Effective Reasoning, Concurrency, and Security Protocols

Arjan Mooij
FoP Away Day 2007
Research directions

- Effective mathematical reasoning
 - Reach out to new application areas
 - Where designing algorithms is hard
 - Make a real and actual contribution

- Mathematics
 - Discipline bridging (Mathematics, ICT, Engineering)

- Concurrency
 - Non-blocking algorithms
 - Security protocols
Security protocols

- The field
 - Actual topic
 - Notoriously difficult to reason about
 - Lots of work on formal verification

- Groundwork
 - Modelling security properties
 - Modelling intruder behaviour
 - Calculational derivation techniques
 - Needham-Schroeder-Lowe authentication protocol
Modelling security properties

- Distributed system
 - Honest components and intruder components
 - Communication using messages via intruders

- Modelling authentication
 - Existing definitions are operational
 - In terms of pre- and post- assertions?
 - Assertions are predicates in the program text

- Question:
 - When do two components authenticate each other?
Authentication

• Consider honest components A and B
 – A wants to communicate with component p
 – B wants to communicate with component q

• Desired (simple) post-conditions:
 – Component A: \(p = B \implies q = A \)
 – Component B: \(q = A \implies p = B \)

• This corresponds to agreement in [Lowe ’97].
Modelling intruder behaviour

- Public/private key encryption system
 - $[k: m]$ is message m encrypted with key k

- Intruders behave as a kind of channel
 - Unreliable channel: message loss and duplication
 - Capabilities from Dolev/Yao intruder model
 - Message $[k: m]$ composed from k and m
 - Message m decomposed from $[k: m]$ and k^{-1}
Unreliable uni-directional messages

- Introduce variables
 - Set of ever transmitted messages C
 - Receive buffer R
 - Channel copies messages from C into R
 - $R.m$ denotes that m is in set R

- To establish a stable assertion P
 - Insert a receive statement of a message m
 - Introduce an invariant $R.m \Rightarrow P$
 - Strengthen into invariant $C.m \Rightarrow P$
 - Each send statement of m gets a pre-assertion P
Add the Dolev/Yao capabilities

• Small modifications:
 – Channel copies derived messages from C into R
 – Let D denote the messages that can be derived from C:
 • D contains C
 • D.k \land D.y \land D.z \implies D.[k:y,z]
 • D.k^{-1} \land D.[k:y,z] \implies D.y \land D.z

• To establish a stable assertion P
 – Insert a receive statement of a message m
 – Introduce an invariant R.m \implies P
 – Strengthen into invariant D.m \implies P
Calculational derivation techniques

- Maintenance of such an invariant \(D.m \Rightarrow P \)
 - \(D \) is only expanded using the send statements
 - Each send statement of \(m \) gets a pre-assertion \(P \)

- Composition, suppose \(m = [k: y,z] \)
 - Require invariant \(D.k \land D.y \land D.z \Rightarrow P \)
 - Heuristic: strengthen antecedent into one conjunct

- Decomposition
 - Don’t apply it to results of composition!
 - Only consider the transmitted messages
Calculational derivation techniques...

- Decomposition without key transmission
 - Only consider this single send statement \([k: m,x]\)
 - Recursively require a pre-assertion
 - \(D.k^{-1} \Rightarrow P\)

- Decomposition with key transmission
 - Also consider the other transmitted messages
 - Require a pre-assertion using a generalisation
 - Ensure that the key is considered via the send statements of the other transmitted messages
Initial results

- Model of the important notion of authentication
- Integration of intruder and communication model
- Derivation techniques
- Applied to the Needham-Schroeder-Lowe protocol
 - Authentication protocol
 - Known trap was naturally avoided
 - Key distribution protocol
 - Integration of these protocols

- Exploratory work, so lots of future work