1. (a) The language of all words over the alphabet \{1, 2, 3\} of length at least one and at most two.

(b) \(L = \{1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33\}\)

(c) \(|L_1| = \sum_{i=m}^{n} |\Sigma|_i|^n\)

(Note that the “big sigma” here is the standard arithmetic sum operator.)

The above solution yields full marks. However, this is just a geometric series, for which the sum easily can be stated in closed form. See e.g. http://en.wikipedia.org/wiki/Geometric_series, or note the following.

Assuming \(r \neq 1:\)

\[
\left(\sum_{i=m}^{n} r^i\right) + r^{n+1} = r^m + \sum_{i=m+1}^{n+1} r^i = r^m + r \sum_{i=m}^{n} r^i
\]

Thus:

\[
\left(\sum_{i=m}^{n} r^i\right)(1 - r) = r^m - r^{n+1}
\]

giving

\[
\sum_{i=m}^{n} r^i = \frac{r^m - r^{n+1}}{1 - r}
\]

Finally, substituting \(|\Sigma|_1|\) for \(r\), we conclude

\[
|L_1| = \frac{|\Sigma|_1|^m - |\Sigma|_1|^{n+1}}{1 - |\Sigma|_1|}
\]

when \(|\Sigma|_1| \neq 1. If \(|\Sigma|_1| = 1, we have \(|L_1| = n - m + 1.\)

Strictly speaking, we should also note that neither of the above formulations cover the case when \(\Sigma = \emptyset\) and \(m = 0\). This is because 0\(^0\) is undefined. However, 0\(^0\) = \{\(\epsilon\}\), which means \(|L_1| = 1\) (for any \(n \geq 0\).

(d) \(|L_1| = \sum_{i=0}^{4} |\Sigma|_i^i = \sum_{i=0}^{3} 3^i = 1 + 3 + 9 + 27 + 81 = 121\)

or

\(|L_1| = \frac{3^0 - 3^{i+1}}{1 - 3} = \frac{1 - 273}{-2} = 121\)

[Marking: 5 each, for a total of 20]

2. (a) \(L_3 = \{\epsilon, b, cc\} \cap \{a, b, c\} = \{b\}\)

(b) \(L_4 = \{a, b, c\} \{\epsilon, b, cc\} = \{a, b, c, ab, bb, cb, acc, bcc, ccc\}\)

(c) \(L_5 = \emptyset\)

[Marking: 5 each, for a total of 15]

3. (a) DFA A

![DFA Diagram]

DFA A
b)

<table>
<thead>
<tr>
<th>w</th>
<th>$w \in L(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>yes</td>
</tr>
<tr>
<td>$ababa$</td>
<td>no</td>
</tr>
<tr>
<td>$ababba$</td>
<td>yes</td>
</tr>
<tr>
<td>$aabbaabba$</td>
<td>no</td>
</tr>
</tbody>
</table>

(c) $\hat{\delta}_A(0, bab) = \hat{\delta}_A(\delta_A(0, b), ab)$ def. $\hat{\delta}_A$

$= \hat{\delta}_A(2, ab)$ because $\delta_A(0, b) = 2$

$= \hat{\delta}_A(\delta_A(2, a), b)$ def. $\hat{\delta}_A$

$= \hat{\delta}_A(3, b)$ because $\delta_A(2, a) = 3$

$= \hat{\delta}_A(\delta_A(3, b), \epsilon)$ def. $\hat{\delta}_A$

$= \hat{\delta}_A(1, \epsilon)$ because $\delta_A(3, b) = 1$

$= 1$ def. $\hat{\delta}_A$

(d) $L(A)$ contains all words over $\{a, b\}$ in which the number of a’s and the number of b’s both are even or both are odd. But that’s the same as saying all the words over $\{a, b\}$ containing an even number of symbols. Which in turn suggests there is a DFA with fewer states that accepts the same language. (Can you find it?)

[Marking: 10 each, for a total of 40]

4. We need to count the number of a’s modulo 3, i.e. we need to keep track of whether the remainder when we divide the total number of a’s seen so far by 3 is 0, 1, or 2. Thus we need 3 states. They are named 0, 1, and 2 below, to indicate said remainder. When any symbol other than a is read, the machine does not change state as the number of a’s seen remain unchanged. 0 should be the accepting state because a remainder of 0 indicates that the number of a’s seen is a multiple of 3. Note that 0 is a multiple of 3. Thus the empty string is accepted, and the accepting state is thus also the initial state.

[Marking: 25]