Nils Anders Danielsson

POPL 2018, Los Angeles, 2018-01-11

What is an up-to technique?

» Often used to make it easier to define bisimulations.

What is an up-to technique?

» R is a bisimulation (for CCS):
P R Q P R Q@

‘|

N p j
P R @ PP R

What is an up-to technique?

» Up to bisimilarity:

P R Q P R Q
|
~ Q' Pr~R~Q

What is an up-to technique?

» More generally:

P R Q P R @
| e
R @ P FR @

» In dependently typed languages:
Bisimilarity as indexed coinductive data type.

» If sized types are used:
A class of up-to techniques falls out naturally.

Coinductive
data types

Potentially infinite lists, roughly vX. 14+ A x X:

data Colist (A : Set) : Set where
(] Colist A
A — Colist” A — Colist A

record Colist” (A : Set) : Set where
coinductive
field force : Colist A

A map function for colists:

map : (A — B) — Colist A — Colist B

map f [] =]
map f (z = zs) = f = = map’ f xs

map’ : (A — B) — Colist” A — Colist” B
force (map’ f zs) = map f (force xs)

A map function for colists:

map : (A — B) — Colist A — Colist B

map f (] =]
map f (z = xs) = f z = A { .force — map [(force zs) }

A map function for colists:

map : (A — B) — Colist A — Colist B

map f (] =]
map f (z = xs) = f z = A { .force — map [(force zs) }

Guarded, productive.

0,1,2, ...

nats : Colist N
nats = 0 :: A { .force — map (1 +_) nats }

Not guarded, rejected.

Sized types

Previous definition:

data Colist (A : Set) : Set where
] - Colist A
A — Colist” A — Colist A

record Colist” (A : Set) : Set where
coinductive
field force : Colist A

With sized types:

data Colist (7 : Size) (A : Set) : Set where
[l Colist ¢ A
A — Colist” i A — Colist 1 A

record Colist” (i : Size) (A : Set) : Set where
coinductive
field force : {j : Size< i} — Colist j A

With sized types:

data Colist (7 : Size) (A : Set) : Set where
[l Colist ¢ A
A — Colist” i A — Colist 1 A

record Colist” (i : Size) (A : Set) : Set where
coinductive
field force : {j : Size< i} — Colist j A

Colist” 7 A: Partially defined colists of depth at least 1.

With sized types:

data Colist (7 : Size) (A : Set) : Set where
[l Colist ¢ A
A — Colist” i A — Colist 1 A

record Colist” (i : Size) (A : Set) : Set where
coinductive
field force : {j : Size< i} — Colist j A

Colist” 0o A: Fully defined colists.

The map function is size-preserving:

map : V {i} — (A — B) — Colist i A — Colist i B

map f (] =[]
map f (z = xs) = f x = A { .force — map [(force xs) }

The size is smaller in every corecursive call:

nats : V {7} — Colist i N
nats = 0 =: A { .force — map (1 +_) nats }

The size is smaller in every corecursive call:

nats : V 4 — Colist ¢ N
nats ¢ = 0 = A { .force {j} — map (1 +_) (nats j) }

Bisimilarity

Labels/actions:

data Label : Set where
e : Label

Processes:
data Proc : Set where record Proc” : Set where
: Proc coinductive
|: Proc — Proc — Proc field force : Proc
e : Proc — Proc

Roughly vC. pul. 1+ 1 x I+ C.

Transition relation:

data _[_|»_ : Proc — Label — Proc — Set where
action :e P [e] force P
par-left : P[up P =P |Q[upb P | Q
par-right : Q [up @ = P | Q[ppb P | Q

R is a bisimulation:

record Bisimilar (¢ : Size) (P @ : Proc) : Set where
inductive
field left-to-right :
Plpup P —-3Q — Q[upb Q x Bisimilar" i P’ Q'
right-to-left :
Qlppb Q@ —3IP — P[pupb P’ x Bisimilar’ i P’ Q'

record Bisimilar” (i : Size) (P @ : Proc) : Set where
coinductive
field force : {j : Size< i} — Bisimilar j P @

Bisimilarity is transitive:
trans : Bisimilar 7 P () —
Bisimilar 7) R —
Bisimilar 7 P R

Note that the proof is size-preserving.

Parallel composition preserves bisimilarity:
|-cong : Bisimilar i P P’ —
Bisimilar i Q Q' —
Bisimilar ¢« (P | Q) (P’ | Q)

Note that the proof is size-preserving.

Prefixing preserves bisimilarity:

e-cong : Bisimilar’ i (force P) (force Q) —
Bisimilar i (e P) (e Q)

Note that the proof is size-preserving.

() is a left identity of parallel composition:

(-left-identity : Bisimilar ¢ () | P) P

Two processes:
P Q : Proc P’ Q" : Proc’

P=0]|(eP' |eoP) force P’ =P
Q=0eQ |eQ force Q" = Q

P and Q are bisimilar:
sim : YV {i} — Bisimilar i P Q
sim = trans ()-left-identity
(|-cong (e-cong (A { .force — sim }))
(e-cong (A { .force — sim })))

P Q : Proc P’ Q" : Proc’
P=0]|(eP |eP) force P’ =P
Q=0Q |eQ force Q" = Q

P and Q are bisimilar:

sim : YV {i} — Bisimilar i P Q
sim = trans ()-left-identity
(|-cong (e-cong (A { .force — sim }))
(e-cong (A { .force — sim })))

Compare trans and up to bisimilarity:
P R @ P R @
ul N [lu
P/NRNQ/ P/NRNQ/

P and Q are bisimilar:

sim : YV {i} — Bisimilar i P Q
sim = trans ()-left-identity
(|-cong (e-cong (A { .force — sim }))
(e-cong (A { .force — sim })))

Compare |-cong/e-cong and up to context:
P R @ P R Q
ul N [l/«b
P" C[R] @ P’ C[R] @

Examples

P and Q are bisimilar:
sim : V {i} — Bisimilar i P Q
sim = trans (-left-identity

(|-cong (e-cong (A { .force — sim }))
(e-cong (A { .force — sim })))

» The proofs are size-preserving, so they can be
combined freely.

» No extra work is required to show that the
proofs are size-preserving.

Weak bisimilarity

» For full CCS: Weak bisimilarity.
» Size-preserving preservation lemmas.
» Transitivity:

Weakly-bisimilar co P) —
Weakly-bisimilar co) R —
Weakly-bisimilar co P R

Cannot be proved in a size-preserving way.

The problem of “weak bisimulation up to".

v

Generalisation

» A general notion of (sound) up-to technique
can be defined.

» Every size-preserving predicate transformer
is an up-to technique.

» Closed under composition.

» Closely related to a class of up-to techniques identified
by Pous: Functions below the “companion”.

When using a type theory with sized types to define bisimilarity
a useful class of up-to techniques falls out naturally.

Extra material

» Containers (well-behaved functors):

Container : Set — Set;
] : Container X — (X — Set) — (X — Set)

» Greatest fixpoints of containers:

v : Container X — Size — (X — Set)

Up-to techniques (sound):

Up-to-technique :
Container X — ((X — Set) — (X — Set)) — Set;
Up-to-technique C' F' =
VR—-RC[C]J(FR)-RCv (Cx

Size-preserving

» Size-preserving predicate transformers:

Size-preserving :
Container X — ((X — Set) — (X — Set)) — Set;
Size-preserving C' F' =
VRi—RCv(Ci—FRCv(Ci

» Every size-preserving predicate transformer
is an up-to technique.

	Introduction
	Coinductive data types
	Sized types
	Bisimilarity
	Conclusion

