Up-to Techniques using Sized Types

Nils Anders Danielsson

POPL 2018, Los Angeles, 2018-01-11

Introduction

What is an up-to technique?

- Often used to make it easier to define bisimulations.

Introduction

What is an up-to technique?

- R is a bisimulation (for CCS):

Introduction

What is an up-to technique?

- Up to bisimilarity:

$$
\begin{array}{rccccc}
P & R & Q & P & R & Q \\
\mu \mid & & \mu & \mu & & \downarrow \\
P^{\prime} \sim R \sim Q^{\prime} & P^{\prime} \sim R \sim Q^{\prime}
\end{array}
$$

Introduction

What is an up-to technique?

- More generally:

$$
\begin{array}{cccccc}
P & R & Q & P & R & Q \\
\mu \mid & & \vdots & \mu & & \downarrow \mu \\
P^{\prime} & F R & Q^{\prime} & P^{\prime} & F R & Q^{\prime}
\end{array}
$$

Introduction

- In dependently typed languages:

Bisimilarity as indexed coinductive data type.

- If sized types are used:

A class of up-to techniques falls out naturally.

Coinductive
 data types

Coinduction without sized types

Potentially infinite lists, roughly $\nu X .1+A \times X$:
data Colist (A : Set) : Set where

:: : $A \rightarrow$ Colist $^{\prime} A \rightarrow$ Colist A
record Colist' (A : Set) : Set where coinductive field force : Colist A

Corecursion using copatterns

A map function for colists:

$$
\begin{aligned}
& \operatorname{map}:(A \rightarrow B) \rightarrow \text { Colist } A \rightarrow \text { Colist } B \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(x:: x s)=f x:: \text { map }^{\prime} f x s \\
& \text { map }^{\prime}:(A \rightarrow B) \rightarrow \text { Colist }^{\prime} A \rightarrow \text { Colist }^{\prime} B \\
& \text { force }\left(\text { map }^{\prime} f x s\right)=\operatorname{map} f(\text { force } x s)
\end{aligned}
$$

Corecursion using copatterns

A map function for colists:

$$
\begin{aligned}
\operatorname{map}:(A \rightarrow B) & \rightarrow \text { Colist } A \rightarrow \text { Colist } B \\
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x:: x s) & =f x:: \lambda\{. \text { force } \rightarrow \operatorname{map} f(\text { force } x s)\}
\end{aligned}
$$

Corecursion using copatterns

A map function for colists:

$$
\begin{aligned}
\operatorname{map}:(A \rightarrow B) & \rightarrow \text { Colist } A \rightarrow \text { Colist } B \\
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x:: x s) & =f x:: \lambda\{. \text { force } \rightarrow \operatorname{map} f(\text { force } x s)\}
\end{aligned}
$$

Guarded, productive.

Guardedness

$0,1,2, \ldots$:

$$
\begin{aligned}
& \text { nats: Colist } \mathbb{N} \\
& \text { nats }=0:: \lambda\left\{\text {.force } \rightarrow \operatorname{map}\left(1++_{-}\right) \text {nats }\right\}
\end{aligned}
$$

Not guarded, rejected.

Sized types

Sized types

Previous definition:
data Colist (A : Set) : Set where
[] : Colist A
:: : $A \rightarrow$ Colist' $^{\prime} A \rightarrow$ Colist A
record Colist' (A : Set) : Set where
coinductive
field force : Colist A

Sized types

With sized types:
data Colist (i : Size) (A : Set) : Set where [] : Colist $i A$
:: : A \rightarrow Colist $^{\prime}$ i $A \rightarrow$ Colist $i A$
record Colist ${ }^{\prime}$ (i : Size) (A : Set) : Set where
coinductive
field force : $\{j:$ Size $<i\} \rightarrow$ Colist $j A$

Sized types

With sized types:
data Colist (i : Size) (A : Set) : Set where
[] : Colist $i A$
:: : $A \rightarrow$ Colist $^{\prime}$ i $A \rightarrow$ Colist $i A$
record Colist' (i : Size) (A : Set) : Set where
coinductive
field force : $\{j:$ Size $<i\} \rightarrow$ Colist $j A$
Colist' i A: Partially defined colists of depth at least i.

Sized types

With sized types:
data Colist (i : Size) (A : Set) : Set where
[] : Colist $i A$
:: : $A \rightarrow$ Colist $^{\prime}$ i $A \rightarrow$ Colist $i A$
record Colist' (i : Size) (A : Set) : Set where
coinductive
field force : $\{j:$ Size $<i\} \rightarrow$ Colist $j A$
Colist' ∞A : Fully defined colists.

Sized types

The map function is size-preserving:

$$
\begin{aligned}
\operatorname{map}: \forall\{i\} \rightarrow & (A \rightarrow B) \rightarrow \text { Colist } i A \rightarrow \text { Colist } i B \\
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x:: x s) & =f x:: \lambda\{. \text { force } \rightarrow \operatorname{map} f(\text { force } x s)\}
\end{aligned}
$$

Sized types

The size is smaller in every corecursive call:

> nats $: \forall\{i\} \rightarrow$ Colist $i \mathbb{N}$
> nats $=0:: \lambda\left\{\right.$.force $\rightarrow \operatorname{map}\left(1+_{_}\right)$nats $\}$

Sized types

The size is smaller in every corecursive call:

$$
\begin{aligned}
& \text { nats : } \forall i \rightarrow \text { Colist } i \mathbb{N} \\
& \text { nats } \left.i=0:: \lambda\left\{\text {.force }\{j\} \rightarrow \operatorname{map}\left(1+_{_}\right) \text {(nats } j\right)\right\}
\end{aligned}
$$

Bisimilarity

A tiny process calculus

Labels/actions:
data Label : Set where

- : Label

A tiny process calculus

Processes:

$$
\begin{aligned}
& \text { data } \text { Proc: Set where } \\
& \emptyset \quad: \text { Proc } \\
& \left.\quad\right|_{-} \quad: \text { Proc } \rightarrow \text { Proc } \rightarrow \text { Proc } \\
& \bullet \quad
\end{aligned}
$$

record Proc' : Set where coinductive field force: Proc

Roughly $\nu C . \mu I .1+I \times I+C$.

A tiny process calculus

Transition relation:
data _ $\left.\left[_\right]\right]_{-}:$Proc \rightarrow Label \rightarrow Proc \rightarrow Set where action : $\bullet P[\bullet]$ force P par-left $: P[\mu] \rightarrow P^{\prime} \rightarrow P\left|Q[\mu] \rightarrow P^{\prime}\right| Q$
par-right $: Q[\mu] \rightarrow Q^{\prime} \rightarrow P$

Bisimilarity

R is a bisimulation:

$$
\begin{array}{rccccc}
P & R & Q & P & R & Q \\
\mu \mid & & \vdots & \mu & & \mid \mu \\
P^{\prime} & R & Q^{\prime} & & P^{\prime} & R
\end{array}
$$

Bisimilarity

record Bisimilar (i : Size) ($P Q$: Proc) : Set where inductive
field left-to-right :

$$
P[\mu] \rightarrow P^{\prime} \rightarrow \exists Q^{\prime} \rightarrow Q[\mu] \rightarrow Q^{\prime} \times \text { Bisimilar }^{\prime} \text { i } P^{\prime} Q^{\prime}
$$

right-to-left :
$Q[\mu] \rightarrow Q^{\prime} \rightarrow \exists P^{\prime} \rightarrow P[\mu] \rightarrow P^{\prime} \times$ Bisimilar $^{\prime} i P^{\prime} Q^{\prime}$
record Bisimilar' (i : Size) (P : Proc) : Set where coinductive
field force : $\{j:$ Size $<i\} \rightarrow$ Bisimilar $j P Q$

Examples

Bisimilarity is transitive:

trans:	Bisimilar i
	P
Bisimilar	i
	$R \rightarrow$
	Bisimilar i

Note that the proof is size-preserving.

Examples

Parallel composition preserves bisimilarity:

$$
\begin{aligned}
\text { |-cong : } & \text { Bisimilar } i P P^{\prime} \rightarrow \\
& \text { Bisimilar } i Q Q^{\prime} \rightarrow \\
& \text { Bisimilar } i(P \mid Q)\left(P^{\prime} \mid Q^{\prime}\right)
\end{aligned}
$$

Note that the proof is size-preserving.

Examples

Prefixing preserves bisimilarity:
--cong : Bisimilar' $i($ force $P)($ force $Q) \rightarrow$ Bisimilar $i(\bullet P)(\bullet Q)$

Note that the proof is size-preserving.

Examples

\emptyset is a left identity of parallel composition:
\emptyset-left-identity: Bisimilar $i(\emptyset \mid P) P$

Examples

Two processes:

$$
\begin{array}{ll}
P Q: \operatorname{Proc} & P^{\prime} Q^{\prime}: P_{r o c} \\
P=\emptyset \mid\left(\bullet P^{\prime} \mid \bullet P^{\prime}\right) & \text { force } P^{\prime}=P \\
Q=\bullet Q^{\prime} \mid \bullet Q^{\prime} & \text { force } Q^{\prime}=Q
\end{array}
$$

Examples

P and Q are bisimilar:

$$
\begin{aligned}
& \operatorname{sim}: \forall\{i\} \rightarrow \text { Bisimilar } i P \mathrm{P} \\
& \text { sim }=\text { trans } \emptyset \text {-left-identity } \\
&(\mid \text {-cong }(\bullet-\operatorname{cong}(\lambda\{. \text { force } \rightarrow \operatorname{sim}\})) \\
&(\bullet-\operatorname{cong}(\lambda\{. \text { force } \rightarrow \operatorname{sim}\})))
\end{aligned}
$$

```
P Q : Proc
\[
P=\emptyset \mid\left(\bullet P^{\prime} \mid \bullet P^{\prime}\right)
\]
\[
\mathrm{Q}=\bullet \mathrm{Q}^{\prime} \mid \bullet \mathrm{Q}^{\prime}
\]
```

$$
\begin{aligned}
& \mathrm{P}^{\prime} \mathrm{Q}^{\prime}: \operatorname{Proc}^{\prime} \\
& \text { force } \mathrm{P}^{\prime}=\mathrm{P} \\
& \text { force } \mathrm{Q}^{\prime}=\mathrm{Q}
\end{aligned}
$$

Examples

P and Q are bisimilar:

$$
\begin{aligned}
& \operatorname{sim}: \forall\{i\} \rightarrow \text { Bisimilar } i P \mathrm{P} \\
& \operatorname{sim}=\text { trans } \emptyset \text {-left-identity } \\
&(\mid \text {-cong }(\bullet-\operatorname{cong}(\lambda\{. \text { force } \rightarrow \operatorname{sim}\})) \\
&(\bullet-\operatorname{cong}(\lambda\{. \text { force } \rightarrow \operatorname{sim}\})))
\end{aligned}
$$

Compare trans and up to bisimilarity:

$$
\begin{array}{rccccc}
P & R & Q & P & R & Q \\
\mu & & & & \\
& & \mu & & \\
P^{\prime} \sim R \sim Q^{\prime} & & P^{\prime} \sim R \sim Q^{\prime}
\end{array}
$$

Examples

P and Q are bisimilar:

$$
\begin{aligned}
& \operatorname{sim}: \forall\{i\} \rightarrow \text { Bisimilar } i P \mathrm{P} \\
& \operatorname{sim}=\text { trans } \emptyset \text {-left-identity } \\
&(\mid \text {-cong }(\bullet-\operatorname{cong}(\lambda\{. \text { force } \rightarrow \operatorname{sim}\})) \\
&(\bullet-\operatorname{cong}(\lambda\{. \text { force } \rightarrow \operatorname{sim}\})))
\end{aligned}
$$

Compare |-cong/e-cong and up to context:

$$
\begin{array}{cccccc}
P & R & Q & P & R & Q \\
\mu & & \vdots & \mu & & \downarrow \mu \\
P^{\prime} & C[R] & Q^{\prime} & & P^{\prime} & C[R]
\end{array}
$$

Examples

P and Q are bisimilar:

$$
\begin{array}{rl}
\operatorname{sim}: \forall\{i\} \rightarrow \text { Bisimilar } i & \mathrm{PQ} \\
\operatorname{sim}=\text { trans } \emptyset \text {-left-identity } \\
& (\mid \text {-cong }(\bullet-\operatorname{cong}(\lambda\{. \text { force } \rightarrow \operatorname{sim}\})) \\
(\bullet-\operatorname{cong}(\lambda\{. \text { force } \rightarrow \operatorname{sim}\})))
\end{array}
$$

- The proofs are size-preserving, so they can be combined freely.
- No extra work is required to show that the proofs are size-preserving.

Weak bisimilarity

- For full CCS: Weak bisimilarity.
- Size-preserving preservation lemmas.
- Transitivity:

> Weakly-bisimilar $\infty P Q \rightarrow$
> Weakly-bisimilar $\infty Q R \rightarrow$
> Weakly-bisimilar $\infty P R$

Cannot be proved in a size-preserving way.

- The problem of "weak bisimulation up to".

Generalisation

- A general notion of (sound) up-to technique can be defined.
- Every size-preserving predicate transformer is an up-to technique.
- Closed under composition.
- Closely related to a class of up-to techniques identified by Pous: Functions below the "companion".

Conclusion

When using a type theory with sized types to define bisimilarity a useful class of up-to techniques falls out naturally.

Extra material

Containers

- Containers (well-behaved functors):

$$
\begin{aligned}
& \text { Container : Set } \rightarrow \text { Set }_{1} \\
& \llbracket _\rrbracket \quad: \text { Container } X \rightarrow(X \rightarrow \text { Set }) \rightarrow(X \rightarrow \text { Set })
\end{aligned}
$$

- Greatest fixpoints of containers:

$$
\nu: \text { Container } X \rightarrow \text { Size } \rightarrow(X \rightarrow \text { Set })
$$

Up-to techniques

Up-to techniques (sound):
Up-to-technique :
Container $X \rightarrow((X \rightarrow$ Set $) \rightarrow(X \rightarrow$ Set $)) \rightarrow$ Set $_{1}$
Up-to-technique $C F=$

$$
\forall R \rightarrow R \subseteq \llbracket C \rrbracket(F R) \rightarrow R \subseteq \nu C \infty
$$

Size-preserving

- Size-preserving predicate transformers:

Size-preserving :

$$
\text { Container } X \rightarrow((X \rightarrow \text { Set }) \rightarrow(X \rightarrow \text { Set })) \rightarrow \text { Set }_{1}
$$

Size-preserving $C F=$

$$
\forall R i \rightarrow R \subseteq \nu C i \rightarrow F R \subseteq \nu C i
$$

- Every size-preserving predicate transformer is an up-to technique.

