm{x}]\})]$
= [inl(x)]

Other case analogous.

- $\sigma=\nu F$:

To define j we'll use unfold in the category CPO:
unfold : $\langle\mathrm{A} \rightarrow \mathrm{L}(\mathrm{F}) \mathrm{A}\rangle \rightarrow\langle\mathrm{A} \rightarrow \llbracket \nu \mathrm{F} \rrbracket\rangle$
Below we make use of the evaluation rules for unfold without mentioning it.

Let $\mathrm{A}=\langle\langle\nu \mathrm{F}\rangle\rangle _$, a flat CPO. All operations on $\langle\langle\cdot\rangle\rangle$ can be lifted to $\langle\langle\cdot\rangle\rangle_{-} \perp$ by making them strict.

Let us first define j^{\prime} :

```
j}\mp@subsup{}{}{\prime}\in\langle\langle|\nuF\rangle\rangle_\perp->\llbracket|\nuF\rrbracket
j' = unfold (J'_\nuF(F) o out)
```

Note that out $\in\left\langle\langle\langle\nu F\rangle\rangle_{-} \perp \rightarrow\langle\langle\mathrm{F} \nu \mathrm{F}\rangle\rangle_{-} \perp\right\rangle$.
The helper function $J^{\prime}{ }_{-} \sigma$ is well-defined since recursive applications use a smaller functor. Note also that the instance of j used below (in $j^{\prime \prime}$) is at a smaller type. We also have to make sure that the function is continuous; since its domain is flat this follows directly from strictness.

$$
\begin{aligned}
& \mathrm{J}{ }^{\prime}{ }_{-} \sigma(\mathrm{G}) \in\left\langle\langle\langle\mathrm{G} \sigma\rangle\rangle_{-} \perp \rightarrow \mathrm{L}(\mathrm{G})\langle\langle\sigma\rangle\rangle-\perp\right\rangle \\
& J^{\prime}{ }_{-} \sigma(G) \quad \perp \quad=\perp \\
& \mathrm{J}^{\prime} _\sigma \text { (Id) } \quad \mathrm{x} \text { = } \mathrm{x} \\
& J^{\prime}{ }^{\prime} \sigma\left(K_{-} \tau\right) \quad x \quad=j^{\prime \prime} x \\
& J^{\prime}{ }_{-} \sigma\left(G_{1} \times G_{2}\right)(x, y)=\left(J{ }^{\prime}{ }^{\prime} \sigma\left(G_{1}\right) x, J^{\prime}{ }_{-} \sigma\left(G_{2}\right) y\right) \\
& \mathrm{J}{ }^{\prime}, \sigma\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right) \operatorname{inl}(\mathrm{x})=\operatorname{inl}\left(\mathrm{J}^{\prime}{ }_{-} \sigma\left(\mathrm{G}_{1}\right) \mathrm{x}\right) \\
& \mathrm{J}{ }^{\prime} \sigma\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right) \operatorname{inr}(\mathrm{y})=\operatorname{inr}\left(\mathrm{J}^{\prime}{ }_{-} \sigma\left(\mathrm{G}_{2}\right) \mathrm{y}\right) \\
& j^{\prime \prime} \in\left\langle\langle\langle\sigma\rangle\rangle_{-} \perp \rightarrow \llbracket \sigma \rrbracket\right\rangle \\
& j^{\prime \prime} \perp=\perp \\
& \text { \{ an arbitrary but fix element in } j x \text {, if } x \in \operatorname{dom}(j) \text {, } \\
& j^{\prime \prime} x= \\
& \text { \{ } \perp \text {, otherwise }
\end{aligned}
$$

Note that in the proof below the function J^{\prime} _F(G) defined by J'_F(G) $=\mathrm{J}{ }^{\prime} \quad \nu \mathrm{F}$ (G) is used.

Given j^{\prime} we can define j :
$j \in\langle\langle\nu F\rangle\rangle \rightsquigarrow\left[\sim_{-} \nu F\right]$
$j x=\left\{\begin{array}{l}\{j \prime x], \text { if } j^{\prime} x \in \operatorname{dom}(\sim), \\ \{\text { undefined, otherwise. }\end{array}\right.$

We also need to define j^{-1}. To do this we use unfold in the category SET:
unfold : $(\mathrm{A} \rightarrow \mathrm{F} A) \rightarrow(\mathrm{A} \rightarrow\langle\langle\nu \mathrm{F}\rangle\rangle)$
Let $A=\left[\sim _\nu F\right]$, which of course is a set.
We can now define j^{-1} :

```
j-1}\in[~_\nuF] ->\langle|\nuF\rangle
j}\mp@subsup{}{}{-1}=unfold(\mp@subsup{J}{}{-1}_F(F) ○ out'
```

Here we have

```
out \({ }^{\prime} \in\left[\sim_{-} \nu F\right] \rightarrow\left[\sim_{-}(F \nu F)\right]\)
out' \([\mathrm{x}]=\) [out x\(]\)
```

The helper function $\mathrm{J}^{-1} _\mathrm{F}$ is well-defined since recursive applications use a smaller functor. Note also that the instance of j^{-1} used below is at a smaller type.

```
J-1}_F(G)\in[~_(G \nuF)] ->G [~_\nuF
J-1}_F(Id) x = x
J-1
J-1
```



```
J-1}_F(G\mp@subsup{G}{1}{}+\mp@subsup{G}{2}{})[inr(y)]= inr(J-1_F(G) [y]
```

Now we have to prove that j^{-1} is the right inverse of j, thereby proving that j is surjective.

```
    \forallx\in[~_\nuF].j ( }\mp@subsup{j}{}{-1}\textrm{x})=\textrm{x
\Leftrightarrow
    \forallx\in[~_\nuF]. j' (j-1 x) \in x
&
    \forallx\in[~_\nuF]. \exists x' }\in\textrm{x}\cdot\mp@subsup{\textrm{j}}{}{\prime}(\mp@subsup{\textrm{j}}{}{-1}\textrm{x})=\textrm{x
\Leftrightarrow
    \forallx\in[~_\nuF]. \existsgg[~_\nuF] -> \llbracket\nuF\rrbracket.
        g x }\inx\wedge\mp@code{j}(\mp@subsup{j}{}{-1}x)=g
\Leftrightarrow{OK even if [~_\nuF] = \emptyset. }
    \existsg\in[~_\nuF] ->\llbracket\nuF\rrbracket. \forallx 
        g x \in x ^ j' (j ('1 x) = g x
\Leftrightarrow{ in isomorphism. }
    \existsg\in[~_(F\nuF)] }->\llbracket|\nuF\rrbracket.\forallx\in[~_(F\nuF)]
        g x f x ^ j' (j-1 [in {x}]) = in (g x)
```



```
    \existsg\in[~_(F\nuF)]->\llbracketF\nuF\rrbracket.}\forall\textrm{F}\in[\mp@code{~
        g x f x ^ J' (J-1 x) = g x
\Leftarrow \{ ~ \{ ~ G e n e r a l i s e . ~ W e ~ h a v e ~ t o ~ l i m i t ~ G ~ t o ~ b e ~ \leq ~ F ~ h e r e . ~ S e e ~ b e l o w . ~ \}
```

Section 17: The partial surjective homomorphism

```
G < F .
    \existsg\in[~_(G \nuF)] ->\llbracketG \nuF\rrbracket.
        \forallx\in[~_(G \nuF)].
            g x f x ^ J' (J-1}x)=g x 
```

Here we define

$$
\begin{aligned}
& \mathrm{J}^{-1} \in\left[\sim_{-}(G \vee F)\right] \rightarrow\langle\langle G \nu F\rangle\rangle \\
& \mathrm{J}^{-1}=\mathrm{G} \mathrm{j}^{-1} \circ \mathrm{~J}^{-1} _\mathrm{F}(\mathrm{G})
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{J}^{\prime} \in\langle\langle\langle\mathrm{G} \nu F\rangle\rangle-\perp \rightarrow \llbracket \mathrm{G} \nu F \rrbracket\rangle \\
& \mathrm{J}^{\prime}=\mathrm{L}(\mathrm{G}) \mathrm{j}^{\prime} \circ \mathrm{J},{ }_{-} \mathrm{F}(\mathrm{G}) .
\end{aligned}
$$

1. Find a g.

We use unfold, just as above:

```
\(g_{0} \in\left\langle\left[\sim_{\_} \nu F\right] \_\perp \rightarrow \llbracket \nu F \rrbracket\right\rangle\)
\(g_{0}=\) unfold (G_F o out')
\(G_{-} G \in\left\langle\left[\sim_{-}(G \nu F)\right] \_\perp \rightarrow L(G) \quad\left[\sim \_\nu F\right] \_\perp\right\rangle\)
G_G \(\perp \quad=\perp\)
G_Id \(x \quad=\mathrm{x}\)
\(G_{-}\left(K_{-} \sigma\right) x \quad=j^{\prime \prime}\left(j^{-1} x\right)\)
\(G_{-}\left(G_{1} \times G_{2}\right)\left[\left(x_{1}, x_{2}\right)\right]=\left(G_{-} G_{1}\left[x_{1}\right], G_{-} G_{2}\left[x_{2}\right]\right)\)
\(G_{-}\left(G_{1}+G_{2}\right)\left[i n l\left(x_{1}\right)\right]=\operatorname{inl}\left(G_{-} G_{1}\left[x_{1}\right]\right)\)
\(\mathrm{G}_{-}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)\left[\operatorname{inr}\left(\mathrm{x}_{2}\right)\right]=\operatorname{inr}\left(\mathrm{G}_{-} \mathrm{G}_{2}\left[\mathrm{x}_{2}\right]\right)\)
```

Since we can assume (inductively) that $j^{\prime \prime}\left(j^{-1} x\right)$ is well-defined we get that g_{0} and $G_{-} G$ satisfy their given type signatures with reasoning similar to the one above. (Note that we could not assume this if we hadn't assumed $G \leq F$.)

We can then define g as follows:

$$
\begin{aligned}
& \mathrm{g} \in\left[\sim_{-}(\mathrm{G} \nu \mathrm{~F})\right] \rightarrow \llbracket \mathrm{G} \nu \mathrm{~F} \rrbracket \\
& \mathrm{~g}=\mathrm{L}(\overline{\mathrm{G}}) \mathrm{g}_{0} \circ \mathrm{G}_{-} \mathrm{G} .
\end{aligned}
$$

Now one can easily check that g satisfies the following laws:

```
Id: \(g\left[i n x_{0}\right]=\operatorname{in}\left(g\left[x_{0}\right]\right)\)
\(K_{-} \sigma: g x \quad=j^{\prime \prime}\left(j^{-1} x\right)\)
\(x: \quad g\left[\left(x_{1}, x_{2}\right)\right]=\left(g\left[x_{1}\right], g\left[x_{2}\right]\right)\)
\(+: \quad g\left[i n l\left(x_{1}\right)\right]=\operatorname{inl}\left(g\left[x_{1}\right]\right)\)
\(+: g\left[i n r\left(x_{2}\right)\right]=\operatorname{inr}\left(g\left[x_{2}\right]\right)\)
```

2. We now have to show

$$
\forall G \leq F, x \in\left[\sim_{-}(G \nu F)\right] \cdot \mathrm{g} x \in \mathrm{x}
$$

We do this by induction over G. The case for Id follows below. The other cases are very similar to the respective inner cases inside the case for Id.

```
    \forall
\Leftarrow \Leftarrow \{ ~ U s e ~ c o i n d u c t i o n : ~ L e t ~ X ~ = ~ \{ ~ ( g ~ x , ~ x ' ) ~ \| ~ x ~ \in ~ [ \sim \sim \nu F ] , ~ x ' ~ G ~ x ~ \} .
    { We are done if we can show that X \subseteqO(F)(X).
    \forallx\in[~_\nuF], x' \in x. (g x, x') }
\Leftrightarrow{ See per-and-in-out and note that in is an isomorphism. }
```



```
\Leftrightarrow
    \forallx\in[~_(F \nuF)], x' \in x. (g x, x') \in D'_F(F)(X)
\Leftarrow{ Generalise. }
```



```
\Leftarrow{ Induction over G. }
    G \leq F.
        \forall G'< G. \forall x < [~__(G'\nuF)], x' }
```



```
\Leftrightarrow{ Case analysis. }
- G = Id:
```

 \(\forall \mathrm{x} \in\left[\sim_{\sim} \nu \mathrm{F}\right], \mathrm{x}{ }^{\prime} \in \mathrm{x} .\left(\mathrm{g} \mathrm{x}, \mathrm{x}{ }^{\prime}\right) \in \mathrm{X}\)
 \(\Leftrightarrow\{\) Definition of X.\(\}\)
 T
 - $G=K_{-} \sigma$:
$\forall x \in\left[\sim _\sigma\right], x^{\prime} \in x$.
$\left(j^{\prime \prime}\left(j^{-1} x\right), x\right) \in\left\{(x, y) \mid x, y \in \operatorname{dom}\left(\sim _\sigma\right), x \sim y\right\}$

T
- $G=G_{1} \times G_{2}:$
$\forall G^{\prime}<G . \forall x \in\left[\sim_{-}\left(G{ }^{\prime} \nu F\right)\right], x^{\prime} \in x .\left(g x, x^{\prime}\right) \in O^{\prime} _F\left(G^{\prime}\right)(X)$

\Leftrightarrow
$\forall G^{\prime}<G . \forall x \in\left[\sim_{-}\left(G^{\prime} \nu F\right)\right], x^{\prime} \in x .\left(g x, x^{\prime}\right) \in O^{\prime} _F\left(G^{\prime}\right)(X)$
$\Rightarrow \forall \mathrm{x}_{1} \in\left[\sim_{-}\left(G_{1} \nu F\right)\right], x_{2} \in\left[\sim_{-}\left(G_{2} \nu F\right)\right], x_{1}{ }^{\prime} \in \mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime} \in \mathrm{x}_{2}$.


```
\Leftrightarrow
    \forallG'< G. }\forall\textrm{x}\in[\mp@code{[~_(G' \nuF)], x' \in x. (g x, x') \in O'_F(G')(X)
    # \forall x 
```



```
\Leftrightarrow
    \top
-G = G1 + G :
    \forall\mp@code{' < G. }\forall\textrm{x}\in[\mp@code{[~_(G' \nuF)], x' \in x. (g x, x') \in O'_F(G')(X)}
```



```
\Leftrightarrow
    \forallG'< G. \forall x G [~_(G' \nuF)], x' \in x. (g x, x') \in O'_F(G')(X)
    =>\forall \mp@subsup{x}{1}{}\in[~~
        \wedge
```



```
\Leftrightarrow
    \top
```

3. Finally we have to show

$$
\forall G \leq F, x \in\left[\sim_{-}(G \nu F)\right] . J J^{\prime}\left(J^{-1} x\right)=g x .
$$

We proceed by using the (generalised) approximation lemma,

$$
\begin{aligned}
& \forall G \leq F, x \in\left[\sim_{\sim}(G \nu F)\right] . J^{\prime}\left(J^{-1} x\right)=g x \\
& \forall \mathrm{G} \leq \mathrm{F}, \mathrm{x} \in\left[\sim_{-}(\mathrm{G} \nu \mathrm{~F})\right], \mathrm{n} \in \mathbb{N} . \\
& \text { approx_ } \perp, G \mathrm{n}\left(\mathrm{~J},\left(\mathrm{~J}^{-1} \mathrm{x}\right)\right)=\operatorname{approx} _\perp, \mathrm{Gn}(\mathrm{~g} \mathrm{x}) \\
& \Leftrightarrow \\
& \forall \mathrm{n} \in \mathbb{N}, \mathrm{G} \leq \mathrm{F}, \mathrm{x} \in\left[\sim_{\sim}(\mathrm{G} \nu \mathrm{~F})\right] . \\
& \text { approx_ } \perp, \mathrm{G} \mathrm{n}\left(\mathrm{~J}^{\prime}\left(\mathrm{J}^{-1} \mathrm{x}\right)\right)=\operatorname{approx}_{-} \perp, \mathrm{G} \mathrm{n}(\mathrm{~g} x)
\end{aligned}
$$

and then lexicographic induction over first n and then G.

- $\mathrm{n}=0, \mathrm{G}=\mathrm{Id}:$
approx_ \perp, Id $0\left(\mathrm{~J}^{\prime}\left(\mathrm{J}^{-1} \mathrm{x}\right)\right.$)
$=$
approx_ $\perp 0\left(J^{\prime}\left(J^{-1} \mathrm{x}\right)\right)$
$=$
\perp
$=$
approx_ $\perp 0\left(\mathrm{~g}\left[\operatorname{in} \mathrm{x}_{0}\right]\right)$
$=$
approx_ \perp,Id $0\left(\mathrm{~g}\left[\mathrm{in} \mathrm{x}_{0}\right]\right)$

```
- n = k+1, G = Id, x = [in }\mp@subsup{\textrm{x}}{0}{}]
    approx_\perp,G (k+1) (J' (J-1
    =
    approx_\perp(k+1) (j) (j}\mp@subsup{}{}{-1}[in \mp@subsup{x}{0}{}])
    =
    approx_\perp(k+1) (j) (in (F j-1 (J-1}_F(F) (out' [in x x ])))))
=
    approx_\perp(k+1) (j) (in (F j-1 (J-1}_F(F) [\mp@subsup{x}{0}{}])))
=
    approx_\perp(k+1)
            (in (L(F) j' (J'_F(F) (out (in (F j}\mp@subsup{j}{}{-1}(\mp@subsup{J}{}{-1}_F(F) [\mp@subsup{x}{0}{\prime}]))))))
    = { OK since in from SET and out lifted variant originally from SET. }
    approx_\perp(k+1) (in (L(F) j' (J'_F(F) (F j j-1 (J'1
=
    in (approx_\perp,F k (L(F) j' (J'_F(F) (F j jor (J-1
=
    in (approx_\perp,F k (J' (J }\mp@subsup{\textrm{J}}{}{-1}[\mp@subsup{\textrm{x}}{0}{}]))))
= { Outer inductive hypothesis. }
    in (approx_\perp,F k (g [x [ ]))
    =
    approx_\perp,G (k+1) (in (g [x m))
= { Property of g. }
    approx_\perp,G (k+1) (g [in x m])
- G = K_\sigma:
    approx_\perp,G n (J'( (J'1 x))
=
    j" (j-1}x
= { Property of g. }
    g x
    =
    approx_\perp,G n (g x)
- G = G1 }\times\mp@subsup{\textrm{G}}{2}{},\textrm{x}=[(\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{})]
    approx_\perp,G n (J, (J-1 [( }\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{})])
=
```



```
    , approx_\perp,G G n (J' (J-1 [x [x ]))
    )
= { Inductive hypothesis. }
    ( approx_\perp,G G n (g [x [ ] )
    , approx_\perp,G, n (g [x [ ] )
    )
=
    approx_\perp,G n (g [x m, g [x c ] )
= { Property of g. }
    approx_\perp,G n (g [( }\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{})]
```

```
- G = G }\mp@subsup{\textrm{G}}{1}{}+\mp@subsup{\textrm{G}}{2}{},\textrm{x}=[inl(\mp@subsup{\textrm{x}}{1}{})] (other case analogous)
    approx_\perp,G n (J' (J-1 [inl(x (x)]))
    =
    inl(approx_\perp,G}\mp@subsup{\textrm{G}}{1}{}\textrm{n}(\mp@subsup{\textrm{J}}{}{\prime}(\mp@subsup{\textrm{J}}{}{-1}[\mp@subsup{\textrm{x}}{1}{}]))
= { Inductive hypothesis. }
    inl(approx_\perp,G1 n (g [x [ ] ))
    =
    approx_\perp,G n inl(g [x_])
= { Property of g. }
    approx_\perp,G n (g [inl( }\mp@subsup{\textrm{x}}{1}{})]
```

Section 18: Some properties satisfied by the partial surjective homomorphism

18 Some properties satisfied by the partial surjective homomorphism

Various useful properties that j satisfies

Of course we have $j \circ j^{-1}=i d$, and whenever $j f$ and $j x$ are defined we have j f (j x) $=\mathrm{j}$ (f x).

If we restrict $j_{-} \sigma$ to $j^{-1}(j\langle\langle\sigma\rangle\rangle)$, then $j_{-} \sigma$ is total and $j_{-} \sigma$ and $j^{-1}{ }_{-} \sigma$ are inverses:

1. The restriction of j to $\mathrm{j}^{-1}(\mathrm{j}\langle\langle\sigma\rangle\rangle)$ is total, since $j\left(\mathrm{j}^{-1} \mathrm{v}\right)=\mathrm{v}$ is always defined.
2. The restriction of j and j^{-1} are inverses:

- $\forall \mathrm{v} \in \mathrm{j}\langle\langle\sigma\rangle\rangle \cdot \mathrm{j}\left(\mathrm{j}^{-1} \mathrm{v}\right)=\mathrm{v}$ by definition of j^{-1}.
- $\forall v \in j^{-1}(j\langle\langle\sigma\rangle\rangle) \cdot j^{-1}(j \quad v)=v$ since $v=j^{-1} v^{\prime}$ for some v^{\prime} and $j\left(j^{-1} v^{\prime}\right)=v^{\prime}$.

```
When do we have }\langle\langle\textrm{t}\rangle\rangle\Gamma\in\mp@subsup{\textrm{j}}{}{-1}(\textrm{j}\langle\langle\cdot\rangle\rangle)\mathrm{ ?
    Probably not very often. Note that, for f \in dom(j),
        j-1 (j f)
    = { For some y \in << P>. }
        \lambdav. {j-1 (j (f v)), v \in dom(j)
            {y, otherwise.
    Since j-1 in general is not surjective we can not (in general) have
    j-1}(jf)=\langle\langle\lambdax.x\rangle\rangle= \lambdav.v. (And the arbitrary element y can no
    help; j-1}\mathrm{ is not just one element away from being surjective.)
    (Note that j-1 cannot be surjective due to cardinality issues.)
```

j id = [id]:
[id] (j v)
$=$
j v

Section 18: Some properties satisfied by the partial surjective homomorphism

```
=
    j (id v)
```

$j \circ=\circ$: See below. Here we have defined $\circ=[\circ]$.
$j f \circ j g=j(f \circ g)$ whenever $j f$ and $j g$ both exist:
($\mathrm{j} \mathrm{f} \circ \mathrm{j} \mathrm{g}$) (j v)
$=$
$j f((j \mathrm{~g})(\mathrm{j} v))$
$=$
$j \mathrm{f}$ (j (g v))
$=$
j (f (g v))
$j((f \circ g) v)$

Note that the results above imply that j is a partial functor from

- the category of types and functions between the corresponding set-theoretic semantic domains
to
- the category PER defined in biccc.

```
Given g \in \langle|\sigma ->\tau\rangle\rangle\cap dom(j) where }\perp\not\in\operatorname{dom(~), we have
    j (F g) = [L(F) {j g}],
with both sides well-defined:
    Proof by induction over structure of F:
        (Properties from functor-properties silently used below.)
        - F = Id:
```

 [L(Id) \{j g\}]
 \(=\)
 [\{j g\}]
 =
 j g
 =
 Section 18: Some properties satisfied by the partial surjective homomorphism
j (Id g)

- $\mathrm{F}=\mathrm{K}_{-} \sigma$:

Note that this case requires that the left hand side is defined.
[L(K_o) \{j g\}]
$=$
[id]
$=$
j id
$=$
j ($K_{-} \sigma$ g)

- $\mathrm{F}=\mathrm{F}_{1} \times \mathrm{F}_{2}$:

For arbitrary $v \in \operatorname{dom}(j)$ we have:
$\left[L\left(F_{1} \times F_{2}\right)\{j g\}\right](j v)$
$=$
[L($\mathrm{F}_{1} \times \mathrm{F}_{2}$) \{jg\} \{j v\}]
$=\{\perp \notin \operatorname{dom}(\sim)$ by assumption. $\}$ $\left[\left(L\left(F_{1}\right)\{j g\}\{j v\}, L\left(F_{2}\right)\{j g\}\{j v\}\right)\right]$ [(\{[L($\left.F_{1}\right)$ \{j $\left.\left.\left.\left.\left.g\right\}\{j v\}\right]\right\},\left\{\left[L\left(F_{2}\right)\{j g\}\{j v\}\right]\right\}\right)\right]$
$=\left[\left(\left\{\left[L\left(F_{1}\right)\{j \mathrm{~g}\}\right](\mathrm{j} v)\right\},\left\{\left[L\left(\mathrm{~F}_{2}\right)\{\mathrm{jg} \mathrm{g}\}\right](\mathrm{j} \mathrm{v})\right\}\right)\right]$
$=\{$ Inductive hypothesis. \} $\left[\left(\left\{j\right.\right.\right.$ (F_{1} g) (j v) $\},\left\{j\left(F_{2} g\right)(j\right.$ v) $\left.)\right]$
$=\{$ See above. $\}$ $\left[\left(\left\{j\left(F_{1} g \mathrm{v}\right)\right\},\left\{j\left(\mathrm{~F}_{2} \mathrm{~g} \mathrm{v}\right)\right\}\right)\right]$
$j\left(F_{1} \mathrm{~g} v, F_{2} \mathrm{~g} v\right)$
$=$ $j\left(\left(F_{1} \times F_{2}\right) \mathrm{g} v\right)$

- $F=F_{1}+F_{2}:$

For arbitrary $v \in \operatorname{dom}(j)$ we have: $\left[L\left(F_{1}+F_{2}\right)\{j g\}\right](j v)$
= $\left[\mathrm{L}\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)\{\mathrm{j} \mathrm{g}\}\{\mathrm{j} \mathrm{v}\}\right]$
$=\{$ Assume $\mathrm{v}=\operatorname{inl}(\mathrm{v}$ '). Other case analogous. \} $\left[\mathrm{L}\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)\{\mathrm{jg} \mathrm{g}\}\left\{\mathrm{j} \operatorname{inl}\left(\mathrm{v}^{\prime}\right)\right\}\right]$
$=$ $\left[\mathrm{L}\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)\right.$ \{jg\}inl(\{jv'\})]
=
$\left[\operatorname{inl}\left(L\left(F_{1}\right)\{j g\}\left\{j v^{\prime}\right\}\right)\right]$
$=$

Section 18: Some properties satisfied by the partial surjective homomorphism

```
    [inl({[L(F1) {j g} {j v'}]})]
=
    [inl({[L(Fi) {j g}] (j v')})]
= { Inductive hypothesis. }
    [inl({j (F1 g) (j v')})]
= { See above. }
    [inl({j (F1 g v')})]
=
    j inl(F1 g v')
=
    j ((F
= { By assumption above. }
    j ((F
```

```
\forallv\in\langle\langleF \muF\rangle\rangle.j (in v) = [in {j v}]:
    Lemma: J_F(G) v = j v.
        Proof by induction over structure of G.
        G = Id or K_\sigma: OK.
        G = G1 }\times\mp@subsup{G}{2}{}\mathrm{ or G G1 + G2: OK (inductively).
    And then:
```

 \(j\) (in v)
 [in \(\left\{J _F(F)\right.\) v\}]
 [in \(\{j \mathrm{v}\}\)]
    ```
\forallv \in \langle\langlevF\rangle\rangle. j out(v) = [out {j v}]:
    We reduce the out case to the in case:
        j out(v)
    = { Let v = in(v'). }
        j v'
    =
        [out {[in {j v'}]}]
    = { See below. }
        [out {j in(v')}]
    =
        [out {j v}]
```

Section 18: Some properties satisfied by the partial surjective homomorphism

Note that this in case isn't the same as the one above, though (different types). We get:

```
        j (in v)
    =
        [j' (in v)]
    =
        [in (L(F) j' (J'_F(F) v))]
    = { J' is defined in partial-surjective-homomorphism. }
        [in (J' v)]
    = { See next property. }
        [in {j v}]
```

For any $v \in\langle\langle G \nu F\rangle\rangle$, if either side is well-defined, then $[J, v]=j v$.
(J' is defined in partial-surjective-homomorphism.)
We prove this by induction over the structure of G.
- $\mathrm{G}=\mathrm{Id}:$
j v
$=$
[${ }^{\prime}$, v]
[J' v]

- $\mathrm{G}=\mathrm{K}_{-} \sigma$:
j v
$=$
[$j^{\prime \prime}$ v]
=
[J, v]
- $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}$:
$\mathrm{j}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$
=
[(\{j $\left.\left.\left.\mathrm{v}_{1}\right\},\left\{j \mathrm{v}_{2}\right\}\right)\right]$
$=\{$ Inductive hypothesis. \}
[(J' $\left.\mathrm{v}_{1}, \mathrm{~J}, \mathrm{v}_{2}\right)$]
$=$
$\left[\left(L\left(G_{1}\right) j^{\prime}\left(J{ }^{\prime} _F\left(G_{1}\right) V_{1}\right), L\left(G_{2}\right) j \prime\left(J{ }^{\prime}{ }^{\prime} F\left(G_{2}\right) V_{2}\right)\right)\right]$
$=$
[J' $\left.\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right]$

Section 18: Some properties satisfied by the partial surjective homomorphism

```
- G = G1 + G :
    j inl(v
    = [inl({j vi })]
    = { Inductive hypothesis. }
        [inl(J, vi)]
    [inl(L(G)
    =
        [J' inl( (vi)]
    Other case analogous.
```

```
(\mp@subsup{j}{}{-1}f)(\mp@subsup{j}{}{-1}x)=\mp@subsup{j}{}{-1}(fx):
    (j-1 f) (j-1}x
    = { Definition of j-1. (Here y is an arbitrary element in }\langle\langle\cdot\rangle\rangle.)
        g ( (j-1 x) where g v = { {j-1 (f (j v)), v \in dom(j)
    =
    j-1 (f (j (j}\mp@subsup{}{}{-1}x))
    = { Right inverse. }
        j-1}(fx
```

```
\(j^{-1}(f \circ g)=j^{-1} f \circ j^{-1} g:\)
    \(j^{-1}(f \circ g)\)
    \(=\left\{\right.\) Definition of \(j^{-1}\). (Here \(y\) is an arbitrary element in \(\left.\left.\langle\langle\cdot\rangle\rangle.\right)\right\}\)
    \(\lambda v .\left\{j^{-1}((f \circ g)(j\right.\) v)), v \(\in \operatorname{dom}(j)\)
        \{y, otherwise
    \(=\{\) Definition \(\circ\). \}
        \(\lambda v .\left\{j^{-1}(f(g(j v))), v \in \operatorname{dom}(j)\right.\)
        \{y, otherwise
    \(=\{\) Left inverse. \}
    \(\lambda v .\left\{j^{-1}\left(f\left(j\left(j^{-1}(g(j \quad v))\right)\right)\right), v \in \operatorname{dom}(j)\right.\)
        \{y, otherwise
    \(=\left\{\right.\) Definition \(j^{-1}\), ○. \}
    \(j^{-1} f \circ j^{-1} g\)
```


19 The main result

```
Main result, given that
    - t }\in\mp@subsup{L}{1}{
    - seq is not used in t at a type with }\perp\mathrm{ in its domain:
\forallx\in FV(t). \Gamma(x) \in dom(~) ^ j \Gamma'(x) = [\Gamma(x)] #
    j (\langle\t\rangle> \Gamma') is well-defined ^
    j (|\langlet\rangle\rangle \Gamma') = [\llbrackett\rrbracket\Gamma]
Corollary (with analogous preconditions):
\forallx\inFV(t, ). \Gamma 
```



```
        <<t }\mp@subsup{t}{1}{}\rangle\rangle\mp@subsup{\Gamma}{1}{\prime}\mp@subsup{}{}{\prime}=\langle\langle\mp@subsup{t}{2}{}\rangle\rangle\mp@subsup{\Gamma}{2}{\prime}\mp@subsup{}{}{\prime}=>\llbracket\mp@subsup{t}{1}{}\rrbracket\mp@subsup{\Gamma}{1}{}~\llbracket\mp@subsup{t}{2}{}\rrbracket\mp@subsup{\Gamma}{2}{
```

Furthermore, if
$\left\langle\left\langle t_{1}\right\rangle\right\rangle \Gamma_{1}{ }^{\prime},\left\langle\left\langle t_{2}\right\rangle\right\rangle \Gamma_{2}{ }^{\prime} \in j^{-1}(j\langle\langle\cdot\rangle\rangle)$,
then the above implication is an equivalence.
The corollary follows immediately from the main result:
$\left\langle\left\langle\mathrm{t}_{1}\right\rangle\right\rangle \Gamma_{1}{ }^{\prime}=\left\langle\left\langle\mathrm{t}_{2}\right\rangle\right\rangle \Gamma_{2}$,
\Rightarrow \{ Extensionality. Note that both sides are well-defined. \}
$\left.\mathrm{j}\left(\left\langle\left\langle\mathrm{t}_{1}\right\rangle\right\rangle \Gamma_{1}{ }^{\prime}\right)=\mathrm{j}\left(\left\langle\mathrm{t}_{2}\right\rangle\right\rangle \Gamma_{2}{ }^{\prime}\right)$
\Leftrightarrow
$\left[\llbracket \mathrm{t}_{1} \rrbracket \Gamma_{1}\right]=\left[\llbracket \mathrm{t}_{2} \rrbracket \Gamma_{2}\right]$
\Leftrightarrow
$\llbracket t_{1} \rrbracket \Gamma_{1} \sim \llbracket t_{2} \rrbracket \Gamma_{2}$

The "furthermore" part follows immediately from the corollary since j has a left inverse when restricted to $\left\{j^{-1}(\mathrm{j}\langle\langle\sigma\rangle)\right.$ | σ is a type\} (see properties-of-j).

The main result is proved by induction over the structure of t, after noting that the fundamental theorem implies that $\llbracket \mathrm{t} \rrbracket \Gamma \in \operatorname{dom}(\sim)$.
$\mathrm{t}=\mathrm{x}$:

```
    [\llbracketx\rrbracket\Gamma]
    =
    [\Gamma(x)]
= { Assumption. }
    j \Gamma'(x)
=
    j (|x \ \ [ ')
```

```
t = th th:
    [\llbracketth1 thy []
    =
        |t
    = { Inductive hypothesis, twice. }
        j (\langle\langlet }\mp@subsup{|}{1}{\rangle}\rangle\mp@subsup{\Gamma}{}{\prime})(j (|\langle\mp@subsup{t}{2}{}\rangle\rangle\mp@subsup{\Gamma}{}{\prime})
    = { See partial-surjective-homomorphism. }
        j ((|<\mp@subsup{\textrm{t}}{1}{}\rangle\rangle\Gamma') (|\langle\mp@subsup{\textrm{t}}{2}{\prime}\rangle> \Gamma'))
    =
```



```
t = \lambdax. t':
    Assuming t : \sigma -> \tau, pick an arbitrary v \in dom(j_\sigma). We have
        [\llbracket\lambdax. t'\rrbracket\Gamma] (j v)
    =
        [\lambdav. \llbrackett'\rrbracket\Gamma[x\mapsto v]] (j v)
    [\llbrackett'\rrbracket\Gamma[x\mapsto{j v}]]
    = { Inductive hypothesis;
        { note that [\Gamma[x\mapsto{j v}](x)] = j v = j \Gamma'[x\mapstov].
    j (|\langlet'\rangle\rangle \Gamma'[x 
    =
    j ((\lambdav. \\langlet'\rangle\rangle \Gamma'[x\mapsto v]) v)
    j ((|\lambdax. t'\rangle> \Gamma') v)
    Hence [\llbracket\lambdax. t'\rrbracket\Gamma] satisfies the definition of j (|\lambdax. t'\rangle\rangle \Gamma').
    (This proof method will be used without any explanations below.)
t = seq:
        [\llbracketseq\rrbracket]
    =
        [f] where f b v = { \perp, b = \perp
            { v, otherwise
    = { Assumption: }\perp\not\in\operatorname{dom(~). }
        [\lambdab v. v]
    = { See below. }
    j (\lambdab v. v)
    j \/seq\rangle\rangle
```

```
        [\lambdab v. v] (j b)
    =
    [id]
    = { See properties-of-j. }
    j id
    j ((\lambdab v. v) b)
t = *:
        [\llbracket\star\rrbracket]
    =
        [*]
    =
        j |\langle\star\rangle\rangle
t = (, ):
        [\llbracket(,)\rrbracket]
    = [\lambdax y. (x, y)]
    = { See below. }
        j (\lambdax y. (x, y))
    =
        j <<(,)\rangle\rangle
            [\lambdax y. (x, y)] (j x) (j y)
        [({j x}, {j y})]
        j (x, y)
        j ((\lambdax y. (x, y)) x y)
t = fst:
    [\llbracket(,)\rrbracket]
    [f] where f p = { \perp, p = \perp
        { x, p = (x, y)
    = {\perp\not\in\operatorname{dom(~).}}
    [\lambda(x, y). x]
    = { See below. }
    j (\lambda(x, y). x)
    =
    j <\langlefst\rangle\rangle
    [\lambda(x, y). x] (j (x, y))
=
    [\lambda(x, y). x] [({j x}, {j y})]
```

```
=
    j x
=
    j ((\lambda(x, y). x) (x, y))
- t = snd:
```

 Symmetrically.
 - t = inl:
[【inl】]
$=$
[$\lambda \mathrm{x} . \operatorname{inl}(\mathrm{x})]$
$=\{$ See below. \}
j ($\lambda \mathrm{x}$. inl(x$)$)
$=$
j $\langle\langle i n l\rangle\rangle$
[$\lambda \mathrm{x}$. inl (x)] (j x$)$
$=$
[inl(\{j x\})]
$=$
$j \operatorname{inl}(x)$
$=j((\lambda x . \operatorname{inl}(x)) x)$
－ $\mathrm{t}=\mathrm{inr}$ ：

Symmetrically．

－t＝case：

$$
={ }^{\lceil\llbracket \text { case } \rrbracket]}
$$

$$
\left\{\mathrm{f}_{2} \mathrm{v}_{2}, \mathrm{v}=\operatorname{inr}\left(\mathrm{v}_{2}\right)\right.
$$

$=\{\perp \notin \operatorname{dom}(\sim)$.
［f］where $f \mathrm{vf}_{1} \mathrm{f}_{2}=\left\{\mathrm{f}_{1} \mathrm{v}_{1}, \mathrm{v}=\operatorname{inl}\left(\mathrm{v}_{1}\right)\right.$ $\left\{\mathrm{f}_{2} \mathrm{v}_{2}, \mathrm{v}=\operatorname{inr}\left(\mathrm{v}_{2}\right)\right.$
$=\{$ See below．\}
j 〈〈case〉》
Let us focus on the case when $v=\operatorname{inl}\left(v_{1}\right)$ ．The other case is analogous．

```
[f] (j (inl (vi))) (j fir) (j f f )
    where f v f f f f = {f f vi, v = inl (vi)
        {f_ v
```

```
    =
    [f] [inl({j vi })] (j fir) (j frg)
```



```
                {f_ v
=
    [{j fit } {j vit}]
    =
    [{j fri}] [{j vilu]
    =
    j fr (j vi)
= { See partial-surjective-homomorphism. }
    j (f_ (f vi)
=
    j (\<case\\rangle inl(v
- t = in:
    [\llbracketin\rrbracket]
    =
    [\lambdav. in(v)]
    = { See below. }
    j (\lambdav. in(v))
    =
    j \<in\rangle\rangle
    [\lambdav. in(v)] (j v)
=
    [in({j v})]
    = { See properties-of-j. }
    j in(v)
=
    j ((\lambdav. in(v)) v)
- t = out:
Similarly.
- t = fold:
```

```
Note that
```

Note that
$\llbracket f o l d \rrbracket f=f \circ F(\llbracket f o l d \rrbracket f) \circ$ out
$\llbracket f o l d \rrbracket f=f \circ F(\llbracket f o l d \rrbracket f) \circ$ out
and
and
$\langle\langle f o l d\rangle\rangle=f \circ F(\langle\langle f o l d\rangle) f) \circ$ out.
$\langle\langle f o l d\rangle\rangle=f \circ F(\langle\langle f o l d\rangle) f) \circ$ out.
We get
[\llbracketfold\rrbracket] = j
langlefold\rangle\rangle
\Leftrightarrow
|f\indom(j_(F\sigma->\sigma)), v \in dom(j_\muF).
[\llbracketfold\rrbracket] (j f) (j v) = j (||fold\rangle\f v)

```
```

\Leftrightarrow
f \in dom(j_(F\sigma
|fof j f, vo f j v.
[\llbracketfold\rrbracket fo vol = j (|fold\rangle)f v)
\&{ Generalise. }
\forallG,f}\in\operatorname{dom(j_(F\sigma->\sigma)), v \in dom(j_(G \muF)).
|fof j f, vo f j v.
[L(G) (\llbracketfold\rrbracket for) vol = j (G (
langlefold\rangle) f) v)
\& { Induction on size of v. }
\forallG,f}\in\operatorname{dom(j_(F\sigma->\sigma)), v \in dom(j_(G \muF)).
\forall G', v' }\in\operatorname{dom}(\mp@subsup{j}{-}{\prime}(\mp@subsup{G}{}{\prime}\mu|F))
size_(G' }\mu\textrm{F})\textrm{V},< < size_(G \muF)
=> \forall fob f j f, vo'
[L(G') (\llbracketfold\rrbracket fo) vo'] = j (G' (|foold\rangle f) v')
=>
[L(G) (\llbracketfold\rrbracket fo) vol = j (G (|fold
ranglef) v)
\Leftrightarrow{ Case analysis. }

- G = Id:
Here we have v = in v'. Let [in vo'] = j (in v') = [in {j v'}].
[L(G) (\llbracketfold\rrbracket fo) (in vo')]
=
[\llbracketfold\rrbracket fo (in vo')]
=[fo(L(F) (\llbracketfold\rrbracket for vovor)]
[fo {[L(F) (\llbracketfold\rrbracket for) vol]}]
= { Inductive hypothesis: v' < v. }
[fo {j (F (
fold\rangle\ranglef) v')}]
j f (j (F (|{fold\rangle\ranglef) v'))
=
j (f (F (|fold\rangle\f) v'))
j (|fold\rangle\f (in v'))
j (G (|{fold\rangle\rangle f) (in v'))
- G = K_\tau:
[L(G) (\llbracketfold\rrbracket for vol
=
[vo]
=
j v
=
j (G (|\langlefold\rangle\rangle f) v)

```
－ \(\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}\) ：
Here we have \(\mathrm{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\) ．Let \(\left[\left(\mathrm{v}_{\mathrm{o}_{1}}, \mathrm{v}_{02}\right)\right]=\mathrm{j}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=\) \(\left[\left(\left\{j \mathrm{v}_{1}\right\},\left\{j \mathrm{v}_{2}\right\}\right)\right]\) ．
\(\left[L(G)\left(\llbracket f o l d \rrbracket f_{0}\right)\left(\mathrm{v}_{01}, \mathrm{v}_{02}\right)\right]\)
\(=\)
\(\left[\left(L\left(G_{1}\right)\left(\llbracket f o l d \rrbracket f_{0}\right) \mathrm{v}_{01}, L\left(G_{2}\right)\left(\llbracket f o l d \rrbracket f_{0}\right) \mathrm{v}_{02}\right)\right]\)
\(=\left[\left(\left\{\left[L\left(G_{1}\right)\left(\llbracket f o l d \rrbracket f_{0}\right) \mathrm{v}_{01}\right]\right\},\left\{\left[L\left(G_{2}\right)\left(\llbracket f o l d \rrbracket f_{0}\right) \mathrm{v}_{02}\right]\right\}\right)\right]\)
\(=\left\{\right.\) Inductive hypothesis： \(\left.\mathrm{v}_{1}<\mathrm{v}, \mathrm{v}_{2}<\mathrm{v}.\right\}\)
\(\left[\left(\left\{j\left(G_{1}(\langle\langle f o l d\rangle) f) V_{1}\right)\right\},\left\{j\left(G_{2}(\langle\langle f o l d\rangle) f) v_{2}\right)\right\}\right)\right]\)
\(=\{\) Definition of \(j\) ．\} \(j\left(G_{1}(\langle\langle f o l d\rangle\rangle) v_{1}, G_{2}(\langle\langle f o l d\rangle) f) v_{2}\right)\)
\(=j\left(G(\langle\langle f o l d\rangle\rangle)\left(v_{1}, v_{2}\right)\right)\)
－\(G=G_{1}+G_{2}\) ：
Here we have \(\mathrm{v}=\operatorname{inl}\left(\mathrm{v}_{1}\right)\) or \(\mathrm{v}=\operatorname{inr}\left(\mathrm{v}_{2}\right)\) ．The second case is omitted．Let \(\left[\operatorname{inl}\left(\mathrm{v}_{01}\right)\right]=\mathrm{j} \operatorname{inl}\left(\mathrm{v}_{1}\right)=\left[\operatorname{inl}\left(\left\{j \mathrm{v}_{1}\right\}\right)\right]\) ．
\(\left[\mathrm{L}(\mathrm{G})\left(\llbracket \mathrm{fold} \rrbracket \mathrm{f}_{0}\right) \operatorname{inl}\left(\mathrm{v}_{01}\right)\right]\)
\(=\)
\(\left[i n l\left(L\left(G_{1}\right)\left(\llbracket f o l d \rrbracket f_{0}\right) \mathrm{V}_{01}\right)\right]\)
＝
\(\left[\operatorname{inl}\left(\left\{\left[L\left(G_{1}\right)\left(\llbracket f o l d \rrbracket f_{0}\right) \mathrm{v}_{01}\right]\right\}\right)\right]\)
\(=\left\{\right.\) Inductive hypothesis： \(\left.\mathrm{v}_{1}<\mathrm{v}.\right\}\) ［inl（\｛j（G \(\left.\left.\left.\left.\mathrm{G}_{1}(\langle\{\mathrm{fold}\rangle\rangle \mathrm{f}) \mathrm{v}_{1}\right)\right\}\right)\right]\)
\(=\{\) Definition of \(j\) ．\} \(j \operatorname{inl}\left(G_{1}\left(\langle\langle f o l d\rangle f) v_{1}\right)\right.\)
\(j\left(G(\langle\langle f o l d\rangle) f) \operatorname{inl}\left(v_{1}\right)\right)\)
－t＝unfold：
```

Note that
$\llbracket u n f o l d \rrbracket f=$ in $\circ F(\llbracket f o l d \rrbracket f) \circ f$
and
$\langle\langle u n f o l d\rangle f=$ in $\circ F(\langle\langle f o l d\rangle) f) \circ f$.
We get:
$[\llbracket u n f o l d \rrbracket]=j\langle\langle u n f o l d\rangle$
\Leftrightarrow
$\forall f \in \operatorname{dom}\left(j_{-}(\sigma \rightarrow F \sigma)\right), \quad v \in \operatorname{dom}\left(j_{-} \sigma\right)$.
[【unfold】] (j f) (j v) = j (《unfold $\rangle \mathrm{f}$ v)
\Leftrightarrow

```
```

 f \in dom(j_(\sigma->F \sigma)), v \in dom(j_\sigma).
 | fo f j f, vo f jv.
 [\llbracketunfold\rrbracket fo vol = j (|unfold\rangle f v)
 { Use coinduction. Let
    ```

```

 We are done if we can show that X\subseteqO(F)(X).
 { For definition of j', see partial-surjective-homomorphism.
 \forallf\in dom(j_(\sigma->F \sigma)), v \in dom(j_\sigma).
 |fof j f, vo f j v.
 (\llbracketunfold\rrbracket fo vo, j' (\unfold\rangle\rangle f v)) \in O(F)(X)
 \Leftrightarrow{ out isomorphism. }
f \in dom(j_(\sigma->F \sigma)), v \in dom(j_\sigma).
ffofj f, vo \in j v.
(out (\llbracketunfold\rrbracket fo vo), out (j' (|unfold\rangle)f v))) \in O'_F(F)(X)
{ out (\llbracketunfold\rrbracket fo vo)
L(F) (\llbracketunfold\rrbracket fo) (fo vol)
out (j) (
langleunfold\rangle\rangle f v))
\Leftrightarrow}
L(F) j' (J'_F(F) (F (\<unfold\rangle f) (f v)))
=
J' (F (|unfold\rangle\ f) (f v))
{ For definition of J', see partial-surjective-homomorphism.
f \in dom(j_(\sigma->F \sigma)), v \in dom(j_\sigma).
| fo f j f, vo f j v.
(L(F) (\llbracketunfold\rrbracket for) (fo vo), J' (F (|\unfold\rangle) f) (f v))) \in O'_F(F)(X)

```

```

 f \in dom(j_(\sigma->F \sigma)), v \in dom(j_\sigma).
 | fo f j f, vo f j (f v).
 (L(F) (\llbracketunfold\rrbracket fo) vo, J' (F (|unfold\rangle\ f) (f v))) \in O'_F(F)(X)
 \Leftarrow{Generalise. f \in dom(j) ^ v \in dom(j) = f v \in dom(j). }
f \in dom(j_(\sigma->F \sigma)), v \in dom(j_(F \sigma)).
|fof j f, vo f j v.
(L(F) (\llbracketunfold\rrbracket fo) vo, J' (F (|unfold\rangle) f) v)) \in O'_F(F)(X)
\& { Generalise. }

```

```

 | fo f j f, vo f j v.
 (L(G) (\llbracketunfold\rrbracket fo) vo, J' (G (|unfold\rangle)f) v)) \in O'_F(G)(X)
 \&{ Induction over G. }

```
```

G \leq F.
(}\forall\mp@subsup{G}{}{\prime}<\textrm{G}
f \in dom(j_(\sigma->F \sigma)), v \in dom(j_(G' \sigma)).
|fo f j f, vo f jv.
(L(G') (\llbracketunfold\rrbracket for vo, J' (G' (
langleunfold\rangle f) v)) \in O'_F(G')(X)
)

```

```

 | fof j f, vo f j v.
 (L(G) (\llbracketunfold\rrbracket fo) vo, J' (G (|unfold\rangle f) v)) \in D'_F(G)(X)
 \& { Case analysis. }

- G = Id:
\forallf\in dom(j_(\sigma->F \sigma)), v \in dom(j_\sigma).
\forall fo f j f, vo f j v.
(\llbracketunfold\rrbracket fo vo, j' (|unfold\rangle\ranglef v)) \in X
\Leftrightarrow{ Definition of X. }
\top
- G = K_\tau:
\forallf\in\operatorname{dom}(\mp@subsup{j}{-}{\prime}(\sigma->F\sigma)),v\in\operatorname{dom}(\mp@subsup{j}{-}{\prime}\tau).
ffo \in j f, vo f j v.
vo ~ j" v
|
- G = G }\mp@subsup{\textrm{G}}{1}{}\times\mp@subsup{\textrm{G}}{2}{}
(}\forall\textrm{G},<\textrm{G}
f f dom(j_(\sigma->F\sigma)), v \in dom(j_(G' \sigma)).
|fo f j f, vo f j v.
(L(G') (\llbracketunfold\rrbracket fo) vo, J' (G' (|unfold\rangle\ranglef) v)) \in O'_F(G')(X)
)
=> f f dom(j_(\sigma->F \sigma)), v
|f0}\in\textrm{j}f,\mp@subsup{\textrm{v}}{01}{}\in\textrm{j}\mp@subsup{\textrm{v}}{1}{},\mp@subsup{v}{02}{}\in\textrm{j}\mp@subsup{\textrm{v}}{2}{}

```


```

) \in O'_F(G)(X)
 \Leftrightarrow
(}\forall\mp@subsup{G}{}{\prime}<\textrm{G}
f \in dom(j_(\sigma->F\sigma)), v \in dom(j_(G' \sigma)).
|fo f j f, vo f j v.
(L(G') (\llbracketunfold\rrbracket for) vo, J' (G' (
langleunfold\rangle) f) v)) \in O'_F(G')(X)
)
=> }\forall\textrm{f}\in\operatorname{dom(j_(\sigma->F\sigma)), \mp@subsup{v}{1}{}\in\operatorname{dom}(\mp@subsup{j}{-}{\prime}(\mp@subsup{G}{1}{}}\sigma)),\mp@subsup{\textrm{v}}{2}{}\in\operatorname{dom}(\mp@subsup{j}{-}{\prime}(\mp@subsup{G}{2}{}\sigma))
\forallfof j f, vol }\in\textrm{j}\mp@subsup{\textrm{v}}{1}{},\mp@subsup{\textrm{v}}{02}{}\in\textrm{j}\mp@subsup{\textrm{v}}{2}{}
(L(G) (\llbracketunfold\rrbracket for) vo1, J' (G

```

```

\Leftrightarrow

```

\section*{Section 19: The main result}
```

 T
 - G = G1 + G :
(}\forall\mp@subsup{G}{}{\prime}<\textrm{G}
f \in dom(j_(\sigma->F \sigma)), v \in dom(j_(G' \sigma)).
f fo f j f, vo f j v.
(L(G') (\llbracketunfold\rrbracket for) vo, J' (G' (
unfold\rangle\f) v)) \in O'_F(G')(X)
)
=> f f dom(j_(\sigma->F\sigma)), fof f j f.
\forall vi f dom(j_(G
(L(G)
^
\forall v2 \in dom(j_(G}\mp@subsup{\textrm{g}}{2}{}\sigma)),\mp@subsup{\textrm{v}}{02}{}\in\textrm{j}\mp@subsup{\textrm{v}}{2}{}
(L(G2) (\llbracketunfold\rrbracket for) vo2, J' (G2 (|unfold\rangle\f) v2)) \in O'_F(G2)(X)
\Leftrightarrow
\top

```

\section*{20 Strict language}

The main theorem holds for a strict language as well

Simple definition of strict language: Same syntax, same semantics, except that
\[
\begin{array}{rlrl}
\llbracket t_{1} & t_{2} \rrbracket \_\perp \rho= & \left\{\left(\llbracket t_{1} \rrbracket \_\perp \rho\right)\left(\llbracket t_{2} \rrbracket \_\perp \rho\right),\right. & \llbracket t_{2} \rrbracket \_\perp \rho \neq \perp, \\
& \{\perp, & \text { otherwise } .
\end{array}
\]

Note: Strange strict language, includes coinductive types.
Translation:
\[
\mathrm{t}^{\wedge} *= \begin{cases}\left\{\operatorname{seq} \mathrm{t}_{2} \wedge *\left(\mathrm{t}_{1} \wedge * \mathrm{t}_{2}^{\wedge} *\right),\right. & \mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2}, \\ \lambda \mathrm{x} . \mathrm{t}_{1} \wedge *, & \mathrm{t}=\lambda \mathrm{x} . \mathrm{t}_{1}, \\ \{\mathrm{t}, & \text { otherwise } .\end{cases}
\]

It is straightforward to check that this translation is type-preserving.

We have \(\llbracket t \rrbracket \_\perp \rho=\llbracket t^{\wedge} * \rrbracket \rho\). Proof by induction over structure of \(t\) :
Application:
1. Assume that \(\llbracket \mathrm{t}_{2} \rrbracket \_\perp \rho \neq \perp\) :
\(\llbracket t_{1} \mathrm{t}_{2} \rrbracket \_\perp \rho\)
\(=\left\{\llbracket t_{2} \rrbracket \perp \perp \neq \perp.\right\}\) \(\left(\llbracket t_{1} \rrbracket \_\perp\right)\left(\llbracket t_{2} \rrbracket \_\perp \rho\right)\)
\(=\) \{ Inductive hypothesis. \} \(\left(\llbracket t_{1}{ }^{*} * \rrbracket \rho\right)\left(\llbracket t_{2}{ }^{\wedge} * \rrbracket \rho\right)\)
\(=\left\{\right.\) Inductive hypothesis, \(\left.\llbracket \mathrm{t}_{2}{ }^{\wedge} * \rrbracket \rho=\llbracket \mathrm{t}_{2} \rrbracket \_\perp \rho \neq \perp.\right\}\) \(\llbracket \mathrm{seq} \rrbracket\left(\llbracket \mathrm{t}_{2}{ }^{\wedge} * \rrbracket \rho\right)\left(\left(\llbracket \mathrm{t}_{1}{ }^{\wedge} * \rrbracket \rho\right)\left(\llbracket \mathrm{t}_{2}{ }^{\wedge} * \rrbracket \rho\right)\right)\)
\(=\)
\(\llbracket\) seq \(\mathrm{t}_{2}{ }^{\wedge} *\left(\mathrm{t}_{1}{ }^{\wedge} * \mathrm{t}_{2}{ }^{\wedge} *\right) \rrbracket \rho\)
\(=\llbracket\left(t_{1} t_{2}\right)^{*} * \rrbracket \rho\)
2. Assume that \(\llbracket t_{2} \rrbracket \perp \perp=\perp\) :
\(\llbracket t_{1} t_{2} \rrbracket \_\perp\)
\(=\left\{\llbracket \mathrm{t}_{2} \rrbracket \_\perp \rho=\perp.\right\}\)
\(\perp\)
\(=\left\{\right.\) Inductive hypothesis: \(\left.\llbracket \mathrm{t}_{2}{ }^{\wedge} * \rrbracket \rho=\llbracket \mathrm{t}_{2} \rrbracket \perp \perp \rho=\perp.\right\}\)
\[
\llbracket \mathrm{seq} \rrbracket\left(\llbracket \mathrm{t}_{2} \wedge^{\wedge} * \rho\right)\left(\llbracket \mathrm{t}_{1} \wedge^{*} * \mathrm{t}_{2} \wedge * \rrbracket \rho\right)
\]
\(=\)
```

 \(\llbracket\) seq \(\mathrm{t}_{2}{ }^{\wedge} *\left(\mathrm{t}_{1}{ }^{\wedge} * \mathrm{t}_{2}{ }^{\wedge} *\right) \rrbracket \rho\)
 \(=\)
 \(\llbracket\left(t_{1} \quad t_{2}\right)^{\wedge} * \rrbracket \rho\)
 Abstraction:
$\llbracket \lambda x . t \rrbracket _\perp \rho$
$=$
$\lambda \mathrm{v} \cdot \llbracket \mathrm{t} \rrbracket _\rho[\mathrm{x} \mapsto \mathrm{v}]$
$=\{$ Inductive hypothesis. \}
$\lambda \mathrm{v} . \llbracket \mathrm{t}^{\wedge} * \rrbracket \rho[\mathrm{x} \mapsto \mathrm{v}]$
=
$\llbracket(\lambda \mathrm{x} . \mathrm{t})^{\wedge} * \rrbracket \rho$
Otherwise:
$\llbracket t \rrbracket _\perp \rho$
$=$
$\llbracket t \rrbracket \rho$
$=$
$\llbracket t^{\wedge} * \rrbracket \rho$

```

We also have \(\langle\langle\mathrm{t}\rangle\rangle \rho=\left\langle\left\langle\mathrm{t}^{\wedge} *\right\rangle\right\rangle\)（easy induction over t ）．

Given the two results above we immediately get that the main result and its corollary hold when \(\llbracket \cdot \rrbracket\) is replaced by \(\llbracket \cdot \rrbracket \_\perp\) ，with the following slightly modified precondition regarding uses of seq in the term in question：
－seq is not used in＿the translation of＿the term at a type with \(\perp\) in its domain．

\section*{Proof：}

Note first that if \(t\) satisfies the precondition above，then both \(t\) and \(t^{\wedge} *\) satisfy the preconditions of the fundamental theorem and the main result regarding uses of seq at the wrong type．

Now，given a term \(t\) and contexts \(\rho\) ，\(\rho\)＇satisfying all the preconditions of the main result，including the modified one，we get that \(\llbracket t \rrbracket \_\perp \rho \in \operatorname{dom}(\sim)\) and hence：
［【t】＿\(\perp \mathrm{p}]\)
\(=\{\) Result above．\}
［【t～＊』 p\(]\)
\(=\{\) Main result．\(\}\)
```

 j (|\langlet`* * \ م')
 = { Result above. }
j (|\t\rangle\rangle \rho')

```

Thus the main result holds for \(\llbracket \cdot \rrbracket \_\perp\). The corollary follows in the same way as before.

Note that the translation above leads to an exponential blowup in term size. Probably this doesn't matter, since the translation won't be used in practice. However, we would get around the blowup by having
\[
\left(t_{1} t_{2}\right)^{\wedge} *=\operatorname{seq} t_{2}{ }^{\wedge} *\left(t_{1}{ }^{\wedge} * t_{2}\right)
\]
instead of
\[
\left(t_{1} t_{2}\right)^{\wedge} *=\operatorname{seq} t_{2}{ }^{\wedge} *\left(t_{1}{ }^{\wedge} * t_{2}{ }^{\wedge} *\right) .
\]

Is this possible? The answer is no, not if we want to have \(\llbracket t \rrbracket \_\perp \rho=\) \(\llbracket t{ }^{*} * \rrbracket \rho\).

Denote the new variant of the translation by " \(\star\). Assume that \(\llbracket t^{\wedge} \star \rrbracket \rho \neq\) \(\perp\). We get:
\(\llbracket((\lambda x . x) t)^{\wedge} \star \rrbracket \rho=\llbracket(\lambda x . x) t \rrbracket \_\perp \rho\)
\(\llbracket \mathrm{seq} \rrbracket\left(\llbracket \mathrm{t}^{\wedge} \star \rrbracket \rho\right)\left(\llbracket(\lambda \mathrm{x} . \mathrm{x})^{\wedge} \star \rrbracket \rho(\llbracket \mathrm{t} \rrbracket \rho)\right)=\llbracket(\lambda \mathrm{x} . \mathrm{x}) \mathrm{t} \rrbracket \_\perp \rho\)
\(\Leftrightarrow\left\{\llbracket t^{\wedge} \star \rrbracket \rho \neq \perp.\right\}\)
\(\llbracket(\lambda x \cdot x)^{\wedge} \star \rrbracket \rho(\llbracket t \rrbracket \rho)=\llbracket(\lambda x \cdot x) t \rrbracket \_\perp \rho\)
\(\Leftrightarrow\)
\(\llbracket t \rrbracket \rho=\llbracket(\lambda x . x) t \rrbracket \_\perp \rho\)
\(\Leftrightarrow\left\{\llbracket \mathrm{t} \rrbracket \_\perp \rho=\perp \Rightarrow \llbracket(\lambda \mathrm{x} \cdot \mathrm{x}) \mathrm{t} \rrbracket \_\perp \rho=\perp.\right\}\)
\(\llbracket t \rrbracket \rho=\llbracket t \rrbracket \_\perp \rho\)
Hence, for an arbitrary term \(t\) we should have
\[
\llbracket t^{\wedge} \star \rrbracket \rho \neq \perp \Rightarrow \llbracket t \rrbracket \rho=\llbracket t \rrbracket \_\perp \rho .
\]

It is easy to find a counterexample:
\(\mathrm{t}=\lambda \mathrm{x} .(\lambda \mathrm{z} \cdot \mathrm{x}) \mathrm{y}, \mathrm{\rho}=[\mathrm{y} \mapsto \perp]\)
\(\llbracket t^{\wedge} \star \rrbracket \rho=\lambda v . \perp \neq \perp\)
\(\llbracket t \rrbracket \rho=\lambda v . v\)
\(\llbracket t \rrbracket \_\perp \rho=\lambda v . \perp\)

\section*{References}

Nils Anders Danielsson, Jeremy Gibbons, John Hughes, and Patrik Jansson. Fast and loose reasoning is morally correct. In POPL '06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 206-217, 2006.```

