
Up-to Techniques using
Sized Types

Nils Anders Danielsson

POPL 2018, Los Angeles, 2018-01-11

Introduction

What is an up-to technique?
▶ Often used to make it easier to define bisimulations.

Introduction

What is an up-to technique?

▶ 𝑅 is a bisimulation (for CCS):
..P.

P ′

. Q.

Q ′

. 𝑅.

𝑅

.

𝜇

.

𝜇

..P.

P ′

. Q.

Q ′

. 𝑅.

𝑅

.

𝜇

.

𝜇

Introduction

What is an up-to technique?

▶ Up to bisimilarity:
..P.

P ′

. Q.

Q ′

. 𝑅.

∼ 𝑅 ∼

.

𝜇

.

𝜇

..P.

P ′

. Q.

Q ′

. 𝑅.

∼ 𝑅 ∼

.

𝜇

.

𝜇

Introduction

What is an up-to technique?

▶ More generally:
..P.

P ′

. Q.

Q ′

. 𝑅.

𝐹 𝑅

.

𝜇

.

𝜇

..P.

P ′

. Q.

Q ′

. 𝑅.

𝐹 𝑅

.

𝜇

.

𝜇

Introduction

▶ In dependently typed languages:
Bisimilarity as indexed coinductive data type.

▶ If sized types are used:
A class of up-to techniques falls out naturally.

Coinductive
data types

Coinduction without sized types

Potentially infinite lists, roughly 𝜈𝑋. 1 + 𝐴 × 𝑋:

data Colist (A ∶ Set) ∶ Set where
[] ∶ Colist A

∷ ∶ A → Colist′ A → Colist A

record Colist′ (A ∶ Set) ∶ Set where
coinductive
field force ∶ Colist A

Corecursion using copatterns

A map function for colists:
map ∶ (A → B) → Colist A → Colist B
map f [] = []
map f (x ∷ xs) = f x ∷ map′ f xs

map′ ∶ (A → B) → Colist′ A → Colist′ B
force (map′ f xs) = map f (force xs)

Corecursion using copatterns

A map function for colists:
map ∶ (A → B) → Colist A → Colist B
map f [] = []
map f (x ∷ xs) = f x ∷ λ { .force → map f (force xs) }

Corecursion using copatterns

A map function for colists:
map ∶ (A → B) → Colist A → Colist B
map f [] = []
map f (x ∷ xs) = f x ∷ λ { .force → map f (force xs) }

Guarded, productive.

Guardedness

0, 1, 2, …:

nats ∶ Colist ℕ
nats = 0 ∷ λ { .force → map (1 +) nats }

Not guarded, rejected.

Sized types

Sized types

Previous definition:

data Colist (A ∶ Set) ∶ Set where
[] ∶ Colist A

∷ ∶ A → Colist′ A → Colist A

record Colist′ (A ∶ Set) ∶ Set where
coinductive
field force ∶ Colist A

Sized types

With sized types:

data Colist (i ∶ Size) (A ∶ Set) ∶ Set where
[] ∶ Colist i A

∷ ∶ A → Colist′ i A → Colist i A

record Colist′ (i ∶ Size) (A ∶ Set) ∶ Set where
coinductive
field force ∶ {j ∶ Size< i} → Colist j A

Sized types

With sized types:

data Colist (i ∶ Size) (A ∶ Set) ∶ Set where
[] ∶ Colist i A

∷ ∶ A → Colist′ i A → Colist i A

record Colist′ (i ∶ Size) (A ∶ Set) ∶ Set where
coinductive
field force ∶ {j ∶ Size< i} → Colist j A

Colist′ i A: Partially defined colists of depth at least i .

Sized types

With sized types:

data Colist (i ∶ Size) (A ∶ Set) ∶ Set where
[] ∶ Colist i A

∷ ∶ A → Colist′ i A → Colist i A

record Colist′ (i ∶ Size) (A ∶ Set) ∶ Set where
coinductive
field force ∶ {j ∶ Size< i} → Colist j A

Colist′ ∞ A: Fully defined colists.

Sized types

The map function is size-preserving:

map ∶ ∀ {i} → (A → B) → Colist i A → Colist i B
map f [] = []
map f (x ∷ xs) = f x ∷ λ { .force → map f (force xs) }

Sized types

The size is smaller in every corecursive call:

nats ∶ ∀ {i} → Colist i ℕ
nats = 0 ∷ λ { .force → map (1 +) nats }

Sized types

The size is smaller in every corecursive call:

nats ∶ ∀ i → Colist i ℕ
nats i = 0 ∷ λ { .force {j} → map (1 +) (nats j) }

Bisimilarity

A tiny process calculus

Labels/actions:

data Label ∶ Set where
∙ ∶ Label

A tiny process calculus

Processes:

data Proc ∶ Set where
∅ ∶ Proc

∣ ∶ Proc → Proc → Proc
∙ ∶ Proc′ → Proc

record Proc′ ∶ Set where
coinductive
field force ∶ Proc

Roughly 𝜈𝐶. 𝜇𝐼. 1 + 𝐼 × 𝐼 + 𝐶.

A tiny process calculus

Transition relation:

data []→ ∶ Proc → Label → Proc → Set where
action ∶ ∙ P [∙]→ force P
par‐left ∶ P [𝜇]→ P ′ → P ∣ Q [𝜇]→ P ′ ∣ Q
par‐right ∶ Q [𝜇]→ Q ′ → P ∣ Q [𝜇]→ P ∣ Q ′

Bisimilarity

𝑅 is a bisimulation:

..P.

P ′

. Q.

Q ′

. 𝑅.

𝑅

.

𝜇

.

𝜇

..P.

P ′

. Q.

Q ′

. 𝑅.

𝑅

.

𝜇

.

𝜇

Bisimilarity
record Bisimilar (i ∶ Size) (P Q ∶ Proc) ∶ Set where
inductive
field left‐to‐right ∶

P [𝜇]→ P ′ → ∃ Q ′ → Q [𝜇]→ Q ′ × Bisimilar′ i P ′ Q ′

right‐to‐left ∶
Q [𝜇]→ Q ′ → ∃ P ′ → P [𝜇]→ P ′ × Bisimilar′ i P ′ Q ′

record Bisimilar′ (i ∶ Size) (P Q ∶ Proc) ∶ Set where
coinductive
field force ∶ {j ∶ Size< i} → Bisimilar j P Q

Examples

Bisimilarity is transitive:

trans ∶ Bisimilar i P Q →
Bisimilar i Q R →
Bisimilar i P R

Note that the proof is size-preserving.

Examples

Parallel composition preserves bisimilarity:

∣‐cong ∶ Bisimilar i P P ′ →
Bisimilar i Q Q ′ →
Bisimilar i (P ∣ Q) (P ′ ∣ Q ′)

Note that the proof is size-preserving.

Examples

Prefixing preserves bisimilarity:

∙‐cong ∶ Bisimilar′ i (force P) (force Q) →
Bisimilar i (∙ P) (∙ Q)

Note that the proof is size-preserving.

Examples

∅ is a left identity of parallel composition:

∅‐left‐identity ∶ Bisimilar i (∅ ∣ P) P

Examples

Two processes:

P Q ∶ Proc
P = ∅ ∣ (∙ P′ ∣ ∙ P′)
Q = ∙ Q′ ∣ ∙ Q′

P′ Q′ ∶ Proc′

force P′ = P
force Q′ = Q

Examples
P and Q are bisimilar:

sim ∶ ∀ {i} → Bisimilar i P Q
sim = trans ∅‐left‐identity

(∣‐cong (∙‐cong (λ { .force → sim }))
(∙‐cong (λ { .force → sim })))

P Q ∶ Proc
P = ∅ ∣ (∙ P′ ∣ ∙ P′)
Q = ∙ Q′ ∣ ∙ Q′

P′ Q′ ∶ Proc′

force P′ = P
force Q′ = Q

Examples
P and Q are bisimilar:

sim ∶ ∀ {i} → Bisimilar i P Q
sim = trans ∅‐left‐identity

(∣‐cong (∙‐cong (λ { .force → sim }))
(∙‐cong (λ { .force → sim })))

Compare trans and up to bisimilarity:

..P.

P ′

. Q.

Q ′

. 𝑅.

∼ 𝑅 ∼

.

𝜇

.

𝜇

..P.

P ′

. Q.

Q ′

. 𝑅.

∼ 𝑅 ∼

.

𝜇

.

𝜇

Examples
P and Q are bisimilar:

sim ∶ ∀ {i} → Bisimilar i P Q
sim = trans ∅‐left‐identity

(∣‐cong (∙‐cong (λ { .force → sim }))
(∙‐cong (λ { .force → sim })))

Compare ∣‐cong/∙‐cong and up to context:

..P.

P ′

. Q.

Q ′

. 𝑅.

𝐶[𝑅]

.

𝜇

.

𝜇

..P.

P ′

. Q.

Q ′

. 𝑅.

𝐶[𝑅]

.

𝜇

.

𝜇

Examples
P and Q are bisimilar:

sim ∶ ∀ {i} → Bisimilar i P Q
sim = trans ∅‐left‐identity

(∣‐cong (∙‐cong (λ { .force → sim }))
(∙‐cong (λ { .force → sim })))

▶ The proofs are size-preserving, so they can be
combined freely.

▶ No extra work is required to show that the
proofs are size-preserving.

Weak bisimilarity

▶ For full CCS: Weak bisimilarity.
▶ Size-preserving preservation lemmas.
▶ Transitivity:

Weakly‐bisimilar ∞ P Q →
Weakly‐bisimilar ∞ Q R →
Weakly‐bisimilar ∞ P R

Cannot be proved in a size-preserving way.
▶ The problem of “weak bisimulation up to”.

Generalisation

▶ A general notion of (sound) up-to technique
can be defined.

▶ Every size-preserving predicate transformer
is an up-to technique.

▶ Closed under composition.
▶ Closely related to a class of up-to techniques identified

by Pous: Functions below the “companion”.

Conclusion

When using a type theory with sized types to define bisimilarity
a useful class of up-to techniques falls out naturally.

Extra material

Containers

▶ Containers (well-behaved functors):

Container ∶ Set → Set1
⟦ ⟧ ∶ Container X → (X → Set) → (X → Set)

▶ Greatest fixpoints of containers:

𝜈 ∶ Container X → Size → (X → Set)

Up-to techniques

Up-to techniques (sound):

Up‐to‐technique ∶
Container X → ((X → Set) → (X → Set)) → Set1

Up‐to‐technique C F =
∀ R → R ⊆ ⟦ C ⟧ (F R) → R ⊆ 𝜈 C ∞

Size-preserving

▶ Size-preserving predicate transformers:

Size‐preserving ∶
Container X → ((X → Set) → (X → Set)) → Set1

Size‐preserving C F =
∀ R i → R ⊆ 𝜈 C i → F R ⊆ 𝜈 C i

▶ Every size-preserving predicate transformer
is an up-to technique.

	Introduction
	Coinductive data types
	Sized types
	Bisimilarity
	Conclusion

