Cover Summary

Nils Anders Danielsson

Chalmers

Getting Software Right!

Interactive Proving Larger scale proving, costly but can be unavoidable.

Automated Proving Simpler properties verified with certainty.

Automated Testing Cheaply eliminates many bugs.

Programs

Notoriously full of bugs.

Properties

Characterise the expected behaviour -- also full of bugs.

CHALMERS

COVERproject.org

Combining Verification Methods in Software Development. Profs. John Hughes, Thierry Coquand, Peter Dybjer, Mary Sheeran, Funding, 8MSEK from SSF, 2002-2005

Compare the two! Inconsistencies reveal bugs.

Swedish Foundation for Strategic Research

Base tools

QuickCheck

- Specification and randomised testing library for Haskell.
- New version coming soon.
- Agda
 - Interactive theorem prover (dependent type theory).
 - Recently added: Classes, hidden arguments, primitive types, John Major equality.

Agsy

Proof search plugin for Agda capable of some inductive arguments.

Current focus

Haskell-Agda

Monadic translation of GHC Core into Agda.

•
$$f \ 0 \mapsto f^* \gg \lambda g \to g \ (return \ 0).$$

- Identity monad or Maybe monad.
- Proof under way that total reasoning sometimes is meaningful.
- Some problems related to impredicativity. (GHC Core is a variant of F^{ω} .)
- General recursion cannot be handled.

Haskell–FOL

- Translation of GHC Core into (untyped) FOL.
- Santa: Tool for translating FOL formulas into many different formats.
- Example: $(P_2P_1)^{-1} = P_1^{-1}P_2^{-1}$ in the revision control system Darcs.

 $prop_invert_comp =$ $forAll \$ \lambda p_1 \rightarrow$ $forAll \$ \lambda p_2 \rightarrow$ $invert (ComP [p_2, p_1]) == ComP [invert p_1, invert p_2]$

Many things open: Types, totality, finiteness, bottoms, induction, coinduction...

Agda-FOL

- agdaLight, reimplementation of Agda without meta variables and inductive families.
- Plugins for QuickCheck and FOL.

Agda-FOL example

- *isRing*: Axiomatises a ring.
- $isBool :: (X :: Set) \to (X \to X \to X) \to Prop$ $isBool X (*) = (x :: X) \to Id X (x * x) x$
- axR1 :: isRing R (+) (*) minus Zero OneaxR2 :: isBool R (*)
- $thm :: (x :: R) \rightarrow x + x \equiv Zero$ $thm \ x = fol - plugin \ (axR1, axR2)$
- $thm1 :: (x :: R) \rightarrow (y :: R) \rightarrow x * y \equiv y * x$ $thm1 \ x \ y = fol - plugin \ (axR1, axR2)$